Similarity/Diversity Indices on Incidence Matrices Containing Missing Values

Cecile Valsecchia, Roberto Todeschinia,*

aMilano Chemometrics and QSAR Research Group, Department of Environmental Sciences, University of Milano-Bicocca. P.zza della Scienza 1, 20126, Milano, Italy.

(Received July 10, 2019)

Abstract

Quantifying the diversity content of an incidence matrix is challenging in several scientific fields. The existing indices capture diverse facets of diversity and thus comparing their behaviour is not a straightforward task. For example, an application of diversity measures involves ensembles of classifiers which usually in real applications contain missing values. Therefore, we analysed 14 statistics and, after making them comparable and able to deal with missing values, we applied them on more than one hundred incidence matrices in order to examine the relationships among the measures themselves. In particular, we highlighted the importance of the interrow agreement of factors, the general agreement of incident factors, as well as the influence on the indices of the proportion of missing values and matrix dimensions, the sensitivity to missing values, the uniform distribution of entries and the invariance to matrix transposition.

* Corresponding author. E-mail: roberto.todeschini@unimib.it
1. Introduction

Incidence matrices are numerical tables where the presence of a relationship between a row object and a column factor is simply denoted by a numerical value equal to one, while the absence of this relationship is denoted by zero. For example, the activity of a molecule (row) with respect to a pharmacological target (columns) is denoted by 1 if the molecule is active and by 0 is the molecule is not active or the existence of a relationship between an individual (row) with another individual (column) is denoted by 1 while the absence of a relationship is denoted by 0. In the latter case, typically the matrices are squared, and the row and column elements are the same. When the existence of a relationship between row and column elements is not known, missing values are used.

Incidence matrices are used in several fields and some examples of their application are summarized in Table 1, which explicates also the meanings for each dimension and entry of the incidence matrix.

<table>
<thead>
<tr>
<th>Incidence matrix type</th>
<th>Rows/objects</th>
<th>Columns/factors</th>
<th>value 1</th>
<th>value 0</th>
<th>Missing values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generic data set</td>
<td>objects</td>
<td>properties</td>
<td>yes</td>
<td>no</td>
<td>unknown</td>
</tr>
<tr>
<td>Classifier ensemble</td>
<td>objects</td>
<td>classifiers</td>
<td>correct</td>
<td>wrong</td>
<td>unclassified</td>
</tr>
<tr>
<td>Ecological data</td>
<td>species</td>
<td>sites</td>
<td>presence</td>
<td>absence</td>
<td>unknown</td>
</tr>
<tr>
<td>Molecule activities</td>
<td>molecules</td>
<td>activities</td>
<td>active</td>
<td>not active</td>
<td>unknown</td>
</tr>
<tr>
<td>Molecule structure</td>
<td>molecules</td>
<td>fingerprint</td>
<td>presence</td>
<td>absence</td>
<td>-</td>
</tr>
<tr>
<td>Databases comparison</td>
<td>objects</td>
<td>databases</td>
<td>included</td>
<td>non-included</td>
<td>-</td>
</tr>
<tr>
<td>Graph theory</td>
<td>vertices</td>
<td>edges</td>
<td>belonging</td>
<td>not belonging</td>
<td>-</td>
</tr>
<tr>
<td>Tuning matrix</td>
<td>targets</td>
<td>actions</td>
<td>effective</td>
<td>not effective</td>
<td>no concern</td>
</tr>
<tr>
<td>Molecule connectivity</td>
<td>atoms</td>
<td>atoms</td>
<td>bonded</td>
<td>not bonded</td>
<td>-</td>
</tr>
<tr>
<td>Social network</td>
<td>individuals</td>
<td>individuals</td>
<td>connected</td>
<td>not connected</td>
<td>unknown</td>
</tr>
<tr>
<td>Road/train map</td>
<td>cities</td>
<td>cities</td>
<td>connection</td>
<td>not connection</td>
<td>-</td>
</tr>
<tr>
<td>Tournament matrix</td>
<td>players</td>
<td>players</td>
<td>win</td>
<td>defeat</td>
<td>no game</td>
</tr>
</tbody>
</table>

In order to numerically characterize the structure of the incidence matrices, several indices able to capture similar or different facets of diversity were proposed [1]. These indices, usually divided into pairwise and non-pairwise, have been used especially in pruning of ensembles of classifiers. In this case, objects (i.e. rows) are the samples while factors (i.e. columns) are the classifiers. The entry in the i-th row and j-th column is 1 if the i-th sample
is correctly classified by the j-th classifier and 0 if it is not. Although the most used indices seem to be inadequate to evaluate the overall performance [2,3], they had been successfully applied in combination with accuracy and margin theory to select classifiers in several areas, including remote sensing, social media semantic analysis and online classifications [4–10].

However, the existing diversity indices are challenging in real applications because of the issue of missing values regarded in the incidence matrix as the i-th sample not classified by the j-th classifier (i.e. NaN value in MATLAB code) which so far were not considered in the formulas. In addition, these indices are often calculated in different ranges and meanings, which make their relationships not immediately intelligible.

