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Abstract

We survey the mathematical foundations of Clarke Stochiometric Network Anal-
ysis (SNA, for short). We show that SNA is heavily based on a special change of
coordinates that we call Clarke’s velocity function.

Given a chemical reaction network Ω, the associated system of Clarke’s coordi-
nates (also called convex coordinates) allows one to compute a polyhedral definition
for the set of steady states of Ω. The latter fact yields a reduction to linear pro-
gramming of some algorithmic tasks that are related to the linear stability analysis
of chemical reaction networks.

We discuss the algorithmic potential of Clarke’s theory, which is strongly limited
by its dependence on a hard intractable problem, the problem of computing spanning
sets of polyhedral cones. We discuss how the hardness of the latter problem reduces
the algorithmic potential of SNA.

We also show that SNA can be happily applied in some scenarios. To this end
we study a problem that is related to the linear stability analysis of network models
of biological homochirality. We show that SNA provides us with algorithmic tools
that can be used to solve the aforementioned problem.

This work is intended to be a critical review of Clarke’s Stoichiometric Network Anal-

ysis (SNA, for short, see [6] and the references therein).

SNA provides us with tools that can be applied in the stability analysis of chemical re-

action networks. Those networks are rough descriptions of chemical reaction mechanisms,
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which can be either real or abstract. Thus, the analysis of chemical reaction networks is

an important task related to the prediction and control of chemical processes.

A chemical network is just a pair of sets:

• The first set is a set of chemical species: the species involved in the chemical process.

• The second set is a set of chemical reactions: the reactions that take place along

the chemical process.

If one assumes the law of mass-action, then he should assume that the dynamics of

the network (process) is driven by a system of nonlinear ordinary differential equations

that can be effectively computed from the above two sets. Those ODE-systems (mass-

action kinetics systems) are the systems that we have to analyze, using the tools of linear

stability analysis and SNA.

Let Ω be a chemical network. The mass-action dynamics of Ω is naturally expressed

in a system of concentration coordinates. It can be argued that SNA reduces to a very

special change of coordinates. The latter change of coordinates, computed by Clarke’s

velocity function (see below), maps the set of steady states of Ω onto a polyhedral cone

called the current cone. Clarke’s change of coordinates is, to some extent, a linearization

of the dynamics of Ω : let JΩ be the symbolic Jacobian of Ω, if we express JΩ in the

system of convex coordinates, then all the entries of this symbolic matrix become linear

polynomials.

We discuss in some depth the algorithmic potential of Clarke’s theory. We also discuss

the weakness of SNA, which is mainly related to the algorithmic hardness of generating

all the extreme currents (extreme rays of the current cone). The intractability of this

enumeration problem strongly reduces the algorithmic potential of SNA. However, we

show that SNA can be happily applied in some scenarios. To this end, we study a

problem that is related to the linear stability analysis of network models of biological

homochirality. We show that SNA provides us with algorithmic tools that can be used to

solve the aforementioned problem.

Notation 1 Let us fix some notation

1. Given v ∈ Rn and given i ≤ n, we use the symbol v [i] to denote the i-th entry of v.

2. Given a k× r matrix A, and given i ≤ k, j ≤ r, we use the symbol A [i, j] to denote

the entry of A that is located at row i column j.
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3. We use the symbol Rn
+ to denote the set

{(a1, ..., an) ∈ Rn : a1, ..., an ≥ 0} ,

and we use the symbol Rn
> to denote the set

{(a1, ..., an) ∈ Rn : a1, ..., an > 0} .

1 Chemical reaction networks

Chemical reactions are the chemical processes par excellence.

Definition 2 A chemical reaction over the chemical species X1, ..., Xn is an expression

like

c1X1 + · · ·+ cnXn → d1X1 + · · ·+ dnXn,

where c1, ..., cn and d1, ..., dn are small integers (some of which could be equal to zero).

The above expression indicates that the mixture of c1 units of X1, ..., and cn units of Xn

gives place to d1 units of X1 , ..., and dn units of Xn.

If for all i ≤ n the equality ci = 0 holds, the reaction represents an in-flow. On the

other hand, if for all i ≤ n the equality di = 0 holds, the reaction represents an out-flow.

Definition 3 A chemical network over the species {X1, ..., Xn} is a set of chemical re-

actions, say the set {R1, ..., Rr} , over this set of species. Thus, a chemical network is a

pair ({X1, ..., Xn} , {R1, ..., Rr}) .

Notation 4 Given a chemical network

Ω = ((X1, ..., Xn) , (R1, ..., Rr)) ,

we use the expression

c1iX1 + · · ·+ cniXn → d1iX1 + · · ·+ dniXn

to denote the reaction Ri.

We use variables [X1] , ..., [Xn] to denote the concentrations of the n chemical species.

Let us consider an example of a chemical reaction network. We use the symbol Ω0 to

denote the network ({I, A} , {R1, R2, R3}) , where:

• Reaction R1 is equal to 3I → 3A,
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• Reaction R2 is equal to 2I + A→ 3I and

• Reaction R3 equal to I + A→ 2A.

Thus, we assume that Ω0 describes a chemical process involving only two species that

react in three different ways. What can be said about this abstract chemical mechanism?

We have to consider a qualitative approach to the latter question given the nonlinearity

of its dynamics.

1.1 Stability analysis of chemical reaction networks

Let Ω = ((X1, ..., Xn) , (R1, ..., Rr)) be a chemical network. We want to analyze the

dynamical behavior of network Ω. To do the latter we have to associate to each reaction

a reaction rate constant that measures the likelihood of the corresponding reaction. Let

(k1, ..., kr) be a vector of rate constants, we have: if the values of k1, ..., kr correspond

to the rate constants of the reactions R1, ..., Rr, then, and according to the law of mass-

action, the dynamics of the network is governed by the polynomial system of differential

equations given below

d [Xi]

dt
=

r∑
j=1

kj (dij − cij) ([X1]cij · · · · · [Xn]cij) , i = 1, ..., n.

We have, for instance, that the dynamics of Ω0 is driven by the nonlinear system

d [I]

dt
= −3k1 [I]2 + k2 [I]2 [A]− k3 [I] [A] ,

d [A]

dt
= 3k1 [I]2 − k2 [I]2 [A] + k3 [I] [A] ,

which cannot be solved by analytical means.

