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Abstract

The Wiener index (W) of a connected graph is the sum of distances over all
vertex pairs in this graph. As a variant of Wiener index, the multiplicative Wiener
index (MW) of a connected graph is the product of distances over all vertex pairs
in this graph. The first multiplicative Zagreb index (MZ) of a graph is the product
of squares of degree over all vertices in this graph. Das and Gutman (2016) proved
that for any bipartite connected graph of order n ≥ 5, MW >W. In this paper, we
first generalize Das and Gutman’s result by proving that if G is a connected graph
of order n ≥ 5 and size m such that m ≤ bn2 cd

n
2 e − 1, then MW >W. Second,

we compare MW with MZ for trees, and prove that MW ≥MZ for any tree with
at least five vertices. Finally, we compare MW with the independence number for
connected graph, and prove that MW is greater than independence number, with
only two exceptions.

1 Introduction

All graphs considered in this paper will be simple and connected. Let G = (V, E) be a

graph whose vertex set and edge set are V = V (G) and E = E(G), respectively. For a

vertex v in G, its degree, denoted by dG(v), is defined to be the number of edges incident

with v. Let dG(u, v) be the distance between vertices u and v in G, i.e., the length of one

shortest path connecting u and v. The diameter of a connected graph G is the maximum

distance between all pairs of vertices in G. A path in a connected graph is said to be a

diametral path, if this path is of length equal to the diameter. A connected graph is said

to be a tree if it contains no cycles, and said to be a bipartite graph, if it contains no
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cycles of odd length. A quasi-tree is a connected graph, in which there exists a vertex

whose removal results in a tree. Let Pn, Sn, Cn and Kn be the path, star, cycle and

complete graph of order n, respectively. For a ≥ 1, b ≥ 1, let Sa+1 and Sb+1 be stars on

a + 1 and b + 1 vertices, respectively. Then the double star Sa, b is just the tree obtained

by connecting an edge between two centers of Sa+1 and Sb+1. For other notation and

terminology not defined here, the readers are referred to [3].

A well-studied graph invariant based on distance of a connected graph G is the Wiener

index , denoted by W (G), is defined [30] to be the sum of distances over all unordered

vertex pairs in G, namely,

W (G) =
∑

{u, v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

DG(u)

where DG(u) =
∑

v∈V (G)

dG(u, v).

The average distance of G, denoted by l̄(G), is defined to be

l̄(G) =

∑
{u, v}⊆V (G)

dG(u, v)(
n
2

) =
2

n(n− 1)
W (G) .

Results on Wiener index can be found in [7, 13, 25, 26], and so on. For results on average

distance, the readers are referred to [4, 5, 6, 12] and the references cited therein.

As a variant of Wiener index, the multiplicative Wiener index of a connected graph

G, denoted by MW (G), is defined by Gutman et al.[15, 16] to be

MW (G) =
d∏

k=1

kγ(G;k) , (1)

where γ(G; k) is the number of vertex pairs inG that are at distance k and d is the diameter

of G. For recent results on MW (G), see [11, 18] and the references cited therein.

For a (molecular) graph G, two well-studied degree-based topological indices of G are

the first Zagreb index M1(G) and the second Zagreb index M2(G), respectively. They are

defined as follows:

M1(G) =
∑

v∈V (G)

(
dG(v)

)2
,M2(G) =

∑
uv∈E(G)

dG(u)dG(v) .

In 2010, Todeschini et al. [28, 29] proposed the multiplicative variants of ordinary

Zagreb indices, which are defined as follows:

π1(G) =
∏

v∈V (G)

(
dG(v)

)2
, π2(G) =

∏
uv∈E(G)

dG(u)dG(v) .
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Later, I. Gutman [17] called π1(G) and π2(G) the first multiplicative Zagreb index and

the second multiplicative Zagreb index of G, respectively. For recent results on π1(G) and

π2(G), see [27, 31] and the references cited therein.

During the past few decades, some graph theory scholars have investigated the rela-

tionships between various graph invariants, see e.g., [7, 8, 9, 10, 11, 19, 21, 22, 23, 24, 25].

