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Abstract 
Sigmoidal responses have been observed in various fields of biochemistry such as 
multi–subunit protein chemistry, enzymology and signal transduction for decades. 
The input–output curves in these biological phenomena are often well–characterized 
by the Hill equation, and Koshland and Goldbeter defined them as ultrasensitive 
when an increase from 10% to 90% maximal activity occurs over less than an 81–fold 
change in input quantity; i.e. when the effective Hill coefficient related to the 
EC90/EC10 ratio as n = ln(81)/ln(EC90/EC10) is greater than 1. Contradictorily, by this 
definition of ultrasensitivity, a non–sigmoidal linear response curve is also 
ultrasensitive with n = 2. Therefore, I present in this report that the logaritmic mean 
of the EC90 and EC10 is more suitable for quantitative analysis of ultrasensitive 
phenomena.    

 

1  Introduction 
The sigmoidal shape is biologically significant, and it has been recognized in physiology 

since the work of Hill [1] and Adair [2] at the beginning of the 20th century, and in 

enzymology since 1960s Monod–Wyman–Changeux [3] and Koshland–Nemethy–Filmer [4] 

proposed models for accounting the sigmoidal curves. In 1980s Goldbeter and Koshland 

showed that signal transduction pathways also yield sigmoidal response curves that resemble 

those of cooperative proteins and alosteric enzymes [5], and they coined a phase 
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ultrasensitivity; i.e. a property of steady–state signal–response relationships that makes them 

switch–like in character. Quantitative analysis of ultrasensitive responses has been very 

intesively studied since then [6], and Ferrell and Ha published recently several review papers 

on various models that describe ultrasensitivity in biochemical systems [7–9]. Although the 

models differ in number of respects, they share the main feature; i.e. it takes less than 81–fold 

change in input effective concentrations (EC) to drive the output from 10% to 90% of limiting 

saturation value. The ratio of effective concentrations EC90/EC10 actually equals 81 when 

steady–state responses follow classical (hyperbolic) saturation or Michaelian–like kinetic 

behaviour. However, although ultrasensitive responses according to the latter definition 

should be sigmoidal; i.e. flat at low and high inputs and steep in between, and consequently 

with a transparent inflexion points, that is not true for gradual linear responses. Therefore, I 

propose that the logarithmic mean of distinct EC90 and EC10 values might be a better 

quantitative measure for ultrasensitivity of biological processes. Otherwise, the logarithmic 

mean difference between two positive values plays an important role in the study of heat and 

mass transfer in liquids flowing in pipes, and it has been known among chemical engineers 

for decades [10]. The logaritmic mean temperature difference is logaritmic average of the 

temperature differences at the hot (A) and cold (B) ends of coaxial cylindrical bodies; i.e. 

double pipe exchangers, and it can be used to calculate transfered heat in a heat exchanger. 

The logatitmic mean concentration difference is also an operationally exact statement for the 

concentration driving force of mass transfer in a blood dialyzer. Although the logaritmic mean 

difference is a function in common use in chemical engineering, I believe that it is expedient 

to illustrate here this function and how to use its relevance for quantitative analysis of 

ultrasensitive responses that are widely observed in biochemistry. This is the subject of 

present article, in which examples of specific response curves are given that can be more 

unambiguously expressed in the logarithmic mean form than in terms of usual Goldbeter–

Koshland's definition [5].  

 

2  Mathematical properties of the logaritmic mean 
The logaritmic mean L(x1,x2) (shortly denoted as L) of two unequal positive numbers x1 and 

x2 is defined as 

 

𝐿 = 𝐿(𝑥%, 𝑥') =
)*+),

-.()* ),⁄ )
                                                                                                         (1) 
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with the understanding that 

 

𝐿 = 𝐿(𝑥%, 𝑥%) = lim
),→)*

𝐿(𝑥%, 𝑥') = 𝑥%                                                                                (2) 

 

After recasting Eq. (1) as 

 

