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Abstract

The Wiener index of a connected graph is defined as the sum of distances be-
tween all unordered pairs of its vertices. A graph G is said to have a Pr-factor if G
contains a spanning subgraph F of G such that every component of F is a path with
r vertices. In this paper, we characterize the trees which minimize and maximize
the Wiener index among all trees on kr vertices (k ≥ 2, r ≥ 2) with a Pr-factor
respectively. This generalizes an early result concerning the minimum Wiener index
of tree with perfect matchings, which was independently obtained by Du and Zhou
(Minimum Wiener indices of trees and unicyclic graphs of given matching number,
MATCH Commun. Math. Comput. Chem. 63 (2010) 101–112) as well as Lin,
Wang, Xu and Wu (Ordering trees with perfect matchings by their Wiener indices,
MATCH Commun. Math. Comput. Chem. 67 (2012) 337-345).

1 Introduction

All graphs considered in this paper are simple, connected graphs. Let G be a graph with

vertex set V (G) and edge set E(G). The distance of a vertex v, denoted by dG(v), is the

sum of distances between v and all other vertices of G. The distance between vertices u

and v of G is denoted by dG(u, v). The Wiener index of a connected graph G is defined

as
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W (G) =
∑

{u,v}⊆V (G)

dG(u, v) .

The Wiener index belongs among the oldest graph-based structure descriptors (topo-

logical indices) which was first introduced by Wiener [15] and has been extensively studied

in literature. Chemists are often interested in the Wiener index of certain trees which

represent some acyclic molecular structures. Some extremal results of Wiener index of

trees can be found in [1, 9-14] and references cited therein. For more details, the reader

may see the survey by Dobrynin et al. [2] and the survey by Xu et al. [16].

Denote by K1,n−1 and Pn the star and the path with n vertices, respectively. A

subgraph F of a graph G is called a factor of G if F is a spanning subgraph of G. A path

factor of a graph G is a factor of G such that each component of the factor is a path, in

particular, if each component of the factor is required to be a path with exactly r vertices,

such a factor is called a Pr-factor of G.

Remark A. According to this definition, if a graph G has a Pr-factor, then there exist

m (m = |V (G)|/r) vertex disjoint paths L1, L2, ..., Lm such that

V (G) = V (L1)
⋃

V (L2)
⋃

...
⋃

V (Lm)

and each Li is a path with r vertices. In this sense, the well-known perfect matchings (or

1-factor) is a P2-factor.

In [5], Gutman and Rouvray proved that if T and T ′ are two trees with perfect

matchings on equal number of vertices. then W (T ) ≡ W (T ′) (mod 4). This result

was generalized by the author of present paper [9] to trees with Pr-factor and further

generalized by Gutman, Xu and Liu [6] to even much larger class of graphs. In [7], K.

Hriňáková, M. Konr, R. Škrekovski and A. Tepeh continued to generalized it to a large

families of graphs with a tree-like structure.

The aim of this paper is to investigate the extremal Wiener index of trees with a

Pr-factor. Let FPr,k be the set of trees of order kr with a Pr-factor, k ≥ 2, r ≥ 2. A tree

T belonging to the set FP4,4 is shown in Figure 1.
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Figure 1. A 16-vertex tree T with a P4-factor.

The eccentricity of a vertex v of a connected graph G, denoted by ECCG(v), is defined

by ECCG(v) = maxw∈V (G)dG(v, w). The center of G, denoted by Cr(G), is the set of

vertices with minimum eccentricity. It is well known that the center of a tree consists of

a single vertex or two adjacent vertices [2].

Let T ∗
kr be the tree (depicted Figure 2) obtained from k vertex disjoint r−vertex paths

L1, L2, ..., Lk by joining u1 to each of the vertices u2, u3, ..., uk, where ui ∈ Cr(Li) for

each i = 1, 2, ..., k. Clearly, T ∗
kr ∈ FPr,k.
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T ∗
kr

Figure 2. The tree T ∗
kr .

