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Abstract

A combined-permutation representation (CPR) of degree 26 (= 24 + 2) for a
regular representation (RR) of degree 24 is derived algebraically from a multiplica-
tion table of the point group Td, where reflections are explicitly considered in the
form of a mirror-permutation of degree 2. Thereby, the standard mark table and
the standard USCI-CF table (unit-subduced-cycle-index-with-chirality-fittingness
table) are concordantly generated by using the GAP functions MarkTableforUSCI
and constructUSCITable, which have been developed by Fujita for the purpose of
systematizing the concordant construction. A CPR for each coset representation
(CR) (Gi\)Td is obtained algebraically by means of the GAP function CosetRepCF
developed by Fujita (Appendix A). On the other hand, CPRs for CRs are obtained
geometrically as permutation groups by considering appropriate skeletons, where
the point group Td acts on an orbit of |Td|/|Gi| positions to be equivalent in a
given skeleton so as to generate the CPR of degree |Td|/|Gi|. An RR as a CPR
is obtained by considering a regular body (RB), the |Td| positions of which are
considered to be governed by RR (C1\)Td. These geometrically derived CPRs as
groups are compared with the corresponding CPRs obtained algebraically.
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1 Introduction

Regular bodies (RBs) as geometric entities for characterizing point groups [1] have been

discussed in connection with regular representations (RRs) as algebraic entities in Section

6.4 of Ref. [2], where multiplication tables of the point groups were used as essential clues.

By staring from RBs and RRs, orbits of given skeletons have been shown to be governed by

coset representations (CRs), where the former geometric entities due to point groups are

correlated to the latter algebraic entities due to permutation representations (PRs) [3,4].

So long as we obey the conventional way of the group theory, however, PRs as they are

have not taken chirality/achirality into explicit consideration. This means that CRs as

PRs as they are have been incapable of treating 3D structures with chirality/achirality.

To treat 3D structures, the author (Fujita) has proposed the concepts of sphericity and of

chirality fittingness (CF), which control an orbit governed by a CR [5]. Thus, each orbit

is categorized into a homospheric orbit, an enantiospheric orbit, or a hemispheric orbit

by examining the global and local symmetries of the corresponding CR. The sphericity of

such an orbit determines the capability of accommodating chiral or achiral ligands, where

the mode of accommodation is referred to in terms of CF. Thereby, unit subduced cycle

indices with chirality fittingness (USCI-CFs) are introduced to enumerate 3D structures

in symmetry-itemized fashion under the name the USCI approach by Fujita [3].

To treat chirality/achirality more systematically by computer, the author (Fujita)

has proposed combined permutation representations (CPRs), where respective PRs are

combined with a mirror-permutation which differentiates between a rotation and a re-

flection [6–8]. The CPRs are found to be useful to generate mark tables of permutation

groups [9] under the GAP (Groups, Algorithms, Programming) system, which has been

available freely [10]. The remaining task is to examine the above-mentioned RBs and RRs

from the viewpoint of CPRs under the GAP system. This paper deals mainly with the

point group Td, where we start from the multiplication table of Td as an essential clue.

2 Backgrounds

The practices of Fujita’s USCI approach [3] has been originally based on computer-

manipulation under the FORTRAN77 programming language. For example, the point
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group Td having 24 symmetry operations:

Td = { I︸︷︷︸
1

, C2(1)︸︷︷︸
2

, C2(2)︸︷︷︸
3

, C2(3)︸︷︷︸
4

, C3(1)︸︷︷︸
5

, C3(3)︸︷︷︸
6

, C3(2)︸︷︷︸
7

, C3(4)︸︷︷︸
8

, C2
3(1)︸︷︷︸
9

, C2
3(4)︸︷︷︸
11

, C2
3(3)︸︷︷︸
11

, C2
3(2)︸︷︷︸
12

,

σd(1)︸︷︷︸
13

, S4(3)︸︷︷︸
14

, S3
4(3)︸︷︷︸
15

, σd(6)︸︷︷︸
16

, σd(2)︸︷︷︸
17

, σd(4)︸︷︷︸
18

, S4(1)︸︷︷︸
19

, S3
4(1)︸︷︷︸
20

, σd(3)︸︷︷︸
21

, S3
4(2)︸︷︷︸
22

, σd(5)︸︷︷︸
23

, S4(2)︸︷︷︸
24

, } (1)

is treated in the form of a multiplication table, which is a 24× 24 matrix. The horizontal

direction contains respective first operations mj (j = 1, 2, . . . , 24 for Eq. 1), the vertical

direction contains respective second operations mi (i = 1, 2, . . . , 24 for Eq. 1), and the

intersection between the j-th column and the i-th row indicates the result of multiplication

mjmi.

Algebraically speaking, the point group Td is defined by the multiplication table con-

cerning the symmetry operations collected in Eq. 1. To specify the action of such point

group as Td on substitution positions of a given skeleton, a CR is calculated by starting

from the multiplication table. As an extreme case of a CR, a skeleton having 24 equivalent

positions is called an RB, which is governed by an RR based on the multiplication table

itself.

Because the sequence of symmetry operations can be changed freely, there are 24!

multiplication tables different but equivalent to each other under the point group Td.

In the present article, the multiplication table corresponding to Eq. 1 is adopted as a

standard by considering a coset decomposition of Td by D2 (= { I︸︷︷︸
1

, C2(1)︸︷︷︸
2

, C2(2)︸︷︷︸
3

, C2(3)︸︷︷︸
4

}):

Td = D2 + D2C3(1) + D2C
2
3(1) + D2σd(1) + D2σd(2) + D2σd(3) (2)

This selection is tentative but does not lose generality.

An orbit of equivalent positions in a given skeleton is governed by a CR (Gi\)Td,

where the subgroup Gi is selected from a non-redundant set of subgroups SSGTd
:

SSGTd
= { C1︸︷︷︸

1

, C2︸︷︷︸
2

, Cs︸︷︷︸
3

, C3︸︷︷︸
4

, S4︸︷︷︸
5

, D2︸︷︷︸
6

, C2v︸︷︷︸
7

, C3v︸︷︷︸
8

, D2d︸︷︷︸
9

, T︸︷︷︸
10

, Td︸︷︷︸
11

} (3)

where the alignment of subgroups are according to the orders of subgroups (cf. Example

6.4 of Ref. [3] and Eq. 1.3 (page 10) of Ref. [4]). For subgroups of the same size e.g., S4,

D2, and C2v (order 4), a cyclic subgroup (e.g., S4) is placed to have a younger sequence,

and then, a subgroup with proper rotations only (e.g., D2) is placed to have a younger

sequence.
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Such coset representations (CRs) are calculated by considering coset decompositions,

which are derived from the multiplication table. Note that an RR can be regarded as a

CR by a trivial subgroup C1 (= {I}), i.e., (C1\)Td. The concept of subduction of coset

representations (Gi\)Td ↓ Gj proposed by the author (cf. Theorem 9.1 of [3]) is essential

to derive USCI-CFs, which are keys for conducting symmetry-itemized enumeration of 3D

structures [3]. The calculation of (Gi\)Td ↓ Gj is based on a mark table of Td, which

collects fixed-point vectors (FPVs) in the form of row vectors concerning the subgroups

of the SSG (Eq. 3). The results of (Gi\)Td ↓ Gj are used to construct the corresponding

USCI-CF table.