Some of these researches were motivated by Grafitti conjectures [4, 12, 14] or AutoGraphiX

conjectures [1, 2, 20, 21]. In particular, Das and Gutman [11] investigated the relationship

between the multiplicative Wiener index and Wiener index. They proved that the former

index is always greater than the later one for bipartite graphs with at least five vertices.

In this paper, we investigate the relationship between the multiplicative Wiener in-

dex and Wiener index, the relationship between the multiplicative Wiener index and first

multiplicative Zagreb index, and the relationship between the multiplicative Wiener index

and independence number. We first generalize Das and Gutman’s result by proving that

if G is a connected graph of order n ≥ 5 and size m such that m ≤ bn
2
cdn

2
e − 1, then

the multiplicative Wiener index is greater than Wiener index. Second, we compare he

multiplicative Wiener index with first multiplicative Zagreb index for trees, and prove

that the multiplicative Wiener index is greater than or equal to the first multiplicative

Zagreb index for any tree with at least five vertices. Finally, we compare the multi-

plicative Wiener index with independence number for connected graph, and we prove

that the multiplicative Wiener index is greater than independence number, with only two

exceptions.

2 Main results

In this section, we investigate the relationship between the multiplicative Wiener index

and Wiener index, the relationship between the multiplicative Wiener index and first

multiplicative Zagreb index, and the relationship between the multiplicative Wiener in-

dex and independence number. We will proceed by dividing our discussions into three

subsections.

2.1 The multiplicative Wiener index and Wiener index

In this subsection, we investigate the relationship between the multiplicative Wiener index

and Wiener index. In fact, Das and Gutman [11] have investigated the relationship
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between the multiplicative Wiener index and Wiener index. They proved the following

result.

Theorem 2.1. Let G be a connected bipartite graph of order n > 4. Then

MW (G)−W (G) ≥ 2(n(n−1)
2
−bn2 cdn2 e) − n(n− 1) +

⌊n
2

⌋ ⌈n
2

⌉
with equality if and only if G ∼= Kbn

2
c, dn

2
e.

As a result, they obtained the following corollary.

Corollary 2.2. Let G be a connected bipartite graph of order n > 4. Then MW (G) >

W (G).

G1 G2

G4G3

Figure 1. Graphs occurred in the proof of Theorem 2.3.

Now, we use the same techniques as those used in [11] to generalize Das and Gutman’s

result to general connected graphs with a restricted condition on the number of edges.

We improve Theorem 2.1 as follows.

Theorem 2.3. Let G be a connected graph of order n ≥ 4 and size m. If m ≤ bn
2
cdn

2
e−1,

then

MW (G)−W (G) > 2(n(n−1)
2
−bn2 cdn2 e) − n(n− 1) +

⌊n
2

⌋ ⌈n
2

⌉
.

Proof. Let d be the diameter of G. Since m ≤
⌊
n
2

⌋ ⌈
n
2

⌉
−1, we have G � Kn. Then d ≥ 2.

We consider the following two cases.

Case 1. d = 2.

Since d = 2, we have m + γ(G; 2) = n(n−1)
2

. So, MW (G) = 2γ(G;2) = 2
n(n−1)

2
−m and

W (G) = m+ 2γ(G; 2) = n(n− 1)−m. Then

MW (G)−W (G) = 2
n(n−1)

2
−m − n(n− 1) +m.
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Now, we consider the function f(x) = 2
n(n−1)

2
−x − n(n − 1) + x (x < bn

2
cdn

2
e). Then

f
′
(x) = − ln 2 · 2

n(n−1)
2
−x + 1. Since x < bn

2
cdn

2
e, we have

n(n− 1)

2
− x >

n(n− 1)

2
−
⌊n

2

⌋ ⌈n
2

⌉
=


n2−2n

4
if n is even,

n2−2n+1
4

if n is odd.

Thus,

2
n(n−1)

2
−x >

 2
n2−2n

4 if n is even,

2
n2−2n+1

4 if n is odd.

and then

2
n(n−1)

2
−x · ln 2 >

 2
n2−2n−4

4 · ln 4 if n is even,

2
n2−2n−3

4 · ln 4 if n is odd.

>

{
ln 4 if n ≥ 4,

ln 4 if n ≥ 3.