The impossibility of solving those nonlinear systems lead us to consider a steady-state

analysis of the dynamics.

Definition 5 We say that (a,b) ∈ Rn × Rr is a steady state of Ω, if and only if, the

equalities
r∑

j=1

b [j] (dij − cij) (a [1]cij · · · · · a [n]cij) = 0; i = 1, ..., n

hold. Here, we use the symbol a to denote the subtuple constituted by the n concentrations,

and the symbol b to denote the subtuple constituted by the r reaction rate constants.
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We have, for instance, that a state of Ω0 is a quintuple ([I] , [A] , k1, k2, k3) , where a

corresponds to the pair ([I] , [A]), and b corresponds to the triple (k1, k2, k3). Moreover,

the set of steady states of Ω0 is the set

SS (Ω0) =
{

([I] , [A] , k1, k2, k3) ∈ R5
+ : −3k1 [I]3 + k2 [I]2 [A]− k3 [I] [A] = 0

}
,

which has a quite complex structure: given r, s, t ∈ R+, the two dimensional section

determined by the conditions k1 = r, k2 = s, k3 = t is the complex curve given by equation

[A] =
−3r [I]3(

s [I]2 − t [I]
) .

Definition 6 We say that (a,b) ∈ Rn × Rr is a positive steady state, if and only if, for

all i ≤ n and for all j ≤ r the inequalities

a0 [i] ,b0 [j] > 0

hold. We use the symbol SS+ (Ω) to denote the set of positive steady states.

Definition 7 The symbolic Jacobian of Ω is the symbolic matrix JΩ that is defined by

JΩ [i, j] =

∂

(
r∑

j=1

kj (dij − cij) ([X1]cij · · · · · [Xn]cij)

)
∂ [Xj]

.

The symbolic Jacobian of Ω can be seen as a function JΩ : SS (Ω) →Mnn (R) that

assigns to each steady state a n × n numerical matrix that we denote with the symbol

JΩ (a,b) . We assume this point of view in this work.

We have, for instance, that JΩ0 is the matrix-valued function defined by

JΩ0 (([I] , [A] , k1, k2, k3)) =

[
−9k1 [I]2 + 2k2 [I] [A]− k3 [A] k2 [I]2 − k3 [I]

9k1 [I]2 − 2k2 [I] [A] + k3 [A] −k2 [I]2 + k3 [I]

]
,

and which encodes many key features of the dynamics of Ω0: the Theorem of Grobman-

Hartman tells us that the stability (instability) properties of a hyperbolic state (a,b) can

be deduced from the spectrum (the eigenstructure) of JΩ (a,b) [12].

Definition 8 Let (a,b) be a steady state, and let λ1, ..., λn be the eigenvalues of JΩ (a,b).

We say that (a,b) is stable, if and only if, for all i ≤ n the inequality Re (λi) < 0 holds.

On the other hand, we say that (a,b) is unstable, if and only if, there exists i such that

Re (λi) ≥ 0.
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Given a state (a,b), it is easy to check wether this state is unstable. To this end, one

just has to compute the spectrum of JΩ (a,b). Let us pick, for instance, the steady state

(1, 1, 1, 5, 2) ∈ SS (Ω0) . We have that JΩ0 (1, 1, 1, 5, 2) is equal to[
−1 3
1 −3

]
,

while its spectrum is equal to {0,−4} . We get that (1, 1, 1, 5, 2) is unstable.

We are not interested in the easy problem of checking if a given steady state is unstable,

we are interested in a closely related but very much harder problem: suppose we are given

a chemical network Ω, we would like to check if there exist steady states of Ω that are

unstable.

We would like to solve this latter problem as efficiently as possible. This means that

we are looking for a polynomial time algorithmic solution.

To begin with, we notice that the set of steady states of Ω is a semialgebraic set defined

by a finite list of polynomial equalities (the steady state conditions). Moreover, we have

that the set of unstable states is a subset of the aforementioned algebraic variety that is

defined by an algebraic condition: the non-negativity of the Jacobian eigenvalues. The

latter implies that our two problems can be solved with the algorithmic tools provided by

computational algebraic geometry [8]. However, we have to remark that those algorithmic

tools are very inefficient in the general case (the worst case behavior of most of those

algorithmic tools is double exponential).

2 The mathematical basis of SNA: Scopes and limi-

tations

Let Ω be a chemical network, using SNA in the stability analysis of Ω corresponds to

apply a special change of coordinates. What do we gain with this change of coordinates?

Let JΩ be the (symbolic) Jacobian of Ω, the entries of JΩ are (nonlinear) polynomials

over the variables [X1] , ..., [Xn] , k1, ..., kr. One of the main gains with SNA is that all the

entries of JΩ become linear polynomials over the new system of coordinates (Clarke’s

convex coordinates). The latter implies that any linear constraint over the entries of JΩ

can be suitably translated into a linear constraint over the set of convex coordinates (see

below).
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2.1 The system of convex coordinates

Let

Ω = ({X1, ..., Xn} , {R1, ..., Rr}) ,

and suppose that for all i ≤ r the reaction Ri is equal to

c1iX1 + · · ·+ cniXn → d1iX1 + · · ·+ dniXn.

The combinatorial structure of Ω can be completely described by a n× r matrix that

is called the stoichiometric matrix of Ω, and which is denoted with the symbol SΩ. Matrix

SΩ is defined by

SΩ [i, j] = dij − cij.

This stoichiometric matrix has a companion, the kinetic matrix, which is also known

as the matrix of orders of reaction (Kirchhoff matrix). We use the symbol KΩ to denote

the latter matrix. Matrix KΩ is the r × n matrix defined by

KΩ [i, j] = cji

Definition 9 We can associate to network Ω a function RΩ : Rn
+ × Rr

+ → Rr
+ that we

call Clarke’s velocity function and which is defined by:

Given j = 1, ..., r we have that RΩ (a,b) [j] = b [j]

(∏
i≤n

(a [i])cij

)
.

Remark 10 Notice that RΩ0 is equal to
(
k1 [I]3 , k2 [I]2 [A] , k3 [I] [A]

)
, and notice that

RΩ is a vector field that collects together the r monomial terms encoding the mass-action

contribution of each one of the r reactions in Ω.

Clarke noticed (see [6]) that the nonlinear system governing the dynamics of Ω can be

written in matrix form as
dX

dt
= SΩ · RΩ (X,K) .