Because a mark table (cf. Table 2 of Ref. [11]) and a USCI-CF table (cf. Table 5 of

the Ref. [11]) depends on the selected SSG (Eq. 3), they are called a standard mark table

and a standard USCI-CF table.

Note that the concept of mark tables (tables of marks) has been originally proposed

by Burnside [12] and applied to symmetry-itemized enumeration of chemical structures

[13, 14]. On the other hand, the concept of USCI-CF table has been proposed by the

author (Fujita) [3] and applied to symmetry-itemized enumeration of chemical structures

as 3D objects [3].

3 Multiplication Tables into Regular Representations
Combined with a Mirror Permutation

The multiplication table of Td contains the multiplication result mjmi at the intersection

between j-th column and i-th row, where mj (j = 1, 2, . . . 24) in the horizontal direction

represents the first operation and mi (i = 1, 2, . . . 24) in the vertical direction represents

the second operation. If the serial numbers under respective operations in Eq. 1 are used

for the sake of simplicity, the multiplication table is represented by the following List

format ([...]) of the GAP system:
gap> m1 := PermList([ 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]);; # I
gap> m2 := PermList([ 2, 1, 4, 3, 8, 7, 6, 5,11,12, 9,10,15,16,13,14,18,17,20,19,24,23,22,21]);; #C2(1)
gap> m3 := PermList([ 3, 4, 1, 2, 6, 5, 8, 7,12,11,10, 9,14,13,16,15,20,19,18,17,23,24,21,22]);; #C2(2)
gap> m4 := PermList([ 4, 3, 2, 1, 7, 8, 5, 6,10, 9,12,11,16,15,14,13,19,20,17,18,22,21,24,23]);; #C2(3)
gap> m5 := PermList([ 5, 6, 7, 8, 9,10,11,12, 1, 2, 3, 4,21,22,23,24,13,14,15,16,17,18,19,20]);; #C3(1)
gap> m6 := PermList([ 6, 5, 8, 7,12,11,10, 9, 3, 4, 1, 2,23,24,21,22,14,13,16,15,20,19,18,17]);; #C3(3)
gap> m7 := PermList([ 7, 8, 5, 6,10, 9,12,11, 4, 3, 2, 1,22,21,24,23,16,15,14,13,19,20,17,18]);; #C3(2)
gap> m8 := PermList([ 8, 7, 6, 5,11,12, 9,10, 2, 1, 4, 3,24,23,22,21,15,16,13,14,18,17,20,19]);; #C3(4)
gap> m9 := PermList([ 9,10,11,12, 1, 2, 3, 4, 5, 6, 7, 8,17,18,19,20,21,22,23,24,13,14,15,16]);; #C3(1)^2
gap> m10 := PermList([10, 9,12,11, 4, 3, 2, 1, 7, 8, 5, 6,19,20,17,18,22,21,24,23,16,15,14,13]);; #C3(4)^2
gap> m11 := PermList([11,12, 9,10, 2, 1, 4, 3, 8, 7, 6, 5,18,17,20,19,24,23,22,21,15,16,13,14]);; #C3(3)^2
gap> m12 := PermList([12,11,10, 9, 3, 4, 1, 2, 6, 5, 8, 7,20,19,18,17,23,24,21,22,14,13,16,15]);; #C3(2)^2
gap> m13 := PermList([13,14,15,16,17,18,19,20,21,22,23,24, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12]);; #sd(1)
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gap> m14 := PermList([14,13,16,15,20,19,18,17,23,24,21,22, 3, 4, 1, 2, 6, 5, 8, 7,12,11,10, 9]);; #S4(3)
gap> m15 := PermList([15,16,13,14,18,17,20,19,24,23,22,21, 2, 1, 4, 3, 8, 7, 6, 5,11,12, 9,10]);; #S4(3)^3
gap> m16 := PermList([16,15,14,13,19,20,17,18,22,21,24,23, 4, 3, 2, 1, 7, 8, 5, 6,10, 9,12,11]);; #sd(6)
gap> m17 := PermList([17,18,19,20,21,22,23,24,13,14,15,16, 9,10,11,12, 1, 2, 3, 4, 5, 6, 7, 8]);; #sd(2)
gap> m18 := PermList([18,17,20,19,24,23,22,21,15,16,13,14,11,12, 9,10, 2, 1, 4, 3, 8, 7, 6, 5]);; #sd(4)
gap> m19 := PermList([19,20,17,18,22,21,24,23,16,15,14,13,10, 9,12,11, 4, 3, 2, 1, 7, 8, 5, 6]);; #S4(1)
gap> m20 := PermList([20,19,18,17,23,24,21,22,14,13,16,15,12,11,10, 9, 3, 4, 1, 2, 6, 5, 8, 7]);; #S4(1)^3
gap> m21 := PermList([21,22,23,24,13,14,15,16,17,18,19,20, 5, 6, 7, 8, 9,10,11,12, 1, 2, 3, 4]);; #sd(3)
gap> m22 := PermList([22,21,24,23,16,15,14,13,19,20,17,18, 7, 8, 5, 6,10, 9,12,11, 4, 3, 2, 1]);; #S4(2)^3
gap> m23 := PermList([23,24,21,22,14,13,16,15,20,19,18,17, 6, 5, 8, 7,12,11,10, 9, 3, 4, 1, 2]);; #sd(5)
gap> m24 := PermList([24,23,22,21,15,16,13,14,18,17,20,19, 8, 7, 6, 5,11,12, 9,10, 2, 1, 4, 3]);; #S4(2)

For example, if we obey the GAP system, we obtain the following multiplication

results:

C3(1)︸︷︷︸
5

σd(1)︸︷︷︸
13

= σd(2)︸︷︷︸
17

(4)

σd(1)︸︷︷︸
13

C3(1)︸︷︷︸
5

= σd(3)︸︷︷︸
21

(5)

where C3(1)︸︷︷︸
5

(the first operation in the horizontal direction) multiplied by σd(1)︸︷︷︸
13

(the second

operation in the vertical direction) generates σd(2)︸︷︷︸
17

(Eq. 4), while σd(1)︸︷︷︸
13

(the first operation)

multiplied by C3(1)︸︷︷︸
5

(the second operation) generates σd(3)︸︷︷︸
21

(Eq. 5).