With above notations, the main result of this paper can be stated as follows.

Theorem 1. Let T ∈ FPr,k where r ≥ 2 and k ≥ 2. Then

W (T ∗
kr) ≤ W (T ) ≤

(
kr + 1

3

)
,

with left equality if and only if T = T ∗
kr and with right equality if and only if T = Pkr.
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Figure 3. The tree F2m .

Let T2m be the set of 2m−vertex trees with perfect matchings and let F2m be the tree

shown in Figure 3. Clearly, F2m ∈ T2m. The following result is contained in Theorem 1

of [3] and Theorem 4.1 of [12].

Theorem 2. Let T ∈ T2m, where m ≥ 2. Then

W (T ) ≥ W (F2m) ,

with equality if and only if T = F2m.

Remark B. By the definition of the Pr−factor, the perfect matching is a P2−factor.

Note that any vertex of the path P2 belongs to Cr(P2), namely V (P2) = Cr(P2), thus the

set T2m is just the set FP2,m, and hence Theorem 1 is a natural generalization of Theorem

2.

The rest of this paper is organized as follows. In Section 2, we provide some useful

notations and results which will help to prove our main result. We close this paper in

Section 3 by proving Theorem 1 and proposing some new problems for research.

2 Preliminaries

Entringer et al. [4] proved the following result which bounds the Wiener index of a tree

in term of its order.

Theorem 3 ([4]). Let T be a tree on n vertices, then

(n− 1)2 ≤ W (T ) ≤
(
n+ 1

3

)
,

-88-



the lower bound is achieved if and only if T = K1,n−1 and the upper bound is achieved if

and only if T = Pn.

A maximal subtree containing a vertex v of a tree T as a pendent vertex will be called

a branch of T at v. The weight of a branch B, denoted by BWT (B) is the number of

edges in it. The branch weight of a vertex v, denoted by BWT (v) is the maximum of the

weights of the branches at v. The centroid of a tree T , denoted by Cd(T ), is the set of

vertices of T with minimum branch weight. Jordan [8] characterized the centroid of a tree

(see Section 3 of [2]).

Theorem 4 ([8]). The centroid of a tree consists of a single vertex or two adjacent

vertices.

Zelinka [17] observed that the set of vertices with minimum distance in a tree T

coincides with Cd(T ) (see Section 3 of [2]).

Theorem 5 ([17]). The set of vertices with minimum distance in a tree T is the centroid

of T .

Remark C. For a tree T , it should be noticed that Cr(T ) may not coincide with Cd(T ).

Let T be the tree as shown in Figure 4, then Cr(T ) = {c1, c2}. A direct calculation gives

that dT (u) = 22, dT (c1) = 24, dT (c2) = 28, dT (v1) = 40, dT (v2) = 30, dT (v3) = dT (v4) =

dT (v5) = dT (v6) = 26, dT (v7) = 34, dT (v8) = 42 and dT (v9) = 52. Thus, Cd(T ) = {u}

and Cd(T ) ∩ Cr(T ) = ∅. The center and centroid play special roles with respect to the

Wiener index of trees, the reader may see Section 3 of [2] for a general introduction.
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Figure 4. The tree T .

If we restrict trees to be paths, the following result is a simple observation from

Theorem 4 and Theorem 5.

Lemma 6. Let P be a path, then Cd(P ) = Cr(P ).

Lemma 7 ([2, P227]). Let T be obtained from arbitrary trees T1 and T2 of order n1

and n2, respectively, and v1 ∈ V (T1), v2 ∈ V (T2). If v1 and v2 are joined by an edge, then

W (T ) = W (T1) +W (T2) + n1dT2(v2) + n2dT1(v1) + n1n2 .
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3 Proof of Theorem 1 and discussion
Note that Pkr ∈ FPr,k, thus by Theorem 3, we have W (T ) ≤

(
kr+1
3

)
with equality if and

only if T = Pkr.