4
),
=

5*
5,
+%

-.()* ),⁄ )
= 6+%

-.(6)
⇒ 𝑙𝑛(𝛽) = ),

4
∙ (𝛽 − 1)                                                                         (3) 

 

where b = x1/x2, Eq. (3) can be finally reformulated as 

 

−),∙6
4
∙ 𝑒+),∙6 4⁄ = − ),

4
∙ 𝑒+), 4⁄                                                                                                (4) 

 

Both sides of Eq. (4) are of the following form 

 

𝑦 ∙ 𝑒@ = 𝑧                                                                                                                                 (5) 

 

where y can be expressed as the inverse solution to Eq. (5) in terms of the Lambert W 

function [13]   

 

𝑦 = 𝑊(𝑧) = 𝑊(𝑦 ∙ 𝑒@)                                                                                                           (6) 

 

Thus, taking the Lambert W function of both sides of Eq. (4) gives 

 

−),
4
∙ 𝛽 = 𝑊 C− ),

4
∙ 𝑒+), 4⁄ D ⇒ 𝛽 = −

EC+5,F ∙G
H5, F⁄ D

(), 4⁄ )
                                                              (7) 

 

In Eq. (7), if one number x2 and optional value of logaritmic mean L are known, then 

unknown number x1 which defines L in composition with x2 can be determined from the 

evaluated b value. 

Because the argument –x2/L·exp(–x2/L) of W is negative for any positive real number x2, 

there are two roots for the solution to Eq. (7) as shown in Fig. 1. Although the root from the 
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W0- branch is 'trivial' solution with b = 1; i.e. x1 = x2, the root from the W-1 branch gives 'real' 

solution for a system with b ≠ 1, and thus x1 ≠ x2. 

 

Figure 1. The three branches of the Lambert W(x) function for the corresponding values of argument 
z. Region 1 (dashed) z > 0, region 2 (dotted) –exp(–1) < z < 0 and 0 > W(z) > –1; region 3 
(solid) –exp(–1) < z < 0 and W(z) < –1. Regions 1 and 2 divide the principal W0(z) branch 
as W0

+(z) and W0
-(z), respectively, while region 3 represents the lower W-1(z) branch. 

 

Although the exact values of both roots may be computed using advanced mathematical 

software such as Wolfram Mathematica, MathWorks Matlab or Maple from Maplesoft, the 

Lambert W function is still not available in the standard mathematical software libraries that 

are widely used among life scientists. However, there are simple analytical functions that can 

be incorporated into standard computer programs that can accurately approximate W for all 

three branches [13,14]. As application of solving b in Eq. (7) is confined to finding solution 

from the lower branch of the Lambert W function, analytical function that can approximate 

W-1 with a maximum relative error of only 0.025% is also provided as: 

 (8) 

 

3  Ultrasensitivity and Hill equation 
An ultrasensitive response is often described with the sigmoidal curve which can be usually 

well–approximated by the Hill equation as 
      

𝑜𝑢𝑡𝑝𝑢𝑡 = M.NOPQ

RS.UQ VM.NOPQ
                                                                                                                (9) 
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where n represents effective Hill coefficient which is real number greater than 1. If n–values 

are high (n > 10), then the steeply sigmoidal input–output curves are similar to switch–like 

(i.e. Heaviside step) responses. Although the K0.5 parameter in Eq. (9) is actually the EC50 

value, i.e. the effective concentration of an input stimulus required for half–maximal 

response, this parameter is usually denoted as K0.5.  