We have studied statistics which can measure similarity or diversity of an incidence matrix: three averaged pairwise coefficients (the Yule’s Q statistic, the Sokal-Michener similarity and the mutual average difference) and eight non-pairwise measures (the Wave-Edge distance, the Soergel distance, the Kohavi-Wolpert variance, inter-factor agreement, the generalized similarity, the coincident failure similarity, the multivariate correlation index and the average agreement) [1,11–17].

These statistics were made comparable and able to deal with the presence of missing values and finally, were applied to several both patterned and random matrices to investigate their behaviours, correlations and sensitivities to missing values through the analysis of principal components.

2. Materials and methods

2.1 Similarity/diversity indices

In the sections from now on we will refer in the general case of incidence matrix where the columns are factors and the rows are the objects. The procedure can be easily generalized or adapted case by case, e.g. following Table 1.

The data matrix T' is constituted by n' objects and L' factors; the entry t_{ij}' of the T' matrix is equal to 1 if there is a relationship between the i-th object and the j-th factor and 0 if there is not a relationship. When no information is available for an object, the entries are missing values denoted as m_{ij} (some special code is used, e.g. ‘NaN’ in MATLAB code).
As first step to deal with missing values, the rows entirely filled by missing values are deleted, i.e. the objects not related to any factor; analogously, all the columns entirely filled by missing values are deleted, i.e. factors not able to relate to any object.

The reduced data matrix T is then defined by n objects and L factors. All the quantities below are defined in terms of these new dimensions, i.e.

\[
\begin{align*}
 n &= \text{number of rows not entirely filled by missing values} \\
 L &= \text{number of columns not entirely filled by missing values}
\end{align*}
\]

We divided the similarity/diversity indices into three groups based on their algorithm. The first group includes the indices calculated as an average of column pairwise statistics such as Yule’s Q statistic and Sokal-Michener similarity. The indices deriving from the row sums and thus focused on intra-row differences are collected in the second group which includes the Wave-Edge distance, the Soergel distance, the Kohavi-Wolpert variance, the interfactor agreement, the generalized similarity, the average agreement and the coincident failure similarity. Finally, the multivariate correlation index and the mutual difference are collected in the third group, since they are calculated from the whole matrix.

The similarity/diversity indices are defined below. Note that each index has been rescaled between 0 and 1 for ease of interpretation. Moreover, each diversity measure increases when diversity decreases, excepting mutual average difference and Kohavi-Wolpert variance.

\subsection*{2.1.1 Column pairwise measures}

In pairwise measures, firstly the diversity between all pairs (j,k) of factors is calculated computing the so-called contingency table, constituted by the parameters a, b, c and d, where a and d are the number of objects both equal to 1 and both equal to 0, respectively, while b and c are the number of samples having 1 in the j-column and 0 in the k-column and vice versa. Thereafter, the overall diversity measure values are computed as the mean of the pairwise values.

\textit{Yule’s Q statistic (QY)}

For each pair of factors (j,k) the Yule correlation similarity (QY) is calculated by the contingency table as:
The final index QY is calculated as the average value of the pairwise Yule correlation similarity as:

$$QY = \frac{1}{C} \sum_{j=1}^{L-1} \sum_{k=j+1}^{L} Q_{jk} \quad -1 \leq QY \leq +1$$

(2)

The term C is the count of valid column pairs, i.e. all the cases where $a \cdot d + b \cdot c > 0$; if no missing values are present, all the contributions are valid and $C = \frac{L \cdot (L-1)}{2}$.

Finally, QY was rescaled in range [0, 1]:

$$QY' = \frac{QY + 1}{2}$$

(3)

Sokal-Michener similarity (SM)

For each pair of factors (j,k) the Sokal-Michener similarity is calculated by the contingency table as:

$$SM_{jk} = \frac{a + d}{a + b + c + d}$$

(4)

The global index is then calculated as:

$$SM = \frac{1}{C} \sum_{j=1}^{L-1} \sum_{k=j+1}^{L} SM_{jk} \quad 0 \leq SM \leq 1$$

(5)

The term C is the count of valid column pairs, i.e. all the cases where $a + b + c + d > 0$; if no missing values are present, all the contributions are valid, and C is calculated as in the previous case.

2.1.2 Indices based on the row sum

Most of the similarity/diversity indices are based on the different distribution of 1 and 0 among the entries of each row. For these statistics the following quantities must be previously defined for each i-th row of the T matrix with L columns:

$$u_i = \sum_{j=1}^{L} t_{ij} \quad 0 \leq u_i \leq L \quad z_i = L - u_i - m_i \quad 0 \leq z_i \leq L$$

(6)
\[u_i + z_i = L_i \leq L \quad L_i + m_i = L \]

where \(m_i \) is the total number of missing values in the \(i \)-th row, \textit{i.e.} denoting the number of factors whose relationship with the selected example is unknown; \(u_i \) is the number of 1 in the \(i \)-th row while \(z_i \) is the number of 0.

