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1  Introduction 
The rapid increment of biological sequences in next generation sequencing (NGS) techniques 

has highlighted the key role of multiple genome alignment in comparative structure and 

function analysis of biological sequences. Sequence alignment is usually the first step 
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Multiple genome alignment (MGA) has become widely used in many different areas in 
bioinformatics from finding sequences family, detecting structural homologies of genomes, and 
predicting functions of genomes to predict patient’s diseases by comparing DNAs of patients in 
disease discovery. The potential of graphs to intuitively represent all aspects of genome alignments 
led to the development of graph-based approaches for genome alignment. These approaches 
construct a graph from a set of local alignments, and derive a genome alignment through 
identification and removal of graph substructures that indicate errors in the alignment. This review 
summarizes the presented graphical representation of multiple alignment in large scales and their 
abilities to represent alignment information and also the role of graph data structures to assist in the 
development of future genome alignment tools. 
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performed in bioinformatics to understand the molecular phylogeny of an unknown sequence. 

This is done by aligning the unknown sequence with one or more known database sequences 
to predict the common portions as the residues perform functional and structural role tend to 

be preserved by natural selection in the course of evolution [1]. The sequences may be 

nucleotide sequences (DNAs or RNAs) or amino acid sequences (Proteins). The rearrangement 
process may introduce one or more spaces or gaps in the alignment. A gap indicates a possible 

loss or gain of a residue; thus, evolutionary insertion or deletion, translocations and inversion 

events can be observed in sequence alignment.  

There are two types of sequence alignment; pairwise sequence alignment and multiple 

sequence alignment. The first type, considers two sequences at a time where as the second one 

aligns multiple (more than two) related sequences. Multiple sequence alignment is more 

advantageous than pairwise sequence alignment as it considers multiple members of a sequence 

family and thus provides more biological information. Multiple alignment is also a prerequisite 

to comparative genomic analyses for identification and quantification of conserved regions or 

functional motifs in a whole sequence family, estimation of evolutionary divergence between 

sequences and even for ancestral sequence profiling [2]. In this paper, we investigate about 

multiple genome alignment. The approach to multiple alignment can be global alignment [3] 

or local alignment [4]. Global alignment is done when the similarity is counted over the entire 

length of the sequences. Several multiple alignment techniques perform global alignment but 

difficulties arise when sequences are only homologous over local regions where clear block of 

ungapped alignment common to all of the sequences or if there is presence of shuffled domains 

among the related sequences [5]. In such cases, local alignment is performed to know the local 

similar regions among the sequences. When there is a large difference in the lengths of the 

sequences to be compared, local alignment is generally performed [6]. 

As an effective modeling, analysis and computational tool, graph theory is widely used in 

biological mathematics to deal with various biology problems like sequence comparison. There 

are several biological problems that can be treated with graph theoretical methods. In [7-22] 

you can see some mathematical methods as graphical and numerical representations for 

comparison of genomes. The graphs have proven to be powerful tools for coping with the 

complexity of genome-scale sequence alignments. For the step of selecting subsets of local 

alignments and for inducing a segmentation, graph data structures serve as a convenient tool. 

The idea is that graphs show substructures indicating errors in the alignment, thus they can 

assist in improving genome alignments. In addition, graphs provide an intuitive representation 

of similarities and changes between genomes, and so visualize alignment structures. Also by 
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having a graph data structure for a multiple genome alignment, it is possible to model colinear 

and non-colinear changes without the need of choosing a reference genome. In this 

investigation, we first, briefly introduce two categories of approaches which are frequently 

used in multiple genome alignment algorithms; exact and heuristic approaches. Then we 

describe ten data structures of commonly used graphs in terms of their abilities to represent 

alignment information.   