The effective Hill coefficient  is related to the effective concentrations EC90 and EC10. Putting 

these values into Eq. (9) 

 

0.1 = XY*SQ

RS.UQ VXY*SQ
,																	0.9 = XY\SQ

RS.UQ VXY\SQ
                                                                               (10) 

 

yields the following relationships 

                                                                                            

𝐸𝐶%_ = `1 9⁄Q ∙ 𝐾_.b,								𝐸𝐶c_ = √9Q ∙ 𝐾_.b                                                                           (11)	

 

The effective Hill coefficient can be expressed with the EC90/EC10 ratio according to the 

Goldbeter and Koshland definition [5] using Eq. (12) 

 

𝑛 = -.(e%)
-.(XY\S XY*S⁄ )

= -.(e%)
-.f √e%Q g

                                                                                                    (12) 

 

Thus, an input–output response system shows ultrasensitivity (and sigmoidality) only when n 

> 1, because the functional form of Eq. (9) is the same as that of the Michaelis–Menten 

equation for n = 1, and in that case EC90/EC10 = 81. 

However, there is a problem with the Goldbeter and Koshland definition of ultrasensitivity 

(and sigmoidality) when the response curve approaches a straight line that does not bend over 

until the response is nearly maximal (see Fig. 2). The increasing input–output part of such 

curve is described by simple linear equation with the slope k as shown in Eq. (13)     

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑘 ∙ 𝑖𝑛𝑝𝑢𝑡; 					𝑘 = %
'∙RS.U

                                                                                           (13) 

 

Putting the EC90 and EC10 values into Eq. (13) gives 

 

𝐸𝐶%_ =
_.%
k
= 0.2 ∙ 𝐾_.b,									𝐸𝐶c_ =

_.c
k
= 1.8 ∙ 𝐾_.b                                                              (14) 
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and results with the effective Hill coefficient n = 2 according to the Goldbeter and Koshland 

definition  

 
no	(e%)

-.(XY\S XY*S⁄ )
= -.(e%)

-.(c)
= 2                                                                                                       (15) 

 

Hence, in this way linear curve shows the same ultrasensitivity as sigmoidal Hill curve with n 

= 2 (see Fig. 2), although nowhere on the linear curve can be found inflexion point, and 

consequently at least local sensitivity. Therefore, a replacement for the definition is proposed 

in this paper. 

 

Figure 2. The three various response–curves with different effective Hill coefficients evaluated by Eq. 
(12) according to the Goldbeter–Koshland definition: Michaelian hypebolic–like in shape 
with n = 1, ultrasensitive sigmoid–like in shape with n = 2, and linear in shape with n = 2. 
The horizontal dashed lines intersect with response–curves at effective EC10 and EC90 
concentrations. 

 

4  Ultrasensitivity and the logaritmic mean of the EC90 and EC10 
The logarithmic mean of the EC90 and EC10 that are evaluated from Hill equation; i.e. Eq. 

(10), and are written by Eq. (11), is defined as 

 

𝐿 = XY\S+XY*S
-.(XY\S XY*S⁄ )

=
C √cQ +	 `% c⁄Q D

-.f √e%Q g
∙ 𝐾_.b =

fc* Q⁄ +	cH* Q⁄ g
'∙-.fc* Q⁄ g

∙ 𝐾_.b                                                    (16) 

 

Eq. (16) may be recasted as 
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𝐿 = (Gp+	GHp)
'∙-.(Gp)

∙ 𝐾_.b =
qM.r(s)

s
∙ 𝐾_.b                                                                                          (17) 

 

where z = ln(9)/n. For clasical hyperbolic or Michaelian–like response when n = 1, the 

logaritmic mean of the EC90 and EC10 equals L = sinh(ln(9))/ln(9)·K0.5 ≈ 2.023∙K0.5. If n 

increases and sigmoidal curve becomes similar in shape to switch–like response, then the 

logarithmic mean of the EC90 and EC10 approaches to K0.5 according to the limit expression 

given by 

 

𝐿 = lim
.→t

fc* Q⁄ +	cH* Q⁄ g
'∙-.fc* Q⁄ g

∙ 𝐾_.b = lim
s→_

qM.r(s)
s

∙ 𝐾_.b = 𝐾_.b                                                  (18) 

 

Thus, the L values for sigmoidal curves are roughly between K0.5 (for n >> 1) and 2∙K0.5 (for n 