Now we turn to prove the lower bound of W (T ) by induction on k.

If k = 2, Let T be the tree obtained from two vertex disjoint r−vertex paths L1 and

L2 by joining v1 to v2, where v1 ∈ V (L1) and v2 ∈ V (L2). From Lemma 7,

W (T ) = W (L1) +W (L2) + rdL1(v1) + rdL2(v2) + r2

=2W (Pr) + r2 + r[dL1(v1) + dL2(v2)].

By Lemma 6, if v1 ∈ Cr(L1) and v2 ∈ Cr(L2), then the tree T = T ∗
2r and T attains the

maximum Wiener index in FPr,2. The statement of theorem clearly holds in this case.

Suppose now that T ∗
(k−1)r, k ≥ 3, uniquely attains the minimum Wiener index in

FPr,k−1 and let T be any tree in FPr,k. In the following, we shall prove that W (T ) ≥ W (T ∗
kr)

with equality if and only if T = T ∗
kr.

Let T1 be the tree obtained from T ∗
kr (as shown in Figure 2) by deleting the vertices

in V (Lk) together with all edges adjacent to these vertices. Then by Lemma 7,

W (T ∗
kr) = W (T1) +W (Lk) + (k − 1)rdLk

(uk) + rdT1(u1) + (k − 1)r2 .

Note that T1 = T ∗
(k−1)r, Lk = Pr, so

W (T ∗
kr) = W (T ∗

(k−1)r) +W (Pr) + (k − 1)rdLk
(uk) + rdT ∗

(k−1)r
(u1) + (k − 1)r2. (1)

Since T has a Pr-factor, according to Remark A, there exist k vertex disjoint paths

L′
1, L′

2, ..., L′
k such that V (T ) = V (L′

1)
⋃

V (L′
2)
⋃

...
⋃

V (L′
k) and each L′

i is a path with

r vertices. According to this structure, there exist two paths in {L′
1, L

′
2, ..., L

′
k}, without

loss of generalization, say L′
1 and L′

k, such that L′
1 and L′

k are joined by an edge u′
1u

′
k,

u′
1 ∈ V (L′

1), u′
k ∈ V (L′

k), and after deleting all vertices in V (L′
k) together with all edges

adjacent to these vertices will result in a subtree, say T ′
1 of T . Again by Lemma 7,

W (T ) = W (T ′
1) +W (L′

k) + (k − 1)rdL′
k
(u′

k) + rdT ′
1
(u′

1) + (k − 1)r2 .

Note that L′
k = Pr, so

W (T ) = W (T ′
1) +W (Pr) + (k − 1)rdL′

k
(u′

k) + rdT ′
1
(u′

1) + (k − 1)r2 (2)

Note that T ′
1 again has Pr−factor, T ′

1 ∈ FPr,k−1, by the induction hypothesis

W (T ′
1) ≥ W (T ∗

(k−1)r), (3)
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with equality if and only if T ′
1 = T ∗

(k−1)r.

Both Lk and L′
k are r−vertex paths, it is obvious that

dL′
k
(u′

k) ≥ dLk
(uk), (4)

with equality if and only if u′
k ∈ Cd(L′

k).

Since T ∗
kr has structure which is specified in Figure 2, then for any vertex x ∈ V (Li),

i ∈ {2, 3, ..., k − 1}, the unique path in T1 joining x and u1 must contain the edge u1ui.

With this observation, it is easy to see that

dT ∗
(k−1)r

(u1) = dL1(u1) +
k−1∑
i=2

 ∑
x∈V (Li)

dT ∗
(k−1)r

(u1, x)



= dL1(u1) +
k−1∑
i=2

 ∑
x∈V (Li)

(dT ∗
(k−1)r

(u1, ui) + dT ∗
(k−1)r

(ui, x))

 .