The first row of the multiplication table can be regarded as the coset decomposition

by C1 (= {I}), where each column corresponds to a trivial coset C1mj (= {mj}). As a

result, the i-th row (List) is a collection of C1mjmi (= mjmi) for j = 1, 2, . . . , 24, i.e.,

[C1m1mi,C1m2mi, . . . ,C1m24mi] = [m1mi,m2mi, . . . ,m24mi], (6)

which can be regarded as the mi-value of a regular representation (C1\)Td. Note that

the GAP function PermList converts each List format ([...]) into the corresponding

permutation (m1 to m24). According to the resulting regular representation, Eqs. 4 and 5

are confirmed by using the GAP system:

gap> Display(m5 * m13 = m17);
true
gap> Display(m13 * m5 = m21);
true

The regular representation shown above ((C1\)Td = {m1, m2, · · · , m24}) does not taken

chirality/achirality into explicit consideration. The combined-permutation representation

(CPR) [6–8] is defined by adding a 2-cycle (25,26) as a mirror-permutation representation

to each reflection (m13 to m24) contained in the RR (C1\)Td. Thus, a set of generators

gen_Td_multable_CF is produced to give the corresponding CPR RR_Td_CF, which is
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isomorphic to the point group Td of order 24. Note that a pair of 1-cycles (25)(26) is

attached to each rotation (m1 to m12), but it is omitted according to the convention of

the GAP system. The resulting CPR RR_Td_CF as a permutation group of order 24 is

represented by a simplified set of four generators as follows:

gap> gen_Td_multable_CF :=
> [m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,
> m13*(25,26),m14*(25,26),m15*(25,26),m16*(25,26),m17*(25,26),
> m18*(25,26),m19*(25,26),m20*(25,26),m21*(25,26),m22*(25,26),m23*(25,26),m24*(25,26)];;
gap> RR_Td_CF := AsGroup(gen_Td_multable_CF);
<permutation group of size 24 with 4 generators>
gap> Display(RR_Td_CF);
Group( [ ( 1, 2)( 3, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23)(12,24)(25,26) ] )

gap> Display(Size(RR_Td_CF));
24

A set of generators gen_T_multable_CF is also obtained by collecting 12 permutations

(m1, m2, · · · , m12), so as to generate the corresponding CPR RR_T_CF as a permutation

group of order 12, which is isomorphic to the point group T of order 12 as follows:

gap> gen_T_multable_CF :=
> [m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12];;
gap> RR_T_CF := AsGroup(gen_T_multable_CF);
Group([ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
(1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
(1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20) ])
gap> Display(Size(RR_T_CF));
12

As found above, the CPR RR_Td_CF, which has been obtained as a regular represen-

tation of degree 26 (= 24 + 2) by starting from a multiplication table of the point group

Td, is alternatively shown to be a permutation group of order (size) 24 with 4 generators.

In fact, the CPR RR_Td_CF is constructed from the set of 4 generators, i.e., m2 (for C2(1)),

m3 (for C2(2)), m5 (for C3(1)), and m13*(25,26) (for σd(1)), which is represented by the

following set of permutations in the GAP function Group:
gap> #Alternative expression of regular representation
gap> RR_Td_CF :=
> Group( [ ( 1, 2)( 3, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> ( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
> ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
> ( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23)(12,24)(25,26) ] );;
gap> Display(Size(RR_Td_CF));
24

The CPR RR_Td_CF, which has been constructed from the set of 4 generators, may

be adopted in place of the CPR derived from the multiplication table for the sake of

convenience in the following discussions.

A mark table (tom_RR_Td_CF) of the CPR RR_Td_CF as a permutation group of degree
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26 (= 24 + 2), which is isomorphic to the point group Td, is obtained by using the GAP

function TableOfMarks:
gap> tom_RR_Td_CF := TableOfMarks(RR_Td_CF);;
gap> Display(tom_RR_Td_CF);
1: 24
2: 12 4
3: 12 . 2
4: 8 . . 2
5: 6 6 . . 6
6: 6 2 2 . . 2
7: 6 2 . . . . 2
8: 4 . 2 1 . . . 1
9: 3 3 1 . 3 1 1 . 1
10: 2 2 . 2 2 . . . . 2
11: 1 1 1 1 1 1 1 1 1 1 1

The resulting mark table (tom_RR_Td_CF) called a primary mark table is different in

the sequence of subgroups from the mark table of Td reported previously [11], which is

based on SSGTd
(Eq. 3) and called a standard mark table. For example, the subgroup

r_tom_7 corresponding to the 7th row of tom_RR_Td_CF is calculated as follows:

gap> r_tom_7 := RepresentativeTom(tom_RR_Td_CF,7);
Group([ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
(1,19,2,20)(3,17,4,18)(5,22,8,23)(6,21,7,24)(9,16,11,14)(10,15,12,13)(25,26) ])

This group corresponds to the subgroup S4, which appears in the 5th row of the

standard mark table based on SSGTd
(Eq. 3). Let us refer to this correspondence by the

symbol
7︷︸︸︷

S4︸︷︷︸
5

. The above procedure using the function RepresentativeTom is repeated

to cover all of the subgroups of a non-redundant set subgroups. Thereby, the following

correspondence is obtained:

SSR(RR)

Td
= {

1︷︸︸︷
C1︸︷︷︸
1

,

2︷︸︸︷
C2︸︷︷︸
2

,

3︷︸︸︷
Cs︸︷︷︸
3

,

4︷︸︸︷
C3︸︷︷︸
4

,

5︷︸︸︷
D2︸︷︷︸
6

,

6︷︸︸︷
C2v︸︷︷︸
7

,

7︷︸︸︷
S4︸︷︷︸
5

,

8︷︸︸︷
C3v︸︷︷︸
8

,

9︷︸︸︷
D2d︸︷︷︸
9

,

10︷︸︸︷
T︸︷︷︸
10

,

11︷︸︸︷
Td︸︷︷︸
11

} (7)

where the upper numbers are taken from the leftmost column of the primary mark table

tom_RR_Td_CF, while the lower numbers are taken from SSGTd
(Eq. 3) for giving the

standard mark table.

4 Concordant Construction of a Standard Mark Ta-
ble and a Standard USCI-CF Table

Now that the correspondence shown by SSR(RR)

Td
(Eq. 7) is obtained, the concordant

construction of a standard mark table and a standard USCI-CF table should be tried

systematically.
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In order to convert the primary mark table tom_RR_Td_CF into the standard mark

table based on SSGTd
(Eq. 3) and to assure the concordance between the two tables, the

alignment of the list of subgroups derived from SSR(RR)

Td
(the upper sequence numbers in

Eq. 7) is changed into a list of sets of generators gen[1]–gen[11] derived from SSGTd

(Eq. 3, i.e., the lower sequence numbers in Eq. 7).

GAP functions MarkTableforUSCI and constructUSCITable have been developed

by the author (Fujita) for the purpose of systematizing the concordant construction of

a standard mark table and a standard USCI-CF table [9]. They are stored in the file

named USCICF.gapfunc (Appendix A of Ref. [9]), which is loaded at the beginning.

Then, the CPR RR_Td_CF for Td and the CPR RR_T_CF are defined as described above.

The conversion list of subgroups (gen[1]–gen[11]) due to SSR(RR)

Td
is described as follows.