Therefore, when n ≥ 4, we have f
′
(x) < 0, that is, f(x) is strictly decreasing on the

interval (−∞, bn
2
cdn

2
e] when n ≥ 4.

Thus, when n ≥ 4, we have

MW (G)−W (G) = f(m) > f
(⌊n

2

⌋ ⌈n
2

⌉)
= 2(n(n−1)

2
−bn2 cdn2 e) − n(n− 1) +

⌊n
2

⌋ ⌈n
2

⌉
.

Case 2. d ≥ 3.

If n = 4, by our assumption that 3 ≤ m ≤ bn
2
cdn

2
e − 1 = 3 and d ≥ 3, G must be

isomorphic to P4. It is easy to check that the theorem holds. Now, we assume that n ≥ 5.

When n = 5, as d ≥ 3 and m ≤ bn
2
cdn

2
e − 1 = 5, G must be isomorphic to P5 or one of

graphs as shown in Fig. 1. It is not difficult to check that the theorem holds. So, we may

assume that n ≥ 6.

The proof of the remaining part is completely identical to that in [11] for the case

m ≤ bn
2
cdn

2
e − 1 (because their proof of this part is also applicable to non-bipartite

graphs).

This completes the proof.
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By Theorem 2.3, we immediately have

Corollary 2.4. Let G be a connected graph of order n ≥ 5. If m ≤ bn
2
cdn

2
e − 1, then

MW (G) > W (G).

Remark 2.5. Among all bipartite graphs of order n, the graph Kbn
2
c, dn

2
e is the unique

graph having bn
2
cdn

2
e edges. All other bipartite graphs of order n have less than bn

2
cdn

2
e

edges. Thus, our Theorem 2.3 generalizes Theorem 2.1, and Corollary 2.4 generalizes

Corollary 2.2.

Since d = 2m
n
≤ 4, by Corollary 2.4, we immediately have

Corollary 2.6. Let G be a connected graph of order n ≥ 5 with maximum degree 4. If

4 ≤
2
(⌊

n
2

⌋ ⌈
n
2

⌉
− 1
)

n
,

then MW (G) > W (G).

Corollary 2.7. Let G be a quasi-tree of order n ≥ 8. Then MW (G) > W (G).

Proof. Suppose that G has m edges. By the definition of the quasi-tree, we have m ≤

(n − 1) + (n − 2) = 2n − 3. It is easy to check that if n ≥ 8, then m ≤ bn
2
cdn

2
e − 1.

According to Corollary 2.4, we have MW (G) > W (G).

Corollary 2.8. Let G be a simple maximal planar graph of order n ≥ 11. ThenMW (G) >

W (G).

Proof. Suppose that G has m edges. Since G is a maximal plannar graph, we have

m ≤ 3n−6. It is easy to check that if n ≥ 11, then m ≤ bn
2
cdn

2
e−1. In view of Corollary

2.4, we have MW (G) > W (G).

2.2 The multiplicative Wiener index and the first multiplicative
Zagreb index

In this subsection, we investigate the relationship between the multiplicative Wiener index

and the first multiplicative Zagreb index. To find the relationship between these two kinds

of indices, we first consider the following two examples.

Example 2.1. For the complete graph Kn, we have

MW (Kn) = 1 < (n− 1)2n = π1(Kn)

for n ≥ 3.
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Example 2.2. For the path Pn (n ≥ 5), we have

π1(Pn) =
(

22
)n−2

= 4n−2.

Now, we consider the multiplicative Wiener index of the path Pn. We label all vertices of

the path Pn successively as v1, v2, · · · , vn. Then

MW (Pn) >
∏

x∈V (G)\{v1}

dG(x, v1) ·
∏

y∈V (G)\{v1, vn}

dG(y, vn) ≥ (n− 1) [(n− 2)!]2 .

Thus, for n ≥ 5, we have

lnMW (Pn) ≥ ln(n− 1) + 2[ln(n− 2) + · · ·+ ln 2] > ln(n− 1) + 2(n− 3) ln 2

≥ 2 ln 2 + 2(n− 3) ln 2 = (n− 2) ln 4 = lnπ1(Pn) .

So, for n ≥ 5, we have MW (G) > π1(Pn).