Row sum probabilities can thus be defined as the probabilities of \(u_i \) or \(z_i \) to be equal to a number ranging from 0 to \(L \).

The row sum probability is calculated as:

\[
p_{u_m} = \frac{\sum_{i=1}^{n} \delta_{m_i}}{n} \quad 0 \leq m \leq L \quad \delta_{m_i} = \begin{cases} 1 & \text{if } u_i = m \\ 0 & \text{otherwise} \end{cases} \quad \land \quad \sum_{m=0}^{L} p_{u_m} = 1
\]

\[
p_{z_m} = \frac{\sum_{i=1}^{n} \delta_{m_i}}{n} \quad 0 \leq m \leq L \quad \delta_{m_i} = \begin{cases} 1 & \text{if } z_i = m \\ 0 & \text{otherwise} \end{cases} \quad \land \quad \sum_{m=0}^{L} p_{z_m} = 1
\]

Note that, if no missing values are present, \(p_{u_m} = p_{z_{L-m}} \).

\textbf{Soergel concordance (SOC)}

Derived from the Soergel distance [17], it is here defined as a complementary quantity, here called concordance:

\[
SOC = \frac{\sum_{i=1}^{n} |u_i - z_i|}{\sum_{i=1}^{n} \max(u_i, z_i)}
\]

(8)

where \(u_i \) and \(z_i \) are defined above in equation (6).

\(SOC \) takes into account the intra-row differences, \textit{i.e.} how the factors outputs differ for the same \(i \)-th object.

\textbf{Wave-edge concordance (WEC)}

Derived from the Wave-edge distance [17], it is here defined as a complementary quantity, here called concordance:

\[
WEC = 1 - \frac{1}{n} \sum_{i=1}^{n} \frac{\min\{u_i, z_i\}}{\max\{u_i, z_i\}}
\]

(9)

As \(SOC \), \(WEC \) explicitly considers the different contributions of \(u_i \) and \(z_i \) in the \(i \)-th row.
Kohavi-Wolpert variance (KWV)

We use the general idea expressed in [1,4] and derived from [13] in the following way:

\[
KWV = \frac{4}{n \cdot \bar{L}} \sum_{i=1}^{n} \frac{u_i \cdot z_i}{L_i} \\
\bar{L} = \frac{\sum_{i=1}^{n} L_i}{n}
\]

(10)

\(\bar{L}\) is equal to \(L\) if there are not missing values, otherwise it considers only the factors which provide information for each object. We multiplied the original formula by 4 in order to rescale the KWV between 0 and 1.

Higher the variability of each row, higher the value of KWV.

Measure of interfactor agreement (IA)

As it is suggested in [18], the formula for the interfactor agreement (IA) takes into account the mean of present relationships (\(\bar{u}\)), the mean square between objects (BMS) and the mean square within objects (WMS) defined as:

\[
\bar{u} = \frac{1}{n} \sum_{i=1}^{n} u_i \\
BMS = \frac{\sum_{i=1}^{n} (u_i - \bar{u})^2}{n \cdot L} \\
WMS = \frac{\sum_{i=1}^{n} u_i \cdot z_i}{n \cdot L \cdot (L-1)}
\]

(11)

From the two previous quantities, IA is calculated as:

\[
IA = \frac{BMS - WMS}{BMS + (L-1) \cdot WMS} - \frac{1}{L-1} \leq IA \leq 1
\]

(12)

Finally, IA is rescaled in the range [0, 1]:

\[
IA' = \frac{IA \cdot (L-1) + 1}{L} \\
0 \leq IA' \leq 1
\]

(13)

Generalized similarity (GSu and GSz)

The generalized diversity defined in [14] is here replaced by the complementary quantity, here called generalized similarity:
Since we defined two row sum probabilities \(pu \) and \(pz \) (equations (7)), there are also two generalized similarity indices. \(GS_u \) considers the probability of 1 while \(GS_z \) that of 0. Clearly the difference between the two indices becomes significant in presence of missing values.

Coincidence failure similarity (CFS\(u \) and CFS\(z \))

Similarly to the generalized diversity, two complementary quantities are defined as coincident failure similarity indices from [14]:

\[
CFS_u = \begin{cases}
0 & \text{if } pu_0 = 1 \\
\frac{1}{1 - pu_0} \sum_{m=1}^L \left(\frac{L - m}{L - 1} \right) \cdot pu_m & \text{if } pu_0 < 1
\end{cases}
\] (16)

\[
CFS_z = \begin{cases}
0 & \text{if } pz_0 = 1 \\
\frac{1}{1 - pz_0} \sum_{m=1}^L \left(\frac{L - m}{L - 1} \right) \cdot pz_m & \text{if } pz_0 < 1
\end{cases}
\] (17)

The two diversity indices defined above are then converted into similarities:

\[
CFS_u = 1 - CFS_u
\] (18)

\[
CFS_z = 1 - CFS_z
\] (19)

Average agreement (AA\(u \) and AA\(um \))

As an index of the degree of incidence, we calculated also the average agreement as the average of the proportion of 1 in the rows, once without considering missing values (AA\(u \)) and once taking them into account (AA\(um \)).

\[
AA_u = \frac{\sum_{i=1}^n \left(\frac{u_i}{L_i} \right)}{n}
\] (20)
In presence of missing values, by definition, $AAum < AAu$, otherwise $AAum = AAu$.