2  Multiple alignment Algorithms 
A wide range of computational algorithms have been applied to the multiple alignment 

problem. The purpose of a multiple alignment algorithm is to assemble alignments reflecting 

the biological relationship between several sequences. These algorithms can be broadly 

classified into exact algorithms and heuristic algorithms. In this section, we review the most 

important exact and heuristic algorithms including dynamic programming, combinatorial 

algorithms, progressive alignment and Anchor-based alignment. The exact algorithms solve 

the multiple alignment score maximization problem optimally using either natural extensions 

of the dynamic programming algorithm [23-26] or a graph theoretic formulation which 

facilitates the use of combinatorial algorithms [27-29]. In practice, however, optimal methods 

are only feasible for a few, relatively short sequences. Hence, many fast and accurate 

heuristics to solve the multiple alignment problem have been proposed. The rapid 

accumulation of sequence data demanded the development of heuristic methods that are able 

to align more sequences of greater length than the optimal methods with exponential runtime. 

For an ordinary protein alignment, the predominant heuristic strategy is called progressive 

alignment. For genomic DNA sequences, most tools use a heuristic called anchor-based 

alignment. 

2.1  Dynamic programming  
Dynamic programming (DP) is a mathematical and computational method which refers to 

simplifying a complicated problem by subdividing it into smaller and simpler components in a 

repeated manner. The dynamic programming technique can be applied to global alignments by 

using methods such as the Needleman-Wunsch algorithm [19] and local alignments by using 

the Smith-Waterman algorithm [20]. Up to 1980, the traditional multiple sequence alignment 

algorithms were only best suited for two sequences, so when it came to producing multiple 

sequence alignment with more than two sequences, it was found that completing the alignment 

manually was faster than using traditional dynamic programming algorithms [30]. Dynamic 
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programming algorithms are used for calculating pairwise, this method could be extended to 

more than two sequences however in practice it is too complex, because the time and space 

complexity becomes very large [31]. 

Dynamic programming is originally a method used in the area of optimization in mathematics 

developed by Richard Bellman in the 1940’s [30]. Dynamic programing is solving complex 

problems by breaking them into a simpler sub-problems. Problem can be divided into many 

smaller parts. Needleman and Wunsch [19] were the first to propose this method and describes 

general algorithm for sequence alignment. 

In computer science dynamic programming is a programming method based on dividing a 

problem into sub-problems. Each of the sub-problems are divided further into sub-problems 

and so on until some base case is reached. Thus a given problem can be defined by some sub 

problems. An example of dynamic programming could be presented as a table of size 𝑛	 × 	𝑚 

(for two dimensions) where the entry in [|𝑚|, |𝑛|] is the solution to the problem. In order to get 

this solution the entries[𝑚 − 1, 𝑛], [𝑚 − 1, 𝑛 − 1] and [𝑚, 𝑛 − 1] need to be calculated and so 

fourth, until the base case [0,0] is reached. Instead of calculating this recursively the table can 

just be filled from top to bottom which is called dynamic programming since each entry 

depends on the previous entries. In the following, a recursive formula according to a dynamic 

programming table for two sequences, 𝑆- and 𝑆. is presented.  

D(i, j) =	/
0																																																				if		i	 = 	0	and	j	 = 	0	

Max9D(i	 − 	1, j) + 	C, D(i	 − 	1, j	 − 	1) + 	S9S-@, S.A	B, D(i, j	 − 	1) + 	CB	; 		else	
   

In the above, 𝐷(𝑥, 𝑦) is an entry in the dynamic programming table, 𝑆(𝑆𝑥, 𝑆𝑦) is the score for 

aligning two bases (or proteins) and C is the cost for making a gap. A gap in sequence alignment 

is denoted with a ’-’. Gaps are used in alignments when the sequences do not align well with 

each other. Then one sequence can be pushed one index, by inserting a gap in it. This way the 

sequences might align better. The biological interpretation of a gap is that either a deletion or 

an insertion has happened during the evolution of one of the sequences. There are some 

boundary cases which have to be taken into account when programming the recursion. It is 

assumed that the best score is the maximum. The dynamic programming method takes 

time	𝑂	(𝑛	 × 	𝑚), like the dot matrix method where 𝑛	and 𝑚 are the lengths of the sequences.   

2.2  Combinatorial algorithms 
In applied mathematics and theoretical computer science, combinatorial optimization is a topic 

that consists of finding an optimal object from a finite set of objects. In many such problems, 
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exhaustive search is not tractable. It operates on the domain of those optimization problems, in 

which the set of feasible solutions is discrete or can be reduced to discrete, and in which the 

goal is to find the best solution. Some common problems involving combinatorial optimization 

are the travelling salesman problem, the minimum spanning tree problem, and the knapsack 

problem. Combinatorial optimization is a subset of mathematical optimization that is related to 

operations research, algorithm theory, and computational complexity theory. 