For example, the set of generators for S4 (r_tom_7) appears as gen[5] in this conversion

list of subgroups.
gap> Read("c:/fujita00/fujita2018/multitable-Td/gap/USCICF.gapfunc");
(# definitions of CPR RR_Td_CF and CPR RR_T_CF are omitted.)
gap> #Subgroups of Td given
gap> gen := [];;
gap> gen[1] := [ ];; #C1-- 1
gap> gen[2] := [ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23) ];; #C2 -- 2
gap> gen[3] := [ (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ];; #

↪→ Cs -- 3
gap> gen[4] := [ (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20) ];; #C3 -- 4
gap> gen[6] := [ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24) ];; #D2 -- 5
gap> gen[7] := [ (1,2)(3,4)(5,8)(6,7)( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(25,26) ];; #C2v -- 6
gap> gen[5] := [ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,19,2,20)(3,17,4,18)(5,22,8,23)(6,21,7,24)(9,16,11,14)(10,15,12,13)(25,26) ];; #S4 -- 7
gap> gen[8] := [ (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
> (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ];; #C3v -- 8
gap> gen[9] := [ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
> (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ];; #D2d -- 9
gap> gen[10] := [ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
> (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20) ];; #T 10
gap> gen[11] := [ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
> (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
> (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ];; #Td 11
gap>

The function MarkTableforUSCI stored in the file USCICF.gapfunc (Appendix A of

Ref. [9]) is loaded to generate the standard mark table named MarkTableTd_RR.
gap> #mark table sorted for USCI table
gap> MarkTableTd_RR := MarkTableforUSCI(RR_Td_CF,RR_T_CF,11,gen,24,26);;
gap> Display(MarkTableTd_RR);
1: 24
2: 12 4
3: 12 . 2
4: 8 . . 2
5: 6 2 . . 2
6: 6 6 . . . 6
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7: 6 2 2 . . . 2
8: 4 . 2 1 . . . 1
9: 3 3 1 . 1 3 1 . 1
10: 2 2 . 2 . 2 . . . 2
11: 1 1 1 1 1 1 1 1 1 1 1

gap>

The standard mark table MarkTableTd_RR, which is calculated by applying the func-

tion MarkTableforUSCI to the above-mentioned CPR of degree 26 (= 24 + 2), is identical

with Table 2 of Ref. [11], which was, in turn, calculated by using a FORTRAN77 pro-

gram. The standard mark table MarkTableTd_RR is also identical with Source Code 4

(MarkTableTd) of Ref. [9], which was calculated by applying MarkTableforUSCI to the

CPR of degree 6 (= 4 + 2) in the GAP system.

The concordant generation of the standard USCI-CF table named USCITableTd_RR

is achieved by using the function constructUSCITable, which is also stored in the file

USCICF.gapfunc (Appendix A of Ref. [9]).

gap> Display("##USCI-CF table (USCITableTd_RR) :");
##USCI-CF table (USCITableTd_RR) :
gap> USCITableTd_RR := constructUSCITable(RR_Td_CF,RR_T_CF,11,gen,24,26);;
gap> Display(USCITableTd_RR);
[ [ b_1^24, b_2^12, c_2^12, b_3^8, c_4^6, b_4^6, c_4^6, c_6^4, c_8^3, b_12^2, c_24 ],
[ b_1^12, b_1^4*b_2^4, c_2^6, b_3^4, c_2^2*c_4^2, b_2^6, c_2^2*c_4^2, c_6^2, c_4^3, b_6^2, c_12 ],
[ b_1^12, b_2^6, c_2^5*a_1^2, b_3^4, c_4^3, b_4^3, c_4^2*a_2^2, c_6*a_3^2, c_8*a_4, b_12, a_12 ],
[ b_1^8, b_2^4, c_2^4, b_1^2*b_3^2, c_4^2, b_4^2, c_4^2, c_2*c_6, c_8, b_4^2, c_8 ],
[ b_1^6, b_1^2*b_2^2, c_2^3, b_3^2, c_4*a_1^2, b_2^3, c_2*c_4, c_6, c_4*a_2, b_6, a_6 ],
[ b_1^6, b_1^6, c_2^3, b_3^2, c_2^3, b_1^6, c_2^3, c_6, c_2^3, b_3^2, c_6 ],
[ b_1^6, b_1^2*b_2^2, c_2^2*a_1^2, b_3^2, c_2*c_4, b_2^3, c_4*a_1^2, a_3^2, c_4*a_2, b_6, a_6 ],
[ b_1^4, b_2^2, c_2*a_1^2, b_1*b_3, c_4, b_4,a_2^2, a_1*a_3, a_4, b_4, a_4 ],
[ b_1^3, b_1^3, c_2*a_1, b_3, c_2*a_1, b_1^3, c_2*a_1, a_3, c_2*a_1, b_3, a_3 ],
[ b_1^2, b_1^2, c_2,b_1^2, c_2, b_1^2, c_2, c_2, c_2, b_1^2, c_2 ],
[ b_1, b_1, a_1, b_1, a_1, b_1, a_1, a_1, a_1, b_1, a_1 ] ]

gap>

The standard USCI-CF table USCITableTd_RR, which is derived from the CPR of

degree 26 (= 24 + 2), is identical with Table 5 of Ref. [11], which was calculated by

using a FORTRAN77 program. The standard USCI-CF table USCITableTd_RR is also

identical with Source Code 5 (USCITableTd) of Ref. [9], which was calculated by applying

constructUSCITable to the CPR of degree 6 (= 4 + 2) in the GAP system.

5 Coset Representations

Each subgroup Gi for the standard mark table MarkTableTd_RR corresponds to a coset

representation (Gi\)Td. If the CPR of degree 26 (= 24 + 2) RR_Td_CF for Td is considered,

the corresponding set of generators is represented by gen[i] described above. The GAP

function CosetRepCF is developed to calculate such a coset representation (CR) in the
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form of CPR.

Although the file USCICF.gapfunc attached as Appendix A in the previous report [9]

contains the function CosetRepCF, this function suffers from an error. Hence, the revised

version of CosetRepCF is contained in Appendix A (CosetRepresentation.gapfunc) of

the present article, which should be loaded after the file USCICF.gapfunc.

5.1 The CR (C3v\)Td

Let us first calculate the CR (C3v\)Td. After loading RR_Td_CF of Td and RR_T_CF

of T, the CPR C3v for the subgroup C3v derived from gen[8] is used in the function

CosetRepCF in order to calculate the corresponding CR (C3v\)Td in the form of CPR

CRTd_C3v of degree 6 (= 4 + 2). Note that the degree of the CR (C3v\)Td is calculated

to be |Td|/|C3v| = 24/6 = 4. The resulting CR CRTd_C3v is converted into a group

Td_C3vTd based on a set of 3 generators.

gap> Read("c:/fujita00/fujita2018/multitable-Td/gap/USCICF.gapfunc"); #Loading of USCICF.gapfunc
gap> Read("c:/fujita00/fujita2018/multitable-Td/gap/CosetRepresentation.gapfunc");
gap> #CosetRepresentation.gapfunc should be loaded after USCICF.gapfunc
gap>
gap> RR_Td_CF :=
> Group( [ ( 1, 2)( 3, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> ( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
> ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
> ( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)(11,23)(12,24)(25,26) ] );;
gap> RR_T_CF :=
> Group( [ ( 1, 2)( 3, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> ( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
> ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)] );;
gap> ###Coset Representation C3v-Td###
gap> C3v := Group([ (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
> (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ]);; #C3v -- gen[8]
gap> ##CR: C3v-Td"
gap> CRTd_C3v := CosetRepCF(RR_Td_CF,C3v,RR_T_CF,24,26);;
gap> Display(CRTd_C3v);
[ (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (2,3,4), (1,3,2), (1,4,3), (1,2,4), (2,4,3), (1,4,2), (1,2,3),
(1,3,4), (2,3)(5,6), (1,3,4,2)(5,6), (1,2,4,3)(5,6), (1,4)(5,6), (3,4)(5,6), (1,2)(5,6), (1,4,2,3)(5,6),
(1,3,2,4)(5,6), (2,4)(5,6), (1,4,3,2)(5,6), (1,3)(5,6), (1,2,3,4)(5,6) ]

gap> ##CR: a set of generators for C3v-Td
gap> Td_C3vTd := AsGroup(CRTd_C3v);;
gap> Display(Td_C3vTd);
Group( [ (3,4)(5,6), (2,3)(5,6), (1,2)(5,6) ] )
gap> Display(Size(Td_C3vTd));
24