For example, in case of classifiers ensemble each i-th row is the proportion of correct classifications, while, in the case of active molecules each i-th row is the proportion in which a molecule is active with respect to the L different targets.

2.1.3 Global indices

We considered the two similarity/diversity indices described below which take into account the whole matrix content, not taking into account explicitly difference between rows and columns.

Multivariate correlation index (K)

To evaluate the correlation content into the matrix, we considered the multivariate correlation index which was proposed for the evaluation of the global correlation of a dataset [15,16]. After substituting the missing value codes by a numerical value, the total quantity of correlation is estimated from the eigenvalue distribution obtained from the eigenvalue decomposition of the corresponding matrix M, calculated by symmetrisation of T:

$$
K = \frac{\sum_{i=1}^{p} \lambda_k - \frac{1}{p}}{2\left(\frac{p-1}{p}\right)}
$$

where λ_k are the eigenvalues of the matrix M and p the minimum rank between n and L.

The assumed empirical value of 0.25 is chosen in such a way to give $K \cong 0.5$ for total random matrices.
Mutual average difference (Δ)

The mutual average difference (Δ) for the i-th row takes into account the average of the modules of the differences between each pair of different entries in the row (excluding missing values) as:

$$\Delta_i = \frac{1}{C} \sum_{j=1}^{L-1} \sum_{k=j+1}^{L} |t_{ij} - t_{ik}|$$

where

$$t_{ij} = \{0,1\} \land t_{ik} = \{0,1\}$$

The term C is the count of valid differences; if no missing values are present, all the differences are valid, and C is calculated as in the previous cases.

The final index is calculated as the average over all the objects as:

$$\Delta = \frac{1}{n} \sum_{i=1}^{n} \Delta_i$$

(24)

2.1.4 **Numeric example**

To better understand the calculation of the indices we provided an example using the incidence matrix T reported in Table 2 where the last two columns collect the i-th row sum of 1 (u_i) and 0 (z_i).

In this case, $n = 6$ and $L = 4$.

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>u</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>O2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>O3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>O4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>O5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>O6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

For the pairwise indices, six comparisons between each pair of the four factors are carried out. For example, Table 3 reports the parameters a, b, c and d considering factor F1 and factor F2.
Table 3. Example of parameters needed to calculate pairwise statistics. The case of the pair of factors F1 and F2 is reported.

<table>
<thead>
<tr>
<th>Q_{12}</th>
<th>F1 = 1</th>
<th>F1 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2 = 1</td>
<td>a = 2</td>
<td>b = 1</td>
</tr>
<tr>
<td>F2 = 0</td>
<td>c = 2</td>
<td>d = 1</td>
</tr>
</tbody>
</table>

In this case,

$$Q_{12} = \frac{2 \cdot 1 - 1 \cdot 2}{2 \cdot 1 + 1 \cdot 2} = 0$$

which denotes a middle value of similarity, since Q_{jk} ranges from -1 to 1.

The global QY index is calculated and rescaled between 0 and 1 as it follows.

$$QY = \frac{2}{L \cdot (L-1)} \left(Q_{12} + Q_{13} + Q_{14} + Q_{23} + Q_{24} + Q_{34} \right) = \frac{1}{6} \cdot (0 + 0.5 + 1 + 0 - 0.6 + 0) = 0.15$$

$$QY' = \frac{QY + 1}{2} = 0.58$$

The parameters a, b, c and d calculated for each pair of factors are used also to calculate SM as:

$$SM = \frac{2}{L \cdot (L-1)} \left(SM_{12} + SM_{13} + SM_{14} + SM_{23} + SM_{24} + SM_{34} \right) = 0.56$$

The statistics derived from the row sum of 0 and 1 (i.e. last two columns of Table 2) are reported below.

$$SOC = \frac{3 \cdot 1 + 3 \cdot 1 + 1 \cdot 3 + 4 \cdot 0 + 2 \cdot 2 + 1 \cdot 3}{3 + 3 + 3 + 4 + 2 + 3} = 0.67$$

$$WEC = 1 - \frac{1}{6} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + 0 + \frac{2}{2} + \frac{1}{3} \right) = 0.61$$

$$KWV = \frac{4}{6 \cdot 4} \left(\frac{3}{4} + \frac{3}{4} + \frac{3}{4} + 0 + \frac{4}{4} + \frac{3}{4} \right) = 0.67$$