SΩ is a numerical matrix that does not depend on parameter values (it is the same

numerical matrix for all the states of Ω). Thus, let (a0,b0) , (a1,b1) ∈ SS (Ω) , and

suppose that RΩ (a0,b0) = RΩ (a1,b1) . We have that

dX

dt

∣∣∣∣
(a0,b0)

=
dX

dt

∣∣∣∣
(a0,b0)

.

Variational mathematics is based on the idea that the vector dX
dt

∣∣
(a,b)

completely de-

termines the dynamics of X within a small vicinity of (a,b). Then, it can be said that
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Clarke’s function is a projection that identifies steady states that are different but which

support the same type of local dynamics. Thus, if one is interested in studying the dy-

namics that occur in the vicinities of the steady states of Ω, it makes sense if he focus his

attention on the quotient RΩ (SS (Ω)).

The set SS (Ω) is a semialgebraic set that could have a quite complex nonlinear struc-

ture [3]. On the other hand, we have that RΩ (SS (Ω)) is the intersection of a linear space

and the positive orthant of Rn+r: let (a,b) ∈ Rn
+×Rr

+, the n+r-dimensional vector (a,b)

belongs to SS (Ω) , if and only if, the equality SΩ · RΩ (a,b) = 0 holds.

Notation 11 We use the symbol CΩ to denote the set RΩ (SS (Ω)) .

Theorem 12 Let 〈SΩ〉 be the linear space spanned by the rows of SΩ, and let 〈SΩ〉⊥ be

the orthogonal complement of 〈SΩ〉 . We have that CΩ is equal to the polyhedral cone{
v ∈ Rr

+ : v ∈ [SΩ]⊥
}
.

Thus, we have that the nonlinear set SS (Ω) is mapped by RΩ onto the polyhedral

cone CΩ. Moreover, this correspondence is effective.

Theorem 13 There exists a polynomial time algorithm M that computes, on input v ∈
CΩ, a steady state (av,bv) satisfying the equality

RΩ (av,bv) = v.

Proof. Let v ∈ CΩ and let us suppose that for all i ≤ r the inequality v [i] > 0 holds. We

use the latter to compute (av,bv) , the computation of (av,bv) is done in the following

way:

1. We compute the solution set of the following system of linear equations:

log (v [1]) = log (k1) + c11 log (i1) + · · ·+ cn1 log (xn)

...

log (v [r]) = log (kr) + c1r log (i1) + · · ·+ cnr log (xn) .

2. We pick a solution, say (a1, ..., an, b1, ..., br), and then we set

(av,bv) =
(
2a1 , ..., 2an , 2b1 , ..., 2br

)
.
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Notice that the above system of linear equations can be written in matrix form as

MΩ · (log (k1) , ..., log (kr) , log (x1) , ..., log (xn))> = (log (v [1]) , ..., log (v [r])) ,

where MΩ is the r × (r + n) matrix
1 0 · · · 0 c11 · · · cn1

0 1 · · · 0 c12 · · · cn2
...

...
. . .

...
...

. . .
...

0 0 · · · 1 c1r · · · cnr

 .
Then, it is clear that our system of linear equations has a nonempty set of solutions

whose dimension is equal to the column rank of KΩ. The latter implies that the above

procedure can be effectively executed.

Let S = {i ≤ r : v [i] = 0} and suppose that this set is nonempty. We set ki = 0 for

all i ∈ S, and we solve the system

v [j] = kj · [X1]c1j · · · · · [Xn]cnj , j /∈ S.

To do the latter we proceed exactly as above, the theorem is proved.

Conclusion 14 We can sample the set SS (Ω) , provided that we can sample the set CΩ.

The set CΩ has a pleasant polyhedral structure, and it means that any element of CΩ

is a nonnegative linear combination of extreme rays [9]. Thus, given a minimal spanning

set of extreme rays for CΩ, say the set v = {v1, ..., vs}, we can define a bijection Coordv :

Rs
+ → CΩ as follows

Coordv (j1, ..., js) = j1v1 + · · ·+ jsvs.

The bijection Coordv determines a system of convex coordinates for CΩ : given w ∈ CΩ,

its tuple of convex coordinates is the s-tuple Coord−1
v (w) .

We can use the latter to sample the set CΩ as well as the set SS (Ω). To this end we

proceed as follows:

1. Compute a minimal spanning set for the cone CΩ, say the set v = {v1, ..., vs}.

2. Compute a sample j1, ..., jK ∈ Rs
+.

3. Compute Coordv (j1) , ..., Coordv (jK) .

4. Compute samples of the sets R−1
Ω (Coordv (j1)) , ...,R−1

Ω (Coordv (jK)) .
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2.2 An illustrative and trivial example

Let us use network Ω0 to illustrate the previous concepts.

The reduced stoichiometric matrix SΩ0 is equal to

[
−3 1 −1

]
,

and a minimal spanning set for the polyhedral cone CΩ0 is given by the vectors (1, 3, 0)

and (0, 1, 1) . This means that the complex 5-dimensional set SS (Ω0) is mapped by RΩ0

onto the infinite triangle spanned by those two vectors. If we choose nonnegative values

for j1, j2, we can be sure that

j1 · (1, 3, 0) + j2 · (0, 1, 1)

is an element of CΩ0 that represents an equivalence class of steady states. We can use the

latter to sample the set SS (Ω0), we proceed in the following way:

1. Pick a tuple (j1, j2) ∈ R2
+ (for instance j1 = 1 and j2 = 2).

2. Compute the corresponding convex combination of extreme rays (in our case we

compute 1 · (1, 3, 0) + 2 (0, 1, 1)).

3. Compute the solution set of the linear system

0 = log (k1) + 3 log (i)

log (5) = log (k2) + 2 log (i) + log (a)

1 = log (k3) + log (i) + log (a) .

4. Pick an element, say
(̂
i, â, k̂1, k̂2, k̂3

)
, of the set computed in the previous step (for

instance the vector (0, 0, 0, log (5) , 1)).

5. Compute the vector
(

2̂i, 2â, 2k̂1 , 2k̂2 , 2k̂3

)
(in our case we compute the vector

(1, 1, 1, 5, 2)).