5.2 The CR (C2v\)Td

Let us next calculate the CR (C2v\)Td. After loading RR_Td_CF of Td and RR_T_CF

of T (omitted), the CPR C2v for the subgroup C2v derived from gen[7] is used in the

function CosetRepCF in order to calculate the corresponding CR (C2v\)Td in the form

of CPR CRTd_C2v of degree 8 (= 6 + 2). Note that the degree of the CR (C2v\)Td is
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calculated to be |Td|/|C2v| = 24/4 = 6. The resulting CR CRTd_C2v is converted into a

group Td_C2vTd based on a set of 4 generators.

gap> ###Coset Representation C2v-Td###
gap> C2v := Group([ (1,2)(3,4)(5,8)(6,7)( 9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,13)(10,14)(11,15)(12,16)(25,26) ]);; #C2v -- gen[7]
gap> ##CR: C2v-Td"
gap> CRTd_C2v := CosetRepCF(RR_Td_CF,C2v,RR_T_CF,24,26);;
gap> Display(CRTd_C2v);
[ (), (3,4)(5,6), (1,2)(5,6), (1,2)(3,4), (1,3,5)(2,4,6), (1,3,6)(2,4,5), (1,4,6)(2,3,5), (1,4,5)(2,3,6),
(1,5,3)(2,6,4), (1,5,4)(2,6,3), (1,6,3)(2,5,4), (1,6,4)(2,5,3), (1,3)(2,4)(7,8), (1,3,2,4)(5,6)(7,8),
(1,4,2,3)(5,6)(7,8), (1,4)(2,3)(7,8), (3,5)(4,6)(7,8), (3,6)(4,5)(7,8), (1,2)(3,5,4,6)(7,8), (1,2)

↪→ (3,6,4,5)(7,8),
(1,5)(2,6)(7,8), (1,5,2,6)(3,4)(7,8), (1,6)(2,5)(7,8), (1,6,2,5)(3,4)(7,8) ]

gap> ##CR: a set of generators for C2v-Td##"
gap> Td_C2vTd := AsGroup(CRTd_C2v);;
gap> Display(Td_C2vTd);
Group( [ (3,4)(5,6), (3,5)(4,6)(7,8), (1,2)(5,6), (1,3)(2,4)(7,8) ] )
gap> Display(Size(Td_C2vTd));
24

5.3 The CR (Cs\)Td

The CR (Cs\)Td is calculated in a similar way. After loading RR_Td_CF of Td and

RR_T_CF of T (omitted), the CPR Cs for the subgroup Cs derived from gen[3] is used

in the function CosetRepCF in order to calculate the corresponding CR (Cs\)Td in the

form of CPR CRTd_Cs of degree 14 (= 12 + 2). Note that the degree of the CR (Cs\)Td

is calculated to be |Td|/|Cs| = 24/2 = 12. The resulting CR CRTd_Cs is converted into a

group Td_CsTd based on a set of 3 generators.

gap> ###Coset Representation Cs-Td###
gap> Cs := Group([ (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ]);;

↪→ # Cs -- gen[3]
gap> ##CR: Cs-Td
gap> CRTd_Cs := CosetRepCF(RR_Td_CF,Cs,RR_T_CF,24,26);;
gap> Display(CRTd_Cs);
[ (), ( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11), ( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,10)(11,12),
( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,11)(10,12), ( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8),
( 1,10, 7)( 2, 9, 8)( 3,12, 5)( 4,11, 6), ( 1,11, 8)( 2,12, 7)( 3, 9, 6)( 4,10, 5),
( 1,12, 6)( 2,11, 5)( 3,10, 8)( 4, 9, 7), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12),
( 1, 6,12)( 2, 5,11)( 3, 8,10)( 4, 7, 9), ( 1, 7,10)( 2, 8, 9)( 3, 5,12)( 4, 6,11),
( 1, 8,11)( 2, 7,12)( 3, 6, 9)( 4, 5,10), ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,14),
( 1, 3, 4, 2)( 5,10, 6,12)( 7, 9, 8,11)(13,14), ( 1, 2, 4, 3)( 5,12, 6,10)( 7,11, 8, 9)(13,14),
( 1, 4)( 5,11)( 6, 9)( 7,12)( 8,10)(13,14), ( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,14),
( 1, 7)( 2, 5)( 3, 8)( 4, 6)( 9,12)(13,14), ( 1, 6, 2, 8)( 3, 5, 4, 7)( 9,11,12,10)(13,14),
( 1, 8, 2, 6)( 3, 7, 4, 5)( 9,10,12,11)(13,14), ( 1, 9)( 2,11)( 3,10)( 4,12)( 6, 7)(13,14),
( 1,11, 3,12)( 2, 9, 4,10)( 5, 6, 8, 7)(13,14), ( 1,10)( 2,12)( 3, 9)( 4,11)( 5, 8)(13,14),
( 1,12, 3,11)( 2,10, 4, 9)( 5, 7, 8, 6)(13,14) ]

gap> ##CR: a set of generators for Cs-Td
gap> Td_CsTd := AsGroup(CRTd_Cs);;
gap> Display(Td_CsTd);
Group( [ ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,14), ( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11),
( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12) ] )

gap> Display(Size(Td_CsTd));
24
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5.4 The CR (D2\)Td

The above-mentioned CPRs, i.e., CRTd_C3v (for (C3v\)Td), CRTd_C2v (for (C2v\)Td), and

CRTd_s (for (Cs\)Td), can be regarded as permutation groups of order 24, i.e., Td_C3vTd

(degree 6 (= 4 +2)), Td_C2vTd (degree 8 (= 6 +2)), and Td_CsTd (degree 14 (= 12 +

2)), which are isomorphic to the point group Td of order 24. Although these permutation

groups differ in their degrees, they are capable of constructing the standard mark table

and the standard USCI-CF table for the point group Td.

On the other hand, there are several CPRs (for CRs) which exhibit degenerate char-

acters. For example, the CR (D2\)Td corresponding to the coset decomposition shown in

Eq. 2 is represented by the CPR CRTd_D2 of degree 8 (= 6 + 2), where 24 permutations

degenerate into 6 permutations so as to give a permutation group Td_D2Td of order 6 as

follows:

gap> ###Coset Representation D2-Td###
gap> D2 :=
> Group([ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
> (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24) ]);; #D2 -- gen[6] 5
gap> ##CR: D2-Td
gap> CRTd_D2 := CosetRepCF(RR_Td_CF,D2,RR_T_CF,24,26);;
gap> Display(CRTd_D2);
[ (), (), (), (), (1,2,3)(4,6,5), (1,2,3)(4,6,5), (1,2,3)(4,6,5), (1,2,3)(4,6,5),
(1,3,2)(4,5,6), (1,3,2)(4,5,6), (1,3,2)(4,5,6), (1,3,2)(4,5,6),
(1,4)(2,5)(3,6)(7,8), (1,4)(2,5)(3,6)(7,8), (1,4)(2,5)(3,6)(7,8), (1,4)(2,5)(3,6)(7,8),
(1,5)(2,6)(3,4)(7,8), (1,5)(2,6)(3,4)(7,8), (1,5)(2,6)(3,4)(7,8), (1,5)(2,6)(3,4)(7,8),
(1,6)(2,4)(3,5)(7,8), (1,6)(2,4)(3,5)(7,8), (1,6)(2,4)(3,5)(7,8), (1,6)(2,4)(3,5)(7,8) ]

gap> ##CR: a set of generators for D2-Td
gap> Td_D2Td := AsGroup(CRTd_D2);;
gap> Display(Td_D2Td);
Group( [ (1,2,3)(4,6,5), (1,4)(2,5)(3,6)(7,8) ] )
gap> Display(Size(Td_D2Td));
6