For IA it is necessary to calculate first \bar{u}, BMS and WMS as it follows:
\[\bar{r} = \frac{1}{6} \cdot (3 + 3 + 1 + 4 + 2 + 1) = 2.33 \]

\[BMS = \frac{(3 - 2.33)^2 + (3 - 2.33)^2 + (1 - 2.33)^2 + (4 - 2.33)^2 + (2 - 2.33)^2 + (1 - 2.33)^2}{6 \cdot 4} = 0.31 \]

\[WMS = \frac{3 \cdot 1 + 3 \cdot 1 + 1 \cdot 3 + 4 \cdot 0 + 2 \cdot 2 + 1 \cdot 3}{6 \cdot 4 \cdot (4 - 1)} = 0.22 \]

Then, \(IA \) is computed and rescaled:

\[IA = \frac{0.31 - 0.22}{0.31 + (4 - 1) \cdot 0.22} = 0.09 \quad IA' = \frac{0.09 \cdot (4 - 1) + 1}{4} = 0.32 \]

To calculate \(GSu, GSz, CFSu \) and \(CFSz \) the row sum probability is needed. Table 4 summarises these values for the matrix \(T \).

Table 4. Summary of the row probabilities for the matrix \(T \) defined in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>(m = 0)</th>
<th>(m = 1)</th>
<th>(m = 2)</th>
<th>(m = 3)</th>
<th>(m = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pu_m)</td>
<td>(0/6)</td>
<td>(2/6)</td>
<td>(1/6)</td>
<td>(2/6)</td>
<td>(1/6)</td>
</tr>
<tr>
<td>(pz_m)</td>
<td>(1/6)</td>
<td>(2/6)</td>
<td>(1/6)</td>
<td>(2/6)</td>
<td>(0/6)</td>
</tr>
</tbody>
</table>

\[GSu = \left[\frac{1}{4} \left(\frac{1 - 1}{4 - 1} \right) \cdot pu_t + \frac{2}{4} \left(\frac{2 - 1}{4 - 1} \right) \cdot pu_z + \frac{3}{4} \left(\frac{3 - 1}{4 - 1} \right) \cdot pu_3 + \frac{4}{4} \left(\frac{4 - 1}{4 - 1} \right) \cdot pu_4 \right] = 0.62 \]

\[GSz = \left[\frac{1}{4} \left(\frac{1 - 1}{4 - 1} \right) \cdot pz_1 + \frac{2}{4} \left(\frac{2 - 1}{4 - 1} \right) \cdot pz_2 + \frac{3}{4} \left(\frac{3 - 1}{4 - 1} \right) \cdot pz_3 + \frac{4}{4} \left(\frac{4 - 1}{4 - 1} \right) \cdot pz_4 \right] = 0.47 \]

\[CFDu = \frac{1}{1 - pu_0} \cdot \left[\frac{4 - 1}{4 - 1} \cdot pu_t + \frac{4 - 2}{4 - 1} \cdot pu_z + \frac{4 - 3}{4 - 1} \cdot pu_3 + \frac{4 - 4}{4 - 1} \cdot pu_4 \right] = 0.56 \]

\[CFSu = 1 - 0.56 = 0.44 \]

\[CFDz = \frac{1}{1 - pz_0} \cdot \left[\frac{4 - 1}{4 - 1} \cdot pz_1 + \frac{4 - 2}{4 - 1} \cdot pz_2 + \frac{4 - 3}{4 - 1} \cdot pz_3 + \frac{4 - 4}{4 - 1} \cdot pz_4 \right] = 0.67 \]
The multivariate correlation index K takes into account the eigenvalues λ_j calculated on the matrix $M = T^T \cdot T$, since the minimum rank is $L = 4$. The four eigenvalues are: 10.274, 2.189, 1.253, and 0.284.

If we define the sum of the eigenvalues as $\Lambda = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 14$, K can be calculated as:

$$K = \frac{10.274 - 1 + 2.189 - 1 + 1.253 - 1 + 0.284 - 1}{2 \cdot (4 - 1)} = 0.65$$

Finally, since T does not contain missing values, the average agreement is equal to:

$$AAu = AAum = \frac{3}{4} + \frac{3}{4} + \frac{1}{4} + \frac{4}{4} + \frac{2}{4} + \frac{1}{4} = 0.58$$

We can conclude that T has a diversity content not far from a random matrix.

2.2 Data sets

We generated 129 matrices in order to test the similarity/diversity indices explained above. To study the relationships between the indices we used 19 patterned matrices, i.e. matrices with a peculiar conformation not containing any missing value, which can be divided as it follows.

1. Matrices with rows entirely composed by either 1 or 0 with dimensions 1000×50 (1000 rows and 50 columns). The proportions of 1 considered are 10% (labelled as Row10 in the figures), 30% (Row30), 50% (Row50), 70% (Row70) and 100% (Row100). The latter is a matrix entirely composed by 1.
2. Diagonal matrices. Two squared 100×100 matrices, one composed by 0 with the main diagonal entries equal to 1 (Diag1) and the other composed by 1 with the main diagonal entries equal to 0 (Diag0).
3. Matrices derived from bi- and tri-diagonal. Two 50×10 matrices composed by the vertical concatenation of five 10×10 banded matrices with one-entries along the diagonal above or the diagonal below the main diagonal, in one case the main diagonal is composed by 0 (Bidiag1) and in the other by 1 (Tridiag1). Analogously,
two 50×10 composed by the vertical concatenation of five 10×10 banded matrices with 0 entries along the diagonal above or the diagonal below the main diagonal and 1 elsewhere, in one case the main diagonal is composed by 1 (Bidiag0) and in the other by 0 (Tridiag0).