Given a chemical network Ω, we can proceed as above and use Clarke’s projection

to define a system of convex coordinates for the set SS (Ω) . Moreover, we can use this

system of coordinates to sample the set SS (Ω) .
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2.3 Clarke’s factorization

Let Ω be a chemical reaction network, the applicability of Clarke’s formalism in the

stability analysis of Ω relies on the following two facts:

1. The pleasant polyhedral structure of the set RΩ (SS (Ω)) .

2. Clarke’s factorization (see Theorem 15, and see [6]).

Theorem 15 Let Ω = ({X1, ..., Xn} , {R1, ..., Rr}) be a chemical reaction network, let

(a,b) ∈ SS+ (Ω) , and let JΩ (a,b) be the Jacobian matrix at the state (a,b), we have

that

JΩ (a,b) = HΩ (a,b) ·


1

a[1]
0 · · · 0

0 1
a[2]

· · · 0
...

...
. . .

...
0 0 · · · 1

a[n]

 ,

where HΩ (a,b) is equal to

SΩ ·


RΩ (a,b) [1] 0 · · · 0

0 RΩ (a,b) [2] · · · 0
...

...
. . .

...
0 0 · · · RΩ (a,b) [r]

 ·KΩ.

Recall that JΩ is a matrix-valued function. We use the symbol JΩ �SS+(Ω) to denote

the restriction of the latter function to the set SS+ (Ω) . We can use Clarke’s factorization

to express the function JΩ �SS+(Ω) in the system of convex coordinates.

To begin with we have to fix a set of extreme currents (and the corresponding system

of convex coordinates). Thus, suppose we fix the set {v1, ..., vs} . We use the symbol EΩ

to denote the r × s matrix whose rows are the vectors v1, ..., vs; and we use the symbol

∆ (EΩ) to denote the diagonal (symbolic) matrix defined by

∆ (EΩ) [i, i] =
s∑

i=1

vi [k] · jk,

here, we use the symbols j1, ..., js to represent the convex coordinates determined by

v1, ..., vs.

Definition 16 We use the symbol HΩ to denote the symbolic matrix defined by

HΩ = SΩ ·∆ (EΩ) ·KΩ.
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Clarke proved that if one switches to the system of convex coordinates, then the

function JΩ �SS+(Ω) becomes equal to HΩ ·∆, where ∆ is the symbolic matrix
1

[X1]
0 · · · 0

0 1
[X2]

· · · 0
...

...
. . .

...
0 0 · · · 1

[Xn]

 .

Then, he noticed that the scaling matrix ∆ has few influence on the stability properties

of JΩ, and he concluded that one can focus the stability analysis on the matrix HΩ [6].

The main gain, if we do the latter, is a strong degree reduction: notice that the entries of

the latter matrix are linear polynomials over the set of convex coordinates.

Let us illustrate the above facts using network Ω0 once again. Recall that SΩ0 is equal

to [
−3 1 −1
3 −1 1

]
while the matrix KΩ0 is equal to  3 0

2 1
1 1

 .
We know that a minimal spanning set for Ω0 is the set

{(1, 3, 0) , (0, 1, 1)} ,

and it means that the matrix EΩ0 is equal to 1 0
3 1
0 1

 .
The Jacobian matrix is equal to[

−9k1 [I]2 + 2k2 [I] [A]− k3 [A] k2 [I]2 − k3 [I]

9k1 [I]2 − 2k2 [I] [A] + k3 [A] −k2 [I]2 + k3 [I]

]
,

The matrix ∆ (EΩ0) is equal to j1 0 0
0 3j1 + j2 0
0 0 j2

 ,
and according to Clarke’s factorization, the matrix-valued function JΩ0 �SS+(Ω0) is equal

to [
−3 1 −1
3 −1 1

]
·

 j1 0 0
0 3j1 + j2 0
0 0 j2

 ·
 3 0

2 1
1 1

 · [ 1
[I]

0

0 1
[A]

]
.
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Clarke’s factorization allows us to focus on the matrix

HΩ =

[
−3 1 −1
3 −1 1

]
·

 j1 0 0
0 3j1 + j2 0
0 0 j2

 ·
 3 0

2 1
1 1

 ,
which is equal to [

6j1 + 3j2 3j1

−6j1 − 3j2 −3j1

]
Observe that the entries of the latter matrix are linear polynomials over the variables

j1, j2, while the entries of JΩ0 are 3-degree polynomials over the variables [I] , [A] , k1, k2

and k3. Thus, we get an important degree reduction if we switch to the system of convex

coordinates.

Clarke’s stoichiometric network analysis is the proposal of studying the stability prop-

erties of chemical networks using the convex coordinates of the current cone instead of

the concentration coordinates associated to the symbolic Jacobian. Clarke’s factorization

is the bridge connecting those two coordinate systems: one can analyze the linear matrix

HΩ instead of analyzing the nonlinear matrix JΩ.

2.4 The fundamental trade–off

There are two main gains with stoichiometric network analysis:

1. Extreme currents of CΩ are in correspondence with the minimal subnetworks (re-

action pathways) of Ω [7]. The latter implies that critical parameters in the veloc-

ity space are in correspondence with critical reaction pathways. Thus, when one

performs the stability analysis in the velocity space, he is simultaneously doing a

structural analysis of the network.

2. The entries of the Jacobian matrix get transformed into linear polynomials over the

set of convex coordinates.

We have to pay attention to the prize that we are paying for that. Constructing a

set of convex coordinates for CΩ allows us to control and sample the latter set, and, as

we showed before, it allows us to sample the set SS (Ω) . However, the computation of

the extreme currents, that are necessary for the construction of the system of convex

coordinates, is a hard intractable problem [4]. Thus, we are reducing dimensionality at

the cost of solving a hard intractable problem. This is the fundamental trade-off behind

SNA. Can we avoid this latter computation?
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We want to search the set constituted by all the unstable states of Ω. The instability

condition is a highly nonlinear condition that involves the determinant of the Jacobian

matrix as well as other high order subdeterminants of this matrix [17]. Then, we cannot

use linear programming to analyze this condition over the cone CΩ : the determinant of HΩ

is a polynomial of degree n over the set of convex coordinates. However, there is a special

scenario where SNA reaches its algorithmic potential, namely: the stability condition is

given by a finite set of inequalities that are linear with respect to the entries of JΩ. Notice

that the latter type of inequalities can be expressed as linear inequalities over the set of

convex parameters. Thus, in this latter case, one can use the tools of linear programming

and convex geometry to carry out the intended analysis.