6 Geometric Meaning of the Standard Mark Table

6.1 Orbits in Td-Skeletons
As described in the preceding section, each row of the standard mark table

MarkTableTd_RR corresponds to a coset representation (Gi\)Td, where the symbol Gi

represents the i-th subgroup (up to conjugacy)

selected from SSGTd
(Eq. 3). Geometrically speaking, the coset representation

(Gi\)Td controls an orbit of equivalent positions in a given skeleton of the point group

Td, where each equivalent position is fixed to exhibit the local symmetry Gi (up to con-

jugacy) under the action of the point group Td. Each row of the standard mark table

MarkTableTd_RR indicates the corresponding fixed-point vector (FPV), where the value
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at the j-th column represents the number of fixed points (positions) under the subduction
into a subgroup Gj, which is represented by the symbol (Gi\)Td ↓ Gj.

For example, the numbered skeletons 1–3 shown in Figure 1 indicate orbits of equiv-
alent positions, which appear in an adamantane skeleton. The orbit of four tertiary

positions in 1 is governed by the coset representation (C3v\)Td, which corresponds to the

8th row of the standard mark table MarkTableTd_RR. The orbit of six secondary vertices
in 2 is governed by the coset representation (C2v\)Td, which corresponds to the 7th row

of the standard mark table MarkTableTd_RR. The orbit of twelve secondary positions in

3 is governed by the coset representation (Cs\)Td, which corresponds to the 3rd row of
the standard mark table MarkTableTd_RR.

On the other hand, a regular body of the point group Td is shown as an adamantane

derivative 4 (or 5), where each cyclopropane ring linked in spiro fashion provides four

substitution positions. Hence, there appear an orbit of 24 positions governed by the coset

representation (C1\)Td, which corresponds to the first row of the standard mark table

MarkTableTd_RR.
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Figure 1. Orbits of equivalent positions (1–3) in an adamantane skeleton of the
point group Td as well as two modes of numbering (4 and 5) for a regular
body of the point group Td derived from an adamantane skeleton.

These coset representations (Gi\)Td (Gi ∈ SSGTd
(Eq. 3)) are permutation repre-

sentations, which do not taken chirality/achirality into explicit consideration. They are
converted into combined-permutation representations (CPRs) [6–8] by adding a 2-cycle.
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6.2 The Four Tertiary Positions in an Adamantane Skeleton
The four tertiary positions in an adamantane skeleton 1 can be considered to construct a

hypothetical tetrahedral skeleton when they are linked directly. After they are numbered

sequentially from 1 to 4, they are moved under the action of the point group Td, so as

to give a permutation representation of degree 4, which is regarded as a CR (C3v\)Td.

The skeleton 1 has a two-fold rotation axis running through the two secondary carbons

to give a rotation (1,3)(2,4), a three-fold rotation axis running through the position 1 to

give a rotation (2,3,4), and a mirror plane containing positions 1 and 4 to give a reflection

(2,3)(5,6), where the permutation (5,6) represents a mirror-permutation. Thereby, a set

of generators gen_Td_tetra constructs a combined permutation representation (CPR) of

degree 6 (= 4 + 2) by using the GAP function Group. The resulting CPR Td_tetra is

regarded as a permutation group of order 24.

gap> #Tetrahedral skeleton in an adamantane skeleton
gap> gen_Td_tetra := [(1,3)(2,4), (2,3,4), (2,3)(5,6)];;
gap> Td_tetra := Group(gen_Td_tetra);;
gap> Display(Td_tetra);
Group( [ (1,3)(2,4), (2,3,4), (2,3)(5,6) ] )
gap> Display(Size(Td_tetra));
24

The isomorphism between the CPR Td_tetra of degree 6 (= 4 + 2) and the CPR

Td_C3vTd of degree 6 (= 4 + 2) described above is confirmed by using the GAP function

IsomorphismGroups. Note that the CPR Td_tetra has been obtained geometrically

on the basis of an adamantane skeleton 1, while the CPR Td_C3vTd has been obtained

algebraically on the basis of the multiplication table of Td.

gap> Td_tetra := Group( [ (1,3)(2,4), (2,3,4), (2,3)(5,6) ] );;
gap> Td_C3vTd := Group( [ (3,4)(5,6), (2,3)(5,6), (1,2)(5,6) ] );;
gap> #Isomorphism
gap> IsomorphismGroups(Td_tetra,Td_C3vTd);
[ (1,3)(2,4), (2,3,4), (2,3)(5,6) ] -> [ (1,2)(3,4), (1,2,4), (2,4)(5,6) ]

It follows that the set of generators for Td_C3vTd can be obtained by starting the

renumbered skeleton, which is obtained by the exchange of the numbers 2 and 3 in the

adamantane skeleton 1 as shown in pairs of parentheses.

On the other hand, the isomorphism between the CPR Td_tetra of degree 6 (= 4 +

2) and the CPR RR_Td_CF of degree 26 (= 24 + 2) described above is confirmed by using

the GAP function IsomorphismGroups.

gap> #Isomorphism
gap> IsomorphismGroups(Td_tetra,RR_Td_CF);
[ (1,3)(2,4), (2,3,4), (2,3)(5,6) ] ->
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[ (1,4)(2,3)(5,7)(6,8)(9,10)(11,12)(13,16)(14,15)(17,19)(18,20)(21,22)(23,24),
(1,10,8)(2,9,7)(3,12,6)(4,11,5)(13,19,24)(14,20,23)(15,17,22)(16,18,21),
(1,21)(2,22)(3,23)(4,24)(5,13)(6,14)(7,15)(8,16)(9,17)(10,18)(11,19)(12,20)(25,26) ]

gap>

It follows that the CPR RR_Td_CF is also generated from a set of three generators,

which corresponds to m4 (for C2(3)), m10 (for C2
3(4)), and m21*(25,26) (for σd(3)) appearing

in the multiplication table shown above.