From two examples given above, one can conclude that the multiplicative Wiener index

and the first multiplicative Zagreb index are incomparable in case of general connected

graphs. So, it is natural for us to restrict our attention only to trees.

First, we establish the relationship between the multiplicative Wiener index and the

first multiplicative Zagreb index for double-stars. We need the following result.

Lemma 2.9. For any positive real number x > 4, it holds that

2x > x2.

Proof. Let f(x) = 2x − x2. We shall prove that f(x) > 0 for x > 4. It is easy to

obtain that f
′
(x) = 2x ln 2 − 2x and f

′′
(x) = 2x(ln 2)2 − 2. When x ≥ 3, we have

f
′′
(x) = 2x−2(2 ln 2)2 − 2 > 2x−2 − 2 ≥ 0. So, f

′
(x) is strictly increasing on the interval

[3,+∞). Thus, f
′
(x) > f

′
(4) = 24 ln 2− 2× 4 > 0. Hence, f(x) is strictly increasing on

the interval [4,+∞). Thus, f(x) > f(4) = 24 − 42 = 0.

This completes the proof.

Proposition 2.10. For the double star Sa, b ( a + b = n − 2, a ≥ 1 and b ≥ 1), if

(a, b) 6= (1, 1), then

MW (Sa, b) > π1(Sa, b).
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Proof. By the definitions of the multiplicative Wiener index and the first multiplicative

Zagreb index, we have

MW (Sa, b) = 3ab · 2a+b > 2ab+1 · 2a+b(as (a, b) 6= (1, 1)) = 2ab+a+b+1 (2)

and

π1(Sa, b) = (a+ 1)2 · (b+ 1)2 = (ab+ a+ b+ 1)2. (3)

Since (a, b) 6= (1, 1), we have ab+ a+ b+ 1 ≥ 6. By Lemma 2.9, (2) and (3), we have

MW (Sa, b) > π1(Sa, b).

Now, we are in a position to state and prove our second result, which deals with the

relationship between the multiplicative Wiener index and the first multiplicative Zagreb

index of trees.

Theorem 2.11. Let T be a tree of order n. Then

(a). π1(T ) = MW (T ) for n = 2;

(b). π1(T ) > MW (T ) for n = 3, 4;

(c). MW (T ) ≥ π1(T ) for n ≥ 5, and the equality holds if and only if T ∼= S5.

Proof. If n = 2, 3, then T ∼= P2 and P3, respectively. Clearly, we have MW (P2) = 1 =

π1(P2) and MW (P3) = 2 < 4 = π1(P3). If n = 4, then T ∼= P4 or S4. Clearly, we have

MW (P4) = 3 ·22 = 12 < 16 = 22 ·22 = π1(P4); and MW (S4) = 23 = 8 < 9 = 32 = π1(S4).

Now, we consider the case when n ≥ 5.

We prove that (c) holds by induction on n for n ≥ 5. First, we consider the case of

n = 5. Let d be the diameter of T . If d = 2, then T ∼= S5, and MW (S5) = 24 = 42 =

π1(S5). Now, we assume that d ≥ 3. Since n = 5 and d ≥ 3, we must have T ∼= P5 or

S1, 2. Note that MW (P5) = 4 · 32 · 23 > 26 = π1(P5). Also, by Proposition 2.10, we have

MW (S1, 2) > π1(S1, 2). So, the statement of (c) holds for n = 5.

Now, we let n ≥ 6 and assume that (c) holds for smaller values of n. Let Pd+1 =

v0v1 · · · vd be a diametral path in T . If T ∼= Pn, then the theorem is true by Example

2.2. Suppose now that T � Pn. So, d ≤ n − 2. There exists at least one pendent

vertex, say v, lying outside the diametral path. Let u be the unique neighbor of v. Set

T
′

= T − {v}. It is obvious that T
′

is connected. If d = 2, then T ∼= Sn (n ≥ 6), and

MW (Sn) = 2n−1 > (n− 1)2 = π1(Sn) by Lemma 2.9. So, we assume that d ≥ 3.
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Clearly,

MW (T ) = MW (T
′
) ·

∏
x∈V (T )\{v}

dT (v, x). (4)