In the remainder of this paper we will study a problem that is related to the stability

analysis of biochemical networks, and which fits well with the above second scenario.

3 Using SNA: Chiral networks and biological

homochirality

The homochirality of biomolecules is one of the most intringuing phenomena related to

the chemistry of life (see [14], [5] and the references therein). We show, in the remainder

of this paper, that one can effectively use SNA in the mathematical analysis of network

models of biological homochirality.

Definition 17 Suppose that

Ω = ({L,D,X3, ..., Xn} , {R1, ..., Rr})

is a chemical network and suppose that L and D represent a pair of enantiomeric species.

We say that Ω is a chiral network, if and only if, species L and D cannot be distinguished

within the network, that is:

If the reaction Ri is equal to

aL+ bD + c3X3 + · · ·+ cnXn → a∗L+ b∗D + d3X3 + · · ·+ dnXn,

then there exists j ≤ r such that Rj is equal to

bL+ aD + c3X3 + · · ·+ cnXn → b∗L+ a∗D + d3X3 + · · ·+ dnXn.

We say, in the latter case, that reactions Ri and Rj are dual reactions.
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Remark 18 If the equalities a = b and a∗ = b∗ hold, we say that Ri is self-dual since it

is equal to its dual reaction.

Let

Ω = ({L,D,X3, ..., Xn} , {R1, ..., Rr})

be a chiral network. The set {R1, ..., Rr} can be decomposed as a disjoint union of pairs,

where each pair is either a pair of dual reactions or a self-dual pair (a pair constituted by

a self-dual reaction that is listed twice). From now on we assume that r = 2m, and we

assume that

{R1, ..., Rr} = {RL1, RD1, ..., RLm, RDm} ,

where for all i ≤ m the pair (RLi, RDi) is a dual (self-dual) pair.

Definition 19 We say that a steady state (a,b) is racemic, if and only if, the following

two conditions are satisfied:

1. The equality a [1] = a [2] holds.

2. For all i ≤ m the equality b [2i− 1] = b [2i] holds.

It is important to remark, at this point, that the symmetry constraint fulfilled by

chiral networks is related to the supposed indiscernibility of enantiomers: when present

in a symmetric environment, enantiomers have identical chemical and physical properties

except for their ability to rotate plane-polarized light by equal amounts but in opposite

directions (although the polarized light can be considered an asymmetric medium) [14].

Definition 20 We say that a chiral network exhibits chiral amplification, if and only if,

there exist racemic steady states, which, after being perturbed, give place to states that

exhibit a large gap between the concentrations of the two enantiomeric species.

Remark 21 Chiral amplification dynamics are also called spontaneous mirror symmetry

breaking in the related literature (see [13], [11], [15] and the references therein).

We are interested in network models of enantioselective synthesis, which is the term

that is used to designate all the chemical mechanisms that, acting on symmetric (achiral)

environments, can produce homochiral compounds from racemic ones. Notice that any

model of enantioselective synthesis must exhibit chiral amplification.

Let us consider an example of a chiral network. Frank network is the network

ΩF = ({L,D,A} ; {R1, R2, R3})

where:
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1. R1 is equal to L+ A→ 2L,

2. R2 is equal to D + A→ 2D and

3. R3 is equal to L+D → 2A.

Notice that ΩF is a chiral network: R1 and R2 are dual reactions, and R3 is a self dual

reaction (a = b = 1 and a∗ = b∗ = 0). An equivalent presentation of ΩF is given by the

pair

({L,D,A} ; {RL1, RD1, RL2, RD2}) ,

where R1 = RL1, R2 = RD1 and R3 = RL2 = RD2.

From now on we identify Frank network with this second pair that includes four

reactions.

Remark 22 Network ΩF was the first and most elementary model of enantioselective

synthesis proposed in the literature [10].

Recall that we are looking for a mathematical characterization of the chiral networks

admitting chiral amplification. The intended characterization must yield an efficient al-

gorithm for the recognition of those networks.

3.1 Frank inequality and Frank region

Let Ω be a chiral network, and let (a,b) be a racemic steady state, we say that it produces

chiral amplification (chiral symmetry breaking or mirror symmetry breaking ), if and

only if, small perturbations of (a,b) trigger dynamics that produce a non-negligible gap

between the concentrations of the two enantiomers. There exists an algebraic condition

that characterizes the racemic states of Ω that can produce chiral amplification (see [3]

and [1]).

Theorem 23 Let Ω be a chiral network, let (a,b) be a racemic state of Ω, and let JΩ (a,b)

be the Jacobian matrix at state (a,b) . State (a,b) can produce chiral amplification, if and

only if, the inequality

JΩ (a,b) [1, 1]− JΩ (a,b) [1, 2] ≥ 0

holds

Remark 24 We use the term Frank inequality to denote the above inequality. Notice that

Frank inequality is a linear inequality over the entries of JΩ. However, if we work in the
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system of concentration coordinates, this linearity is just apparent: most of the entries of

JΩ are nonlinear polynomials over the concentration variables [L] , [D] , [X3] , ..., [Xn] .

Notation 25 We use the symbol SSra (Ω) to denote the subset of SS (Ω) constituted by

all the racemic states.

Definition 26 Let Ω be a chiral network, the Frank region of Ω is the set

F (Ω) = {(a,b) ∈ SS (Ω) : JΩ (a,b) [1, 1]− JΩ (a,b) [1, 2] ≥ 0} .

Remark 27 If F (Ω) ∩ SSra (Ω) = ∅, then the steady states of Ω cannot produce chiral

amplification [16].

Definition 28 We say that Ω is a feasible model of enantioselective synthesis, if and only

if, the set F (Ω) ∩ SSra (Ω) is nonempty.

3.2 The problem

We study the following algorithmic problem.

Problem 29 Check-and-Sample

• Input: Ω, where Ω is a chiral network.

• Problem: check if Ω is a feasible model of enantioselective synthesis.

Let Ω be a network. We observe that F (Ω) ∩ SSra (Ω) is defined by a finite list of

polynomial constraints: the steady state equations, Frank inequality, the non-negativity

conditions and the racemic condition. The sets defined by finite lists of polynomial con-

straints are called semialgebraic sets (see [3]). The good thing about semialgebraic sets

is that there exist algorithms which, given a finite list of polynomial constraints, check if

the set defined by those constraints is nonempty and, in that case, compute a sample [8].