Note that dT ∗
(k−1)r

(u1, ui) = 1, dT ∗
(k−1)r

(ui, x) = dLi
(ui, x), therefore

dT ∗
(k−1)r

(u1) = dL1(u1) +
k−1∑
i=2

 ∑
x∈V (Li)

(1 + dLi
(ui, x))

 = dL1(u1) +
k−1∑
i=2

[r + dLi
(ui)] .

On the other hand, for the tree T ′
1, with the similar discussion, one can get that

dT ′
1
(u′

1) = dL′
1
(u′

1) +
k−1∑
i=2

 ∑
y∈V (L′

i)

dT ′
1
(u′

1, y)



= dL′
1
(u′

1) +
k−1∑
i=2

 ∑
y∈V (L′

i)

(dT ′
1
(u′

1, y
′
i) + dL′

i
(y, y′i))

 ,

where y′i is the first vertex encountered in L′
i when one goes from u′

1 to y.

Clearly,

dL′
1
(u′

1) ≥ dL1(u1),
∑

y∈V (L′
i)

dL′
i
(y, y′i) ≥ dL′

i
(u′

i), (since u′
i ∈ Cd(L′

i))

and ∑
y∈V (L′

i)

dT ′
1
(u′

1, y
′
i) ≥ r ,

with three equalities holding simultaneously if and only if u′
1 ∈ Cd(L′

1) and y′i ∈ Cd(L′
i).

So we have
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dT ′
1
(u′

1) ≥ dT ∗
(k−1)r

(u1), (5)

with the equality if and only if T ′
1 = T ∗

(k−1)r.

Now from the relations (1)-(5) and above discussion, we arrive at

W (T ) ≥ W (T ∗
kr) ,

with the equality if and only if T = T ∗
kr.

This completes the proof the Theorem 1. �

Theorem 1 generalizes Theorem 2, it is interesting that it might be generalized to even

much large class of trees.

Let R be the forest consisting of k disjoint trees T1, T2, ..., Tk. Let FT1,T2,...,Tk
(k ≥ 2)

be the set of trees with R as a factor. Clearly, if for each i = 1, 2, ..., k, Ti = Pr, then

FT1,T2,...,Tk
= FPr,k.

Given a set FT1,T2,...,Tk
, without loss of generality , we may assume that the Wiener

indices of trees T1, T2, ..., Tk have the following order

W (T1) ≥ W (T2) ≥ ... ≥ W (Tk).

Let T ∗
1 be the tree obtained from k vertex disjoint trees T1, T2, ..., Tk by joining u1

to each of the vertices u2, u3, ..., uk, where ui ∈ Cd(Ti) for each i = 1, 2, ...,m. Clearly,

if for each i = 1, 2, ..., k, Ti = Pr, then T ∗
1 = T ∗

kr (depicted in Figure 2). Let T ∗
2 be

the tree with the structure illustrated in Figure 5, where v1 is a vertex with the largest

distance in the tree T1 and v2 is a vertex with the largest distance in the tree T2. Clearly,

T ∗
1 ∈ FT1,T2,...,Tk

and T ∗
2 ∈ FT1,T2,...,Tk

. Roughly speaking, T ∗
1 has a star-like structure and

T ∗
2 has a chain-like structure.

s s s s s s&%
'$

&%
'$

&%
'$

&%
'$

T1 v1 Ti
... Tj v2 T2

T ∗
2

Figure 5. The tree T ∗
2 .

Numerical testing of trees in FT1,T2,...,Tk
with a small value of k reveals that T ∗

1 attains

the minimum Wiener index and T ∗
2 attains the maximum Wiener index. So it might be

worthwhile to consider the following problem.
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Problem A. Let T be any tree in FT1,T2,...,Tk
, k ≥ 2, does the following relation hold

W (T ∗
1 ) ≤ W (T ) ≤ W (T ∗

2 ) .

Acknowledgments: The author would like to thank the anonymous referee for helpful
suggestions and comments.
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