The combinatorial algorithm for multiple alignment which presented by [33], proceeds in four 

phases consisting of the following combinatorial problems: 

1. Constructing a graph of approximate overlaps between pairs of fragments. 

2. Assigning an orientation to the fragments, i.e., choosing the forward or reverse complement 

sequence for each fragment. 

3. Selecting a set of overlaps that induce a consistent layout of the oriented fragments. 

4. Merging the selected overlaps into a multiple sequence alignment, and voting on a 

consensus. 

In phase 1, overlaps are computed within the error rate that maximize a likelihood function on 

alignments. Edges in an overlap graph correspond to these alignments, and are weighted by 

likelihood. Given fragments of total length 𝑁 and error rate 𝜀 our method for computing the 

graph modeling these overlaps takes 𝑂(𝜀	𝑁	.) time. 

In phase 2, the fragments are oriented to maximize the weight of all edges in the overlap graph 

that are consistent with the chosen orientation. This sub-problem is NP-complete. An exact 

algorithm is presented that computes an optimal orientation in O(K(EV)) time for an overlap 

graph of V fragments and E edges, where 𝐾	 < 	2	P is the size of its branch-and-bound search 

tree. Also an approximation algorithm is presented that computes an orientation of weight at 

least one-half the maximum in 𝑂(𝐸	 + 	𝑉	𝑙𝑜𝑔	𝑉) time. 

In phase 3, the fragments are placed in an overlapping layout by selecting a set of edges of 

maximum total weight that form a branching which satisfy a dovetail-chain property. Finding 

such a branching is also NP-complete and in this method, an exact algorithm is presented that 

computes an optimal layout by finding a maximum weight dovetail-chain branching in 

𝑂(𝐾(𝐸	 + 	𝑉	𝑙𝑜𝑔	𝑉)) time, which 𝐾	 < 	2V  is the size of its search tree. A greedy 

approximation algorithm for this problem is well known, and in contrast finds a branching of 

weight at least one-third the maximum in 𝑂(𝐸	𝑙𝑜𝑔	𝑉) time. We further show that our approach 

naturally lends itself to producing alternate layouts, if desired. 
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In phase 4, the set of all overlaps in the graph is taken that agree with the fragment layout, and 

merge them into a multiple sequence alignment as follows. 

The alignments represented by the set of overlaps match pairs of characters from the fragments. 

Of these character pairs, we seek a subset of maximum total weight that forms a multiple 

alignment. This problem is also NP-complete, though it can be solved in time exponential in 

the maximum number of fragments that mutually overlap in the layout. Given overlaps that 
match 𝑀 pairs of characters from a layout with at most 𝐷 mutually overlapping fragments, we 

construct a multiple sequence alignment of length		𝐿, and a consensus sequence, in 𝑂(𝐷.𝐿	 +

	𝑀	 + 	𝑁) time. The set of matched pairs that forms the alignment has weight at least 2/𝐷	of 

the maximum. Since the graph theoretic formulation has a favorable combinatorial structure, it 

can be solved by methods from combinatorial optimization [34] such as integer linear 

programming (ILP). In Section 3, we will introduce the alignment graph and extended 

alignment graph which are great varieties of combinatorial optimization methods that can be 

applied to solve ILPs. One such approach that can be applied to the above graph theoretic 

model is branch-and-cut [35].  

2.3  Progressive alignment 
An important development in multiple sequence alignment has been the introduction of the 

progressive alignment approach [36]. Progressive is a heuristics approach where complex 

multiple alignment problem is separated into sub-problems which solves direct multiple 

genome alignment problem indirectly with pairwise genome alignment. This approach 

assembles all sequences progressively where best pairwise alignment is first taken into account. 