However, all those algorithms are inefficient (their running time is double exponential)

and hard to implement.

Can one exploit the special structure exhibited by the semialgebraic definition of F (Ω)

in order to construct an efficient algorithmic solution to the above problem? The answer

to the latter question is positive, and we will exhibit a polynomial time algorithm solving

the above problem. We use stoichiometric network analysis and the related velocity

coordinates to develop such an algorithm. It is important to remark that there is some

previous work related to the application of SNA in the study of biological homochirality [2].
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3.3 A check–and–sample algorithm

Let

Ω = ((I1, I2, X3, ..., Xn) , (RL1, RD1, ..., RLm, RDm))

be a chiral network. We want to check if there exist racemic states of Ω that are positive

and which satisfy Frank’s inequality. We have to take into account the following fact:

suppose we compute a tuple of convex coordinates, say the tuple (j1, ..., js), such that

R−1
Ω (j1v1 + · · ·+ jsvs)∩F (Ω) is nonempty. It could happens that R−1

Ω (j1v1 + · · ·+ jsvs)

does not contain racemic states.

We have to focus on the subset of CΩ that is the image of SSra (Ω) under the function

RΩ.

Definition 30 The set of racemic velocities is the set

CraΩ =
{
v ∈ CΩ : R−1

Ω (v) ∩ SSra (Ω) 6= ∅
}
.

On the other hand, we define the racemic cone of Ω as the set

C∗Ω = CΩ ∩ 〈r1, ..., rm〉⊥ ,

where ri is the vector defined by

ri [l] =


0 if l 6= 2i, 2i− 1
−1 if l = 2i

1 if l = 2i− 1
.

We have

Theorem 31 C∗Ω = CraΩ .

Proof. Let us prove the containment C∗Ω ⊆ CraΩ .

Let v ∈ C∗Ω, we have that v is a 2m-dimensional vector satisfying the conditions

v [2i− 1] = v [2i] ≥ 0, i = 1, ...,m.

We show that R−1
Ω (v) ∩ SSra (Ω) is nonempty. To do the latter we have to compute

a tuple

([L] , [D] , [X3] , ..., [Xn] , r1, s1, ..., rm, sm)

of nonnegative reals satisfying the equalities

[L] = [D] , i = 1, ..., k; and

rj = sj, j = 1, ....,m,
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and such that for all i ≤ m the equalities

v [2i− 1] = ri · [L]c1,2i−1 · [D]c2,2i−1 · [X3]c3,2i−1 · ... · [Xn]cn,2i−1

v [2i] = si · [L]c1,2i · [D]c2,2i · [X3]c3,2i · ... · [Xn]cn,2i

also hold.

Set hi = v [2i− 1] = v [2i].

Recall that RLi and RDi are dual reactions. We have that the equalities

c1,2i−1 = c2,2i, i = 1, ...,m;

c2,2i−1 = c1,2i, i = 1, ...,m and

cl,2i−1 = cl,2i, l = 3, ..., n

hold. Then, it suffices if we compute a tuple

([L] , [X3] , ..., [Xn] , r1, ..., rm)

satisfying the equalities

hi = ri · [L]c1,2i−1+c2,2i−1 · [X3]c3,2i−1 · ... · [Xn]cn,2i−1 ,

and hence we set

[D] = [L] and si = ri for all i ≤ m.

It is easy to compute the latter tuple. The theorem is proved.

Remark 32 Notice that CraΩ is the interception of two polyhedral cones.

The above remark implies that CraΩ is a polyhedral cone. Then, we have that CraΩ is

spanned by a finite set of extreme rays.

Definition 33 Let {v1, ..., vrs} be a minimal spanning set of extreme rays for CraΩ , we say

that {v1, ..., vrs} is a minimal spanning set of racemic currents for Ω.

The set {v1, ..., vrs} can be used to construct a system of convex coordinates for CraΩ :

any point of CraΩ can be uniquely expressed as a positive combination of v1, ..., vrs.

Notation 34 We use the symbols j1, ..., jrs to denote the convex coordinates of CraΩ de-

termined by this set of extreme rays.

Next theorem is an easy corollary of Theorem 31.
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Theorem 35 Let j ∈ Rrs
+ , we have that

R−1
Ω (j [1] · v1 + · · ·+ j [rs] · vrs) ∩ SSra (Ω) 6= ∅.

Moreover, if (a,b) ∈ SSra (Ω) there exists j ∈ Rrs
+ such that

j [1] · v1 + · · ·+ j [rs] · vrs = RΩ (a,b) .

The above theorem tells us that we can work with the cone CraΩ exactly as we worked

with CΩ. It is important to remark that:

1. One can compute a set of racemic currents for any chiral network Ω.

2. Given the computed set of racemic currents, say the set {v1, ..., vrs} , and given

(a,b) ∈ SSra (Ω), one can effectively compute the convex coordinates of (a,b) .

3. Given j ∈ Rrs, one can effectively sample the set

R−1
Ω (j [1] · v1 + · · ·+ j [rs] · vrs) ∩ SSra (Ω) .

Remark 36 Notice that the containment CraΩ ⊆ CΩ always holds.

Let us consider the case of network ΩF. The set CΩF
is equal to the set

{(k, k, k, k) : k > 0} , while the set CraΩF
is equal to

CΩF
∩ 〈(1,−1, 0, 0) , (0, 0, 1,−1)〉⊥ .

We get, in this special case, that CΩF
is equal to CraΩF

.

On the other hand, there are networks for which the containment is strict. Let n ≥ 2,

we use the symbol Ωn to denote the network

({L,D} , {RL1, RD1, ..., RLn, RDn}) ,

where given i ≤ n the reaction RLi is equal to iL → iD (and RDi is equal to the dual

reaction iD → iL). We have that

CΩn = 〈(−1, 1, 2,−2, ...,−n, n)〉⊥ and

CraΩn
= Cn ∩ 〈w1, ..., wn〉⊥ ,

where wi is equal to −e2i−1 + e2i, (here we use the symbol ej to denote the j-th canonical

vector of R2n). It is easy to check that CraΩn
⊂ CΩn .
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Definition 37 We use the symbol Era
Ω to denote the matrix

[v1, · · · , vrs] ,

whose columns are the racemic currents v1, ..., vrs ∈ R2m.