∏
x∈V (T )\{v}

dT (v, x) > dT (v, v0)dT (v, vd) ≥ dT (v, v0)+dT (v, vd)−1 ≥ (d+2)−1 ≥ 4. (5)

By (4) and (5), we obtain

MW (T ) > 4MW (T
′
). (6)

π1(T
′
) =

π1(T )

(dT (u))2
· (dT (u)− 1)2 ≥ 1

4
π1(T ) (as dT (u) ≥ 2). (7)

Note that T
′ � S5, by the induction hypothesis, MW (T

′
) > π1(T

′
). This, in joint

with (6) and (7) gives MW (T ) ≥ π1(T ) for n ≥ 5, with equality holding if and only if

T ∼= S5. This completes the proof.

In the following, we give a sufficient condition for a general connected graph to have

a larger multiplicative Wiener index than first multiplicative Zagreb index.

Theorem 2.12. Let G be a connected graph of order n with average degree d and diameter

d (≥ 3). If ln d+ 2
d−1∑
i=2

ln i ≥ 2n ln d, then

MW (G) > π1(G).

Proof. By the Geometry-Arithmetic Mean Inequality, we have

π1(G) ≤


n∑
i=1

di

n


2n

= d
2n

with equality if and only if d1 = · · · = dn, that is, G is regular.

Also, as proved in Example 2.2,

MW (G) ≥ d [(d− 1)!]2 .

It is not difficult to see that the above equality is attained if and only if G ∼= P4.

Since P4 is not regular, by our assumption that ln d + 2
d−1∑
i=2

ln i ≥ 2n ln d, we have

MW (G) > π1(G).
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2.3 The multiplicative Wiener index and independence number

In the last subsection, we investigate the relationship between the multiplicative Wiener

index and independence number. Our result is as follows.

Theorem 2.13. Let G be a connected graph of order n. Then

MW (G) ≥ α(G)

with equality if and only if G ∼= Kn (n ≥ 2) or G ∼= Kn − e (n ≥ 3).

Proof. Let m be the number of edges in G. For m = n(n−1)
2

, we have G ∼= Kn, hence

MW (G) = 1 = α(G). For m = n(n−1)
2
− 1, we have G ∼= Kn − e. Then MW (G) = 2 =

α(G), again the equality holds. Otherwise, m ≤ n(n−1)
2
− 2. Now,

MW (G) ≥ 2(α(G)
2 ) = 2

α(G)(α(G)−1)
2 .

If α(G) ≥ 3, then we obtain MW (G) ≥ 2α(G) > α(G). So, we consider the case of

α(G) = 2. Thus we have MW (G) ≥ 4 > 2 = α(G).

This completes the proof.

The following result was reported by Chung in [4].

Theorem 2.14. Suppose G is a connected graph of order n. Let α(G) and l(G) be the

independence number and average distance of G, respectively. Then

α(G) ≥ l(G) (8)

with equality if and only if G ∼= Kn.

By Theorems 2.13 and 2.14, we have

Corollary 2.15. Let G be a connected graph of order n with the average distance l̄(G)

and the multiplicative Wiener index MW (G). Then

MW (G) ≥ l̄(G)

with equality if and only if G ∼= Kn.
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3 Concluding remarks

In this paper, we investigated the relationship between the multiplicative Wiener index

and Wiener index, the relationship between the multiplicative Wiener index and first

multiplicative Zagreb index, and the relationship between the multiplicative Wiener in-

dex and independence number. We first generalized Das and Gutman’s result by proving

that if G is a connected graph of order n ≥ 5 and size m such that m ≤ bn
2
cdn

2
e− 1, then

the multiplicative Wiener index is greater than Wiener index. Second, we compared he

multiplicative Wiener index with first multiplicative Zagreb index for trees, and proved

that the multiplicative Wiener index is greater than or equal to the first multiplicative

Zagreb index for any tree with at least five vertices. Finally, we compared the multi-

plicative Wiener index with independence number for connected graph, and we proved

that the multiplicative Wiener index is greater than independence number, with only

two exceptions. It may be interesting to compare other topological indices and graph

invariants.
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[25] S. Klavžar, M. J. Nadjafi–Arani, Wiener index in weighted graphs via unification of

Θ∗-classes, Eur. J. Comb. 36 (2014) 71–76.
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