6.3 The Six Secondary Vertices in an Adamantane Skeleton

The six secondary vertices in an adamantane skeleton 2 can be regarded to construct

a hypothetical octahedral skeleton incorporated in an adamantane skeleton. They are

controlled by the CR (C2v\)Td. They are numbered sequentially from 1 to 6 to give a

set of generators gen_Td_octa, which constructs a combined permutation representation

(CPR) of degree 8 (= 6 + 2) by using the GAP function Group. The resulting CPR

Td_octa is regarded as a permutation group of order 24.

gap> #Octahedral skeleton in an adamantane skeleton
gap> gen_Td_octa := [(2,4)(3,5), (1,2,3)(4,5,6), (1,2)(4,6)(7,8)];;
gap> Td_octa := Group(gen_Td_octa);;
gap> Display(Td_octa);
Group( [ (2,4)(3,5), (1,2,3)(4,5,6), (1,2)(4,6)(7,8) ] )
gap> Display(Size(Td_octa));
24
gap>

The isomorphism between the CPR Td_octa of degree 8 (= 6 + 2) and the CPR

Td_C2vTd of degree 8 (= 6 + 2) described above is confirmed by using the GAP function

IsomorphismGroups. Note that the CPR Td_octa has been obtained geometrically on

the basis of an adamantane skeleton 2, while the CPR Td_C2vTd has been obtained

algebraically on the basis of the multiplication table of Td.

gap> Td_octa := Group( [ (2,4)(3,5), (1,2,3)(4,5,6), (1,2)(4,6)(7,8) ] );;
gap> Td_C2vTd := Group( [ (3,4)(5,6), (3,5)(4,6)(7,8), (1,2)(5,6), (1,3)(2,4)(7,8) ] );;
gap> #Isomorphism
gap> IsomorphismGroups(Td_octa,Td_C2vTd);
[ (2,4)(3,5), (1,2,3)(4,5,6), (1,2)(4,6)(7,8) ] -> [ (1,2)(3,4), (1,6,3)(2,5,4), (3,6)(4,5)(7,8) ]

It follows that the set of generators for Td_C2vTd can be obtained by starting from

the renumbered skeleton, which is obtained by the permutation (2,6)(4,5) of 6 positions

in the adamantane skeleton 2 as shown in pairs of parentheses.

On the other hand, the isomorphism between the CPR Td_octa of degree 8 (= 6 +

2) and the CPR RR_Td_CF of degree 26 (= 24 + 2) described above is confirmed by using

the GAP function IsomorphismGroups.
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gap> #Isomorphism
gap> IsomorphismGroups(Td_octa,RR_Td_CF);
[ (2,4)(3,5), (1,2,3)(4,5,6), (1,2)(4,6)(7,8) ] ->
[ (1,3)(2,4)(5,6)(7,8)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,23)(22,24),
(1,6,11)(2,5,12)(3,8,9)(4,7,10)(13,23,18)(14,24,17)(15,21,20)(16,22,19),
(1,18)(2,17)(3,20)(4,19)(5,24)(6,23)(7,22)(8,21)(9,15)(10,16)(11,13)(12,14)(25,26) ]

It follows that the CPR RR_Td_CF is also generated from a set of three generators,

which corresponds to m3 (for C2(2)), m6 (for C3(3)), and m18*(25,26) (for σd(4)) appearing

in the multiplication table shown above.

6.4 The 12 Positions in an Adamantane Skeleton

The 12 positions in an adamantane skeleton 3 are controlled by the CR (Cs\)Td. They

are numbered sequentially from 1 to 12 to give a set of generators gen_Td_12, which

constructs a combined permutation representation (CPR) of degree 14 (= 12 + 2) by

using the GAP function Group. The resulting CPR Td_12 is regarded as a permutation

group of order 24.

gap> #Adamantane with 12 positions
gap> gen_Td_12 := [(1,2)(3,8)(4,7)(5,9)(6,10)(11,12),
> (1,4,6)(2,3,5)(7,9,11)(8,10,12), (1,3)(2,4)(5,6)(7,11)(8,12)(13,14)];;
gap> Td_12 := Group(gen_Td_12);;
gap> Display(Td_12);
Group( [ ( 1, 2)( 3, 8)( 4, 7)( 5, 9)( 6,10)(11,12), ( 1, 4, 6)( 2, 3, 5)( 7, 9,11)( 8,10,12),
( 1, 3)( 2, 4)( 5, 6)( 7,11)( 8,12)(13,14) ] )

gap> Display(Size(Td_12));
24

The isomorphism between the CPR Td_12 of degree 14 (= 12 + 2) and the CPR

Td_CsTd of degree 14 (= 12 + 2) described above is confirmed by using the GAP func-

tion IsomorphismGroups. Note that the CPR Td_12 has been obtained geometrically

on the basis of an adamantane skeleton 3, while the CPR Td_CsTd has been obtained

algebraically on the basis of the multiplication table of Td.

gap> Td_12 := Group( [ ( 1, 2)( 3, 8)( 4, 7)( 5, 9)( 6,10)(11,12),
> ( 1, 4, 6)( 2, 3, 5)( 7, 9,11)( 8,10,12),
> ( 1, 3)( 2, 4)( 5, 6)( 7,11)( 8,12)(13,14) ] );;
gap> Td_CsTd := Group( [ ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(13,14),
> ( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11),
> ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12) ] );;
gap> #Isomorphism
gap> IsomorphismGroups(Td_12,Td_CsTd);
[ (1,2)(3,8)(4,7)(5,9)(6,10)(11,12), (1,4,6)(2,3,5)(7,9,11)(8,10,12),
(1,3)(2,4)(5,6)(7,11)(8,12)(13,14) ] ->

[ (1,2)(3,4)(5,7)(6,8)(9,12)(10,11), (1,9,5)(2,10,6)(3,11,7)(4,12,8),
(2,3)(5,9)(6,11)(7,10)(8,12)(13,14) ]

It follows that the set of generators for Td_CsTd can be obtained by starting from the

renumbered skeleton, which is obtained by the permutation (1,2,3,11,4,10,5,7,12)(8,9) of

12 positions in the adamantane skeleton 3 as shown in pairs of parentheses.
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The isomorphism between the CPR Td_12 of degree 14 (= 12 + 2) and the CPR

RR_Td_CF of degree 26 (= 24 + 2) described above is confirmed by using the GAP function

IsomorphismGroups.

gap> #Isomorphism
gap> IsomorphismGroups(Td_12,RR_Td_CF);
[ (1,2)(3,8)(4,7)(5,9)(6,10)(11,12), (1,4,6)(2,3,5)(7,9,11)(8,10,12),
(1,3)(2,4)(5,6)(7,11)(8,12)(13,14) ] ->

[ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
(1,7,12)(2,8,11)(3,5,10)(4,6,9)(13,22,20)(14,21,19)(15,24,18)(16,23,17),
(1,16)(2,15)(3,14)(4,13)(5,19)(6,20)(7,17)(8,18)(9,22)(10,21)(11,24)(12,23)(25,26) ]

gap>

It follows that the CPR RR_Td_CF is also generated from a set of three generators,

which corresponds to m2 (for C2(1)), m7 (for C3(2)), and m16*(25,26) (for σd(6)) appearing

in the multiplication table shown above.