Any element of CraΩ is a convex combination of racemic currents, and it means that

given v ∈ CraΩ , there exists jv ∈ Rrs
+ such that the equality

v = Era
Ω · jv

holds.

Definition 38 We use the symbol ∆ra (a,b) to denote the 2m × 2m diagonal matrix

defined by

∆ra (a,b) [i, i] =
rs∑
r=1

vr [i] · jv [r] ,

where v = RΩ (a,b) .

Recall that the symbolic Jacobian of Ω is a function JΩ : SS (Ω) → Mnn (R) that

assigns to each steady state (a,b) a numerical n× n matrix, the matrix JΩ (a,b) . If we

restrict JΩ to SSra (Ω) , we can try to express this latter function in the system of convex

coordinates determined by v1, ..., vrs. To begin with we have

Theorem 39 Let (a,b) ∈ SSra (Ω) , and suppose that for all i ≤ n the inequality a [i] > 0

holds, we have that

J(a,b) = SΩ ·∆ra (a,b) ·KΩ ·


1

a[1]
0 · · · 0

0 1
a[2]

· · · 0
...

...
. . .

...
0 0 · · · 1

a[n]

 .

Proof. Let v be equal to RΩ (a,b) . We know that v can be written as

Era
Ω · jv,

where jv is the vector of convex coordinates of (a,b) .

Let eij be equal to Era
Ω [i, j] , we have that for all i ≤ 2m the equality

v [i] =
rs∑
k=1

jv [k] · eik
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holds. We get that

SΩ ·∆ra (a,b) ·KΩ = SΩ · diag (v) ·KΩ,

where diag (v) is equal to
RΩ (a,b) [1] 0 · · · 0

0 RΩ (a,b) [2] · · · 0
...

...
. . .

...
0 0 · · · RΩ (a,b) [2m]

 .

Then, we invoke Clarke’s factorization (Theorem 15) to conclude that

J(a,b) = SΩ ·∆ra (a,b) ·KΩ ·


1

a[1]
0 · · · 0

0 1
a[2]

· · · 0
...

...
. . .

...
0 0 · · · 1

a[n]

 .

Definition 40 We use the symbol ∆ (Era
Ω ) to denote the diagonal (symbolic) matrix de-

fined by

∆ (Era
Ω ) [i, i] =

rs∑
r=1

vr [i] · jr.

Definition 41 We use the symbol Hra
Ω to denote the symbolic matrix defined by

SΩ ·∆ (Era
Ω ) ·KΩ.

Moreover, given j ∈ Rrs, we use the symbol Hra
Ω (j) to denote the evaluation of Hra

Ω at

j.

Theorem 42 Let Ω be a chiral network, we have:

1. Let SSra
+ (Ω) be the subset of SSra (Ω) constituted by all the positive states of the

latter set. The restriction of JΩ to SSra
+ (Ω) can be expressed as

Hra
Ω ·



1
[L]

0 0 · · · 0

0 1
[L]

0 · · · 0

0 0 1
[X3]

· · · ...
...

...
...

. . .
...

0 0 0 · · · 1
[Xn]

 .

2. Let (a,b) ∈ SSra
+ (Ω) , and let j(a,b) be its tuple of convex coordinates. We have that

(a,b) satisfies Frank inequality, if and only if, the inequality

Hra
Ω

(
j(a,b)

)
[1, 1]−Hra

Ω

(
j(a,b)

)
[1, 2] ≥ 0

holds.
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Proof. We prove the second item, the first one is a corollary of Theorem 39.

To prove the second item we only have to notice that

J(a,b) [1, 1] =

〈
H1 |

(
1

[L]
, 0, ..., 0

)〉
and

J(a,b) [1, 2] =

〈
H1 |

(
0,

1

[L]
, 0, ..., 0

)〉
,

where H1 is equal to the first row of Hra
Ω

(
j(a,b)

)
. The theorem is proved.

We get that the linear inequality

Hra
Ω [1, 1]−Hra

Ω [1, 2] ≥ 0,

is the translation of Frank’s inequality to convex coordinates. Recall that we are interested

in sampling the set F (Ω) ∩ SSra (Ω) . Thus, we have to sample the set

F con (Ω) =
{
j ∈ Rrs

+ : Hra
Ω (j) [1, 1]−Hra

Ω (j) [1, 2] ≥ 0
}
.

To do the latter, we use the polyhedral definition of the set F con (Ω) . The sampling

algorithm goes as follows:

Algorithm 43 (CSF: Clarke Sampling of Frank States)

Algorithm CSF works, on input

Ω = ({L,D,X3, ..., Xn} , {RL1, RD1, ..., RLm, RDm} , l) ,

as follows:

1. Compute a minimal spanning set for the set CraΩ .

2. Compute the matrices SΩ, KΩ, ∆ (Era
Ω ) and Hra

Ω .

3. Use the polyhedral definition of F con (Ω) to compute a l-sample of this set.

4. Let j be an element of the computed sample, sample the set

R−1
Ω (j [1] · v1 + · · ·+ j [rs] · vrs) ∩ SSra (Ω) .

We have to observe that this algorithm is inefficient since it forces up to compute a

spanning set for the polyhedral cone CraΩ . We ask: can we overcome the computation of

the racemic currents?
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3.4 Linear programming

In the previous section we sketched a method for sampling the set F (Ω) ∩ SSra (Ω).

However, we cannot consider this algorithm as the final solution of our problem since it is

an exponential time algorithm. We have already detected the problem: the computation

of the racemic currents. Therefore we asked: can we overcome the explicit computation

of those extreme currents?

Notice that our challenge is similar in nature to the challenge that one has to face

when he is solving a linear programming problem. Linear programming teach us that

given a convex polyhedra Φ, one can compute many useful things related to Φ without

computing its extreme rays. We can, for instance, compute the maximum of any linear

functional defined over Φ.

Let FΩ : SSra (Ω)→ R be the Frank Function defined by

FΩ (a,b) = J(a,b) [1, 1]− J(a,b) [1, 2] .