4. Matrices derived from orthogonal matrices. Five matrices with dimensions 100×10 were created. One is made by a vertical concatenation of ten sub-matrices 10×10, the first of which is entirely composed by 0 excepting for the first column entirely filled with 1, the second sub-matrix indeed is composed by 0 excepting the second column entirely filled with 1, and so on to form Orth1_1. Orth1_2 follows the same scheme but considering each time two columns filled with 1 instead of one. This procedure was repeated reversing 0 and 1 to obtain Orth0_1 and Orth0_2. Finally, Orth5 is composed by the vertical concatenation of two 50×10 sub-matrices, the first with five columns of 1 and the other five of 0, while the second with 5 columns of 0 followed by 5 columns of 1.

5. A 1000×50 (Col50) and a 50×2 (TwoCol) matrix which alternate columns of 1 and columns of 0.

6. A 100×100 chequered matrix where 1 and 0 are distributed like white and black on a chessboard (Chess).

In order to study the behaviour of the different indices in relation both to an increase percentage of missing values and to an increase dimensions, we created 10 matrices with random distributions of 1 and 0 (100×10, 1000×10, 10000×10, 100×50, 1000×50, 10000×50, 100×100, 50×50, 100×100, 50×100, 50×100). For each of these matrices we formed other ten matrices with growing percentage of missing values from 5% to 50% in random positions, for a total of 110 matrices.

3. Results and discussion

The defined data sets were analysed by means of PCA with the aim to understand the different behaviours of the studied indices. Similar results were gained with a correspondence analysis. The numerical results are collected in Tables S1, S2 and S3 in the supplementary material. First, the 19 patterned data sets were examined; in Fig. 1 the loading plots of the first 3 PCs are shown (the indices), while in Fig. 2 the corresponding
score plots (the datasets) are shown. In the latter plots, representative images of the patterned matrices are reported where black and grey stand for 0 and 1, respectively.

![Figure 1](image)

Figure 1. Loading plots PC1 vs PC2 (A) and PC1 vs PC3 (B) for the 19 patterned matrices. The total explained variance is 92.5%. See Table S1 for numerical results.

As expected, analysing PC1, all the indices indicate the maximum similarity (agreement) when an object is related to all factors, except for AAum and AAu. In our exemplificative matrices, QY, SM, IA, WEC, SOC, GSz, GSu, CFSz, CFSu and K are equal to 1 and Δ and KWV are equal to 0 for Row10, Row30, Row50 and Row70. On the other hand, they designate maximum diversity for TwoCol, namely when half factors are related to the object. By definition, AAu and AAum are dependent on the row percentages of 1.

The first principal component (PC1) interprets well the interrows agreement, *i.e.* the concordance between factors. Matrices with rows entirely composed by either 1 or 0 indeed have high values on this axis (*e.g.* Row70, Row50, Row30 …), while TwoCol has the lowest PC1 value because in this matrix the two columns (*i.e.* factors) always disagree. High values of QY, SM, IA, WEC, SOC, GSz, GSu, CFSz, CFSu and K and low values of Δ and KWV corresponds to high concordance between factors.

The second component (PC2) reflects the agreement of incident factors, *i.e.* the percentage of 1, which influence positively K, GSu, CFSu and AAu (these last three indices are clearly correlated to the presence of 1) and negatively GSz and CFSz (which obviously are dependent to the percentage of 0). Along the second PC, the indices KWV, Δ, IA, QY, SM, SOC and WEC do not influence the patterned matrices. The third PC highlights the contrast (13% of variance) among SOC, WEC and, partially, SM (negative scores) with QY, K, IA and, partially, KWV, Δ, GSz, GSu, CFSz, CFSu (positive scores). The third component (PC3) takes into account the structure of the patterned matrices, independently from the
percentage of ones and zeros, distinguishing checkboard structures from matrices with diagonal square structures.

Figure 2. Score plots PC1 vs PC2 (A) and PC1 vs PC3 (B) for the 19 patterned matrices. The points are filled according to the percentage of 1 in the matrices: black indicates high percentage of 1 (above 70%), grey intermediate (between 25% and 75%) and white low (less than 25%). Near each point there are the label and a pictorial representation of the matrices where black refers to 0 and grey to 1.

The application of the 14 indices to the 110 random matrices lead to the loading and score plots of PC1 vs PC2 shown in Fig. 3. In this case, analysing the PC1 loadings, the pairwise indices (QY, SM), the global indices (K, Δ) and AAu are not influenced by the percentage of missing values; indeed, their values are always more or less equal to 0.50. High loadings values of PC1 are related to low percentage of missing values, while high values of PC2 are linked to the number of factors; in particular, QY, SM and KWV decrease and SOC, WEC, IA, Δ, AAu, AAum, GSu and GSz increase as factors decrease (blue data sets in Figure 3-B).