6.5 The 24 Positions in a Regular Body

The 24 positions in a regular body 4 are controlled by the CR (C1\)Td, which is referred

to under the name regular representation (RR). They are numbered sequentially from 1

to 24 to give a set of generators gen_Td_RB, which constructs a combined permutation

representation (CPR) of degree 26 (= 24 + 2) by using the GAP function Group. The

resulting CPR Td_RB is regarded as a permutation group of order 24.

gap> gen_Td_RB :=
> [(1,3)(2,4)(5,16)(6,15)(7,14)(8,13)(9,22)(10,21)(11,24)(12,23)(17,19)(18,20),
> (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
> (1,6)(2,5)(3,8)(4,7)(9,10)(11,12)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,26)];;
gap> Td_RB := Group(gen_Td_RB);;
gap> Display(Td_RB);
Group( [ ( 1, 3)( 2, 4)( 5,16)( 6,15)( 7,14)( 8,13)( 9,22)(10,21)(11,24)(12,23)(17,19)(18,20),
( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10)(11,12)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,26) ] )

gap> Display(Size(Td_RB));
24

The isomorphism between the CPR Td_RB of degree 26 (= 24 + 2) and the CPR

RR_Td_CF of degree 26 (= 24 + 2) described above is confirmed by using the GAP function

IsomorphismGroups.

gap> #Isomorphism
gap> IsomorphismGroups(Td_RB,RR_Td_CF);
[ (1,3)(2,4)(5,16)(6,15)(7,14)(8,13)(9,22)(10,21)(11,24)(12,23)(17,19)(18,20),
(1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
(1,6)(2,5)(3,8)(4,7)(9,10)(11,12)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,26) ] ->

[ (1,2)(3,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16)(17,18)(19,20)(21,24)(22,23),
(1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20),
(1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,26) ]

It follows that the CPR RR_Td_CF is also generated from a set of three generators,

which corresponds to m2 (for C2(1)), m5 (for C3(1)), and m13*(25,26) (for σd(1)) appearing
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in the multiplication table shown above.

Geometrical speaking, the set of three generators [m2,m5,m13*(25,26)] corresponds

to another mode of numbering for the regular body 5.

7 Conclusion
A regular representation (RR) of the point group Td is derived algebraically from a mul-

tiplication table of Td, where reflections are explicitly considered by means of a mirror-

permutation to give a combined-permutation representation (CPR) of degree 26 (= 24 +

2). Thereby, the standard mark table and the standard USCI-CF table (unit-subduced-

cycle-index-with-chirality-fittingness table) are concordantly generated by using the GAP

functions MarkTableforUSCI and constructUSCITable, which have been developed by

Fujita for the purpose of systematizing the concordant construction [9]. A coset repre-

sentation (CR) (Gi\)Td, which corresponds to a respective subgroup Gi appearing in

the i-th row of the standard mark table, is obtained algebraically as a CPR by means of

the GAP function CosetRepCF developed by Fujita (Appendix A). On the other hand,

CPRs for an RR and CRs are obtained geometrically as permutation groups by consid-

ering appropriate skeletons. They are compared with the corresponding ones obtained

algebraically.

8 Appendix A. CosetRepresentation.gapfunc
The function CosetRepCF provides us with a utility for calculating a coset representation

(CR) as a combined permutation representation (CPR). This function is contained in the

following file:

File Name: CosetRepresentation.gapfunc

#CosetRepresentation.gapfunc should be loaded
#after USCICF.gapfunc

####################################################
## Function for Calculating a Coset Representation #
## globalgr(/localgrp) #
####################################################
fixedpoint := 1; #Global fixed point (default)
isstabilizer := 1; #Global stabilizer or not
CosetRepCF := function(globalgrp,localgrp,maxchgrp,degree,degreefull)
#CosetRepCF := function(Glgrp,Locgrp,MxChgrp,DegCGr,DegGr)
local i, j, k,
#Glgrp, Locgrp, MxChgrp, DegCGr, DegGr,
l_elm_Glgrp, l_elm_MxChgrp,
cd_Gl_MxC,cd_Gl_Loc, l_rep, calcdegree,
perm_cd, s_perm_cd, l_perm, ll_perm, cosetrep;
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Glgrp := globalgrp;
Locgrp := localgrp;
MxChgrp := maxchgrp;
DegCGr := degree; DegGr := degreefull;
l_elm_Glgrp := Elements(Glgrp); l_elm_MxChgrp := Elements(MxChgrp);
####################################################
#Display("#Coset Decomposition Global/MaxChiral"); # #for debug
####################################################
cd_Gl_MxC := CosetDecomposition(Glgrp, MxChgrp);
#Display(IsList(cd_Gl_MxC)); Display(cd_Gl_MxC); #for debug
###############################################
#Display("#Coset Decomposition Global/Local");# #for debug
###############################################
calcdegree := Size(Glgrp)/Size(Locgrp);
#Display(calcdegree); Display(calcdegree = DegCGr); #for debug
if calcdegree = DegCGr then
if isstabilizer = 1 then #harmonization
l_rep := []; cd_Gl_Loc := [];
for j in [1..DegCGr] do
#Print("####### j = ", j, "#########\n"); #for debug
l_rep[j] := RepresentativeAction(Glgrp, fixedpoint, j);
cd_Gl_Loc[j] := Elements(RightCoset(Locgrp, l_rep[j]));
od;
#Display(IsList(l_rep)); Display(l_rep); #for debug
#Display(IsList(cd_Gl_Loc)); Display(cd_Gl_Loc); #for debug
else #no harmonization
cd_Gl_Loc := CosetDecomposition(Glgrp, Locgrp);
#Display(IsList(cd_Gl_Loc)); Display(cd_Gl_Loc); #for debug
fi;
else #no harmonization
cd_Gl_Loc := CosetDecomposition(Glgrp, Locgrp);
#Display(IsList(cd_Gl_Loc)); Display(cd_Gl_Loc); #for debug
fi;
##################################################
#Display("#Coset Representation Global(/Local)");# #for debug
##################################################
s_perm_cd := [1..DegGr]; cosetrep := [];
for k in [1..Size(l_elm_Glgrp)] do
#Print("#### k:=", k, "#### \n"); #for debug
l_perm := cd_Gl_Loc*l_elm_Glgrp[k];
ll_perm := cd_Gl_MxC*l_elm_Glgrp[k];
#Display("###A###"); Display(l_elm_Glgrp[k]); #for debug
#Display("###B###"); Display(l_perm); #for debug
#Display("###BB###"); Display(cd_Gl_Loc); #for debug
#Display("###C###"); Display(ll_perm); #for debug
#Display("###CC###"); Display(cd_Gl_MxC); #for debug
perm_cd := [];
for j in [1..Size(cd_Gl_Loc)] do
for i in [1..Size(cd_Gl_Loc)] do
if IsEqualSet(cd_Gl_Loc[i],l_perm[j]) then
#Display(cd_Gl_Loc[i]); #for debug
#Display(l_perm[j]); #for debug
#perm_cd[j] := i; break; fi;
perm_cd[j] := i; fi;
od; od;
if DegCGr <> DegGr then
#Display("#### DegCGr <> DegGr####"); # for debug
for j in [1..Size(cd_Gl_MxC)] do
for i in [1..Size(cd_Gl_MxC)] do
if IsEqualSet(cd_Gl_MxC[i],ll_perm[j]) then

#perm_cd[DegCGr+j] := DegCGr+i; break; fi; #error
perm_cd[Size(cd_Gl_Loc)+j] := Size(cd_Gl_Loc)+i; break; fi;
od; od;
fi;
#Display(perm_cd); #for debug
#cosetrep[k] := PermListList(s_perm_cd, perm_cd); #error
cosetrep[k] := PermList(perm_cd);
#Display(cosetrep[k]); #for debug
od;
return cosetrep;
end; #end of CosetRepCF
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