Observe that our problem reduces to determine if function FΩ takes nonnegative val-

ues. To do the latter, we can compute the maximum of FΩ over the set SSra (Ω) . The

latter problem seems similar to a linear programming problem. However, we have to take

into account that:

1. SSra (Ω) is not polyhedral.

2. Function FΩ is not linear.

If we switch to the system of convex coordinates, the set SSra (Ω) becomes suitably

represented by the polyhedral cone Rrs
+ , and the function FΩ (now defined as Hra

Ω [1, 1]−
Hra

Ω [1, 1]) becomes linear. Unfortunately, we cannot switch to this latter system of co-

ordinates (given that we want to avoid the computation of the racemic currents). What

can be done?

There is an intermediate system of coordinates that, so far, we have not used, it is the

system of velocity coordinates of the space Rrs. In this latter system of coordinates the set

SSra (Ω) is suitably represented by the polyhedral cone CraΩ . Then, it remains to compute

a suitable linear expression for FΩ with respect to this latter system of coordinates.

Set

RΩ
1 = {j ≤ 2m : d1j − c1j, c1j 6= 0} and

RΩ
2 = {j ≤ 2m : d1j − c1j, c2j 6= 0} .
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Let (a,b) ∈ SSra
+ (Ω) , we have that

J(a,b) [1, 1] =
1

a [1]

∑
j∈RΩ

1

c1j · (d1j − c1j) · b [j] · a [1]c1j · · · · · a [n]cnj and

J(a,b) [1, 2] =
1

a [2]

∑
j∈RΩ

2

c2j · (d1j − c1j) · b [j] · a [1]c1j · · · · · a [n]cnj .

If we set h = a [1] = a [2] , we get that

FΩ (a,b) =
1

h

∑
j∈RΩ

1

c1j · (d1j − c1j) · b [j] · a [1]c1j · · · · · a [n]cnj

−1

h

∑
j∈RΩ

2

c2j · (d1l − c1l) · b [j] · a [1]c1j · · · · · a [n]cnj .

Then, we have that FΩ is suitably represented by the expression

fΩ ([I] , y1, ..., y2m) =
1

[I]

∑
j∈RΩ

1

c1j · (d1j − c1j) · yj −
∑
l∈RΩ

2

c2l · (d1l − c1l) · yl

 ,

that involves the velocity variables y1, ..., y2m as well as the concentration variable [I] .

Set

FΩ (y1, ..., y2m) =
∑
j∈RΩ

1

c1j · (d1j − c1j) · yj −
∑
l∈RΩ

2

c2l · (d1l − c1l) · yl.

We get that:

Lemma 44 Frank Function FΩ takes nonnegative values over SSra (Ω) , if and only if,

the function FΩ (y1, ..., y2m) takes nonnegative values over CraΩ .

Remark 45 Notice that FΩ (y1, ..., y2m) is a linear function.

Set

KΩ =

{
v ∈ CraΩ :

∑
i≤s

v [i] ≤ 1

}
.

We get that

Lemma 46 Function FΩ (y1, ..., y2m) takes nonnegative values over CraΩ , if and only if,

the quantity

mΩ = max {FΩ (y1, ..., yr) : (y1, ..., yr) ∈ KΩ}

is nonnegative.
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Altogether we get a reduction of our problem to linear programming:

Let Ω be a chiral network, we have that F (Ω)∩ SSra
+ (Ω) is nonempty, if and only if,

the quantity mΩ is positive.

Remark 47 The quantity mΩ can be defined as the output of the linear program

Maximize: FΩ (y1, ..., yr) ,

Subject to the restriction: (y1, ..., yr) ∈ KΩ.

Theorem 48 There exists a polynomial time algorithm which, on input the chiral network

Ω, decides if the set F (Ω)∩SSra (Ω) is nonempty. Moreover, if F (Ω)∩SSra (Ω) 6= ∅ the

algorithm computes an element of this set.

Proof. Let

Ω = ({L,D,X3, ..., Xn} , {RL1, RD1, ..., RLm, RDm})

be a chiral network. The algorithm works, on input Ω, as follows:

1. Compute mΩ.

2. If mΩ < 0 halt and reject the input, otherwise go to step 3.

3. Use a (polynomial time) linear programming algorithm to compute a vector v ∈ K◦Ω
such that FΩ (v) ≥ 0. Sample the set R−1

Ω (v) ∩ SSra (Ω).

We get, from the previous facts, that the above algorithm is correct, and it is clear

that it runs in polynomial time.

The above algorithm can be adapted to deal with other important tasks related to

the analysis of Ω. This algorithm can be used to detect the reaction pathways of Ω that

favour chiral amplification. Let v1, ..., vrs be a minimal spanning set of racemic currents,

and let 0, a1, ..., ars be the nodes of KΩ. We can suppose that ai ∈ vi. We have that the

maximum mΩ is attained at one of those nodes, say the node ai. We can suppose that

our linear programming algorithm computes the latter node. We can also use a variant

of the simplex method to compute a sample of the set

HΩ = {aj : FΩ (aj) ≥ 0} .

Notice that the latter set is constituted by all the racemic currents of Ω that can

produce chiral amplification. Recall that any element of CraΩ is a nonnegative linear com-

bination of racemic currents. Thus, given v ∈ CraΩ there exist nonnegative reals α1, ..., αrs

such that

v = α1 · a1 + · · ·+ αrs · ars.
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We have that

FΩ (v) = α1FΩ (a1) + · · ·+ αrsFΩ (ars) ,

and we get that the inequality FΩ (v) > 0 cannot hold if the the intersection

{i ≤ rs : αi > 0} ∩ {i ≤ rs : FΩ (ai) ≥ 0}

is empty.

The latter fact allows us to claim that HΩ is the homochirality core of Ω. SNA tells

us that the nodes of KΩ are in a natural correspondence with the subnetworks (reaction

pathways) of Ω (see [2]). Thus, it seems that it is straightforward to adapt our algorithm

in order to get a software tool which, on input Ω, computes all the subnetworks of Ω that

favour the emergence of homochirality (the homochirality core of Ω).

4 Concluding remarks

The algorithmic strength of SNA is strongly restricted by the hardness of computing the

extreme currents. SNA promises to reduce the stability analysis of chemical reaction net-

works to linear programming, but this promise is not fulfilled, and the promised reduction

can only be achieved in some very specific scenarios. We could find a scenario where the

linearization of the Jacobian matrix can be fully exploited, given us the opportunity of

designing a polynomial time algorithm based on SNA. However, it should be clear that

this scenario is specific and very restricted.
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