To better investigate the role of missing values, we took a random binary matrix 100 × 10 and we created other 50 matrices by adding every time 1% of missing values in random positions, always preserving the previous missing values. The PCA loading and score plots are reported in Fig. 4. PC1 reflects PC1 of Figure 3-B (i.e. the percentage of missing values), while PC2 seems to reflect the uniform distribution between 1, 0 and missing values. Lower PC2 values indeed were reached for matrices with a proportion of missing values around 33%. In this case, since the distribution of values is random, it is reasonable to assume that more or less there are equal number of 1, 0 and missing values. On the other hand, when the proportion of missing values is low (below 10%) or high (above 40%), the
classes are unbalanced. Δ decreases and QY, SM and K increase when the number of 1, 0 and missing values is unbalanced.

Figure 3. Loading (A) and score (B) plots of PC1 vs PC2 for the 110 random matrices. The explained variance is 66.5%. In the score plot different shapes indicate different number of factors in the matrices: circle indicates 10 columns, square 50 and star 100. The points darkness is proportional to the percentage of missing values (black filled = 50% of missing values). See Table S2 for numerical results.

Figure 4. Loading (A) and score plot (B) of PC1 vs PC2 for the 51 matrices 100 × 10 derived from the same random matrix with increasing percentage of missing values from 1% to 50% with step of 1. In the score plot the darkness of the points is proportional to the percentage of missing values. The explained variance is 94.8%. See Table S3 for numerical results.

Table 5 summarizes the different behaviours of the 14 diversity indices derived from PCA. First, it can be noted that WEC and SOC as well as QY and SM measures express the same information. In column A the trends of the indices for an increasing inter-row agreement is reported.
AAu and AAum differ only when we are considering matrices containing missing values. GSu and GSz as well as CFSu and CFSz, as it could be expected, have a different meaning only in describing the agreement of incidence factors (column B). In column C, it is shown the behaviour of the indices in presence of missing values, while in column D their behaviour for an increasing number of factors.

Columns E, G and H of Table 5 refer to the following sections in which the sensitivity to missing values and the transposition invariance of the indices were quantitatively analysed.

Table 5. A: inter-row agreement of factors; B: agreement of incident factors; C: proportion of missing values; D: total number of factors; E: sensitivity to missing values; F: uniform distribution of \{0, 1, missing\}; G: invariance to matrix transposition (n > L); H: invariance to matrix transposition in presence of missing values (n > L).

VH: very high; H: high; L: low; I: invariant; N: no; Y: yes.

<table>
<thead>
<tr>
<th>ID</th>
<th>Index</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QY</td>
<td>H</td>
<td>I</td>
<td>I</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>SM</td>
<td>H</td>
<td>I</td>
<td>I</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>3</td>
<td>WEC</td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>I</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>SOC</td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>I</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>KVW</td>
<td>L</td>
<td>I</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>IA</td>
<td>H</td>
<td>I</td>
<td>H</td>
<td>L</td>
<td>VH</td>
<td>I</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>GSu</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>I/L</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>GSz</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>I/L</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>CFSu</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>I</td>
<td>H</td>
<td>I/L</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>CFSz</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>I</td>
<td>H</td>
<td>I/L</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>Δ</td>
<td>L</td>
<td>I</td>
<td>I</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>H</td>
<td>H</td>
<td>I</td>
<td>I</td>
<td>L</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>AAu</td>
<td>H</td>
<td>H</td>
<td>I</td>
<td>L</td>
<td>L</td>
<td>I</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>14</td>
<td>AAum</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>I/L</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Looking the analyses carried out, the meaning for each index can be roughly expressed as reported in Table 6.
Table 6. General meaning of the studied incidence indices.

<table>
<thead>
<tr>
<th>ID</th>
<th>Index</th>
<th>Index meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QY</td>
<td>average factor pairwise agreement including disagreement</td>
</tr>
<tr>
<td>2</td>
<td>SM</td>
<td>average factor pairwise agreement</td>
</tr>
<tr>
<td>3</td>
<td>WEC</td>
<td>Wave-edge factor concordance</td>
</tr>
<tr>
<td>4</td>
<td>SOC</td>
<td>Soergel factor concordance</td>
</tr>
<tr>
<td>5</td>
<td>KWV</td>
<td>average standardized variance between factors</td>
</tr>
<tr>
<td>6</td>
<td>IA</td>
<td>inter-factor agreement</td>
</tr>
<tr>
<td>7</td>
<td>GSu</td>
<td>generalized similarity of incident factors</td>
</tr>
<tr>
<td>8</td>
<td>GSz</td>
<td>generalized similarity of non-incident factors</td>
</tr>
<tr>
<td>9</td>
<td>CFSu</td>
<td>generalized similarity of incident factors</td>
</tr>
<tr>
<td>10</td>
<td>CFSz</td>
<td>generalized similarity of non-incident factors</td>
</tr>
<tr>
<td>11</td>
<td>Δ</td>
<td>average mutual difference between factors</td>
</tr>
<tr>
<td>12</td>
<td>K</td>
<td>global correlation on incident factors</td>
</tr>
<tr>
<td>13</td>
<td>AAu</td>
<td>global incidence</td>
</tr>
<tr>
<td>14</td>
<td>AAum</td>
<td>global incidence including missing values</td>
</tr>
</tbody>
</table>