≈ 1). Contrary, the logarithmic mean of the EC90 and EC10 for linear response curve results in 

   

𝐿 = XY\S+XY*S
-.(XY\S XY*S⁄ )

= (_.c+	_.%)
-.(c)

∙ 2 ∙ 𝐾_.b =
%.u
-.(c)

∙ 𝐾_.b ≈ 0.728 ∙ 𝐾_.b                                        (19) 

 

This is where the usefulness of the logaritmic mean comes in. The L values for response 

curves that show no ultrasensitivity in respect of sigmoidal shape are clearly outside the (K0.5, 

2∙K0.5) boundaries. Thus, the controversy about ultrasensitivity based on effective Hill 

coefficient which is evaluated by Eq. (12) can be avoided with the replacement of Goldbeter–

Koshland definition. 

However, the effective Hill coefficient is still well accepted parameter for sigmoidal curves, 

and therefore, it is reasonable to determine n–value from curve–determined parameters; i.e. 

logaritmic mean L and effective concentration K0.5. The effective Hill coefficient can be 

easily evaluated (n = ln(9)/z) when the solution z to Eq. (17) is determined. Although the 

exact explicit solution to Eq. (17) does not exist, the solution can be easily numerically 

calculated. Eq. (17) can be reformulated as 

 

𝐹(𝑧) = sinh(𝑧) − RS.U
4
∙ 𝑧 = 0                                                                                                (20) 

 

The latter equation has one trivial solution z = 0; i.e. when n (= ln(9)/z) approaches infinity. 

Another solution can be computed either by using appropriate professional mathematical 
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software or simply by Newton's iteration method where each further approximation root can 

be evaluated as 

 

𝑧.V% = 𝑧. −	
|(sQ)
|}(sQ)

= 𝑧. −	
C~�o�(sQ)+

�S.U
F ∙sQD

C��~�(sQ)+
�S.U
F D

                                                                         (21) 

 

Because of the characteristics of function F(z) this numerical approach for calculating the 

nontrivial solution to Eq. (20) is very efficient, and it needs only a few steps as approximation 

roots strongly converge to the exact solution. 

It should be remembered that difficulties may arise when accurate calculations of the 

logarithmic mean must be performed with original Eq. (1) in case of a switch–like response 

curve with high n–value as EC90 approaches EC10. Although L reduces theoretically to K0.5 

according to definition (see Eq. (2)) in such cases, the numerical evaluation of L using Eq. (1) 

might cause inconvenience for switch–like curves with n >> 1. Hence, various 

approximations for the logarithmic mean have been proposed to chemical engineering 

programmers [15–17] for decades, but the most widely used equation attributed to Chen [16] 

 

𝐿 = 𝐿(𝑥%, 𝑥') =
)*+),

-.()* ),⁄ )
≈ �𝑥% ∙ 𝑥' ∙ C

)*V),
'
D

�
                                                                     (22) 

 

Approximation Eq. (22) avoids numerical problems when x1 approaches x2, and 

simultaneously provides limit value L = x1 when x2 equals x1 according to definition (see Eq. 

(2)). I believe that approximation Eq. (22) can be reasonably used for quantitative analysis of 

ultrasensitive responses in such cases. 

 

5  Conclusion 
This report has described the quantitative analysis of ultrasensitivity within the sigmoidal Hill 

framework, to extract the effective Hill coefficient from the logaritmic mean L of the EC90 

and EC10 instead of the EC90/EC10 ratio relationship which was proposed by Goldbeter and 

Koshland. The primary improvement of this work is the use of well–known logarithmic mean 

L among chemical engineers, and thereby permitting parameter L for characterization of 

sigmoid–like in shape curves. The latter parameter actually improves the clarity of definition 

of ultrasensitivity for several biochemical phenomena. Thus, I conclude that the above–
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described logarithmic mean of the EC90 and EC10 for the quantitative analysis of 

ultrasensitivity can be considered as useful alternative to the Goldbeter–Koshland's definition.  
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