3.1 Sensitivity analysis

The sensitivity analysis of the studied indices was performed by using the matrix with a fixed dimension (100 × 10) and by evaluating the relative difference of the value of an index x including a percentage p of missing values compared with the value of the same index where no missing values are present. Then, the formula used is:

$$Sn(x, p) = \frac{x(p) - x(0)}{x(0)} \quad p = 1, 2, 3, ..., 50\%$$

In Fig. 5 the sensitivities of all the indices are graphically shown in three different graphs for sake of an easier visualisation. IA has the greatest variation in sensitivity and, in particular, its sensitivity increases with the percentage of missing values (Figure 5-C). The sensitivities of GSz, GSu, $CFSz$, $CFSu$ and $AAum$ slightly decrease and WEC and SOC slightly increase, while the other indices seem to be insensitive to the percentage of missing values. A possible explanation is that IA, SOC and WEC by definition take into account the number of 1 and 0 for the i-th row without a normalization on L_i (i.e. the difference between L and m_i) while for instance KWV or AAu normalize u_i and z_i by L_i. This consideration is also supported by the difference between AAu and $AAum$. In real applications, when dealing
with a large number of missing values it could be better to apply one of the indices which are insensitive to the percentage of missing values.

Figure 5. Sensitivity versus percentage of missing values for the 14 diversity indices.

3.2 Matrix transposition

The invariance to matrix transposition was also evaluated with and without the presence of missing values.

It was assumed that the rows of the starting matrix are larger than the columns \((n > L)\) and then the transpose matrix contains a number of columns larger than the number of rows \((n < L)\).

The invariance to matrix transposition was quantitatively evaluated as:

\[
I(x) = \frac{\min(x, x^T)}{\max(x, x^T)} \quad 0 \leq I(x) \leq 1
\]

where \(x\) is the index and values near/equal to 1 indicate invariance.

For matrices with a different number of columns but without missing values, the invariance was estimated directly by using the quantity \(I(x)\),

For matrices with a different number of columns but having also different percentages of missing values comprised between 0% - 50% (step 5%), the invariance was evaluated, for each index, by the coefficient of variation, defined as:

\[
CV(x) = \frac{s_x}{\bar{T}(x)}
\]

where \(s_x\) and \(\bar{T}(x)\) are the standard deviation and the average, respectively, calculated from the \(I(x)\) values obtained by matrices having the same dimension but eleven different percentages of missing values. Values of \(CV\) near to zero indicate invariance.
In a matrix without missing values, only the indices K, AAu and $AAum$ are invariant (Table 5, column G).

In matrices containing missing values, all the indices are not constant under transposition, although K, AAu, $AAum$, SM, and Δ show only small variations.

Graphs showing the dependence of CV and I from L are reported in supplementary material (Fig. S1).

As expected, for square random matrices, all the indices show very small variations.

4. Conclusions

The behaviour of the considered 14 measures of diversity with both patterned and random matrices was studied together with their sensitivity to the presence of missing values and invariance to transposition.

The pairs $CFSz$ and GSz, $CFSu$ and GSu, SOC and WEC give, in all the cases both with and without missing values, almost the same information. $CFSz$, GSz, $CFSu$ and GSu are almost invariant to transposition and decrease with the increase of missing values. $CFSz$ and GSz as $CFSu$ and GSu differ only because of the opposite dependence of factors agreement. The former pair expresses the generalized similarity of incidence in factors while the latter pair of non-incidence in factors. SOC and WEC are weakly variant to transposition especially for matrix with lower dimensions (namely $L < 20$) and they weakly increase with the percentage of missing values. IA has a similar behaviour of WEC and SOC, but it is more sensitive both to missing values and to transposition. The column pairwise statistics QY and SM carry more or less the same information, being defined in a similar way, and are influenced by the dimensions and by the inter-row agreement of factors, but only the second is invariant to matrix transposition. By definition, $AAum$ is equal to AAu, in the case without missing values, and they are sensible to global incidence of the factors. Since KWV and Δ increase with diversity, they are related to low values of the other indices. Furthermore, the column pairwise statistics such as the global indices are sensible to the unbalanced distribution of 0, 1 and missing values in the incidence matrix.

It can be concluded that the choice of the similarity/diversity indices is dependent on the problem under study since they carry different useful information, but, in presence of a significant number of missing values, the indices QY, SM, KWV, K, AAu and Δ should be preferred being invariant to missing values.
References