In 1984, for the first time this algorithm formulated by Hogeweg and Hesper [37]. The basic 

idea behind this approach is the construction of an approximate phylogenetic tree as a guide 

tree [36] to solve multiple alignment problem where each leaf represents a sequence to be 

aligned. Each visited internal node is associated with an MSA of the sequences in its 

corresponding subtree. Finally, multiple alignment of all considered sequences is associated 

with the root node. Progressive alignment method is used in several alignment programs such 

as  MULTAL [38-39], MAP [40], PCMA [41], MULTALIGN [42], CLUSTAL [43-44], T-

Coffee [45], KAlign [46], MUMMALS/PROMALS [47-48], and others. Among them, the 

most widely used method is ClustalW [44]. It first performs the global pairwise alignment [19] 

of the sequences and develops a distance matrix. It then builds a guide tree based on the matrix 

values. Finally, it generates a consensus alignment by gradually adding sequences following 

the guide tree where the closest sequence pairs (smallest branch length in guide tree) are aligned 
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first and thus, it gradually adds the next sequences. However, the greedy nature of these 

approaches cannot allow to modify the gaps and hence, the alignment cannot be altered in the 

later stage. There is a possibility that they can be trapped in local minima for this greediness 

[40-50].   

2.4  Anchor–based algorithms 
Anchor-based alignment or synonymously seeded alignment, has three steps: (1) the 

computation of small segment matches of high similarity shared by multiple sequences, (2) the 

ordering of these segment matches into a collinear chain of non-overlapping segment matches 

and (3) closure of gaps in-between the anchors. The main purpose of step 1 and step 2 is to 

abandon a large chunk of the possible alignment space. Only small indels are allowed within 

the anchors. Hence, the time-consuming dynamic programming is only required between the 

fixed anchors. Some programs also try to extend anchors first to the left and right to further 

reduce the search space. The initial segment matches can be, for example, maximal unique or 

exact matches [51], maximal multiple exact matches [52] and exact or hashed 𝑘-mers [53]. 

Segment matches are optionally extended and finally, the quality of a segment match is 

assessed using some weight function. Chaining algorithms [54] can be applied to compute the 

heaviest collinear chain of these segment matches. The resulting list of anchors is refined by 

applying the above procedure iteratively by using a smaller 𝑘-mer or by filling the gaps in-

between the anchors using more sensitive approaches such as pairwise dynamic programming. 

Since genomic rearrangements such as transposition, duplication or inversion are rather likely, 

novel methods try to cover at least some of these operations, for example, by computing only 

local chains [55]. 

3  Alignment graph data structures 
Data structures are one of the most important concepts in computer programming. A data 

structure is a way of storing and managing data. There are two types of data structures as linear 

and nonlinear data structures. The difference between the linear data structure and the non-

linear data structure is on the basis of the relationship between elements of data. Linear data 

structures allow traversing through the items sequentially. On the other hand, in a nonlinear 

data structure, each element is attached to one or more elements creating a relationship among 

the items. In linear data structure data is to arrange no specific order and data is arranged 

adjacently whereas in non-linear data structure data is arranged in a specific order and there is 

a relation between data. The main difference between linear and non-linear data structures is 
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that linear data structures arrange data in a sequential manner while nonlinear data structures 

arrange data in a hierarchical manner, creating a relationship among the data elements. Linear 

data structure forms a linear list where is a specific order in which elements are attached to 

each other in the data structure. Elements in linear data structure consume linear memory space 

and data elements are store in sequential manner. Also, in linear data structures memory of the 

data elements should be define at the start of the code. Array, stack, queue, linked list are 

examples of linear data structure.  Non-linear data structure arrange data in a sorted order, 

where is a hierarchical relationship in this data structure. There are roots, child, and nodes in 

non-linear data structure, and there are levels that are not available in linear data structure.  

A graph is a non-linear data structure consisting of nodes and edges. The nodes are sometimes 

also referred to as vertices and the edges are lines or arcs that connect any two nodes in the 

graph. There are many types of graphs such as directed, non-directed, connected, non-

connected, simple and multi-graph. Also the edges in graph can be weighted. Adjacent vertices, 

path, cycle, degree, connected graph, weighted graph are some important terms in the graph. 

When we talk about the application of graphs, there are some well-known examples of graph 

data structure such as computer networks, transportation system, social network graphs, 

electrical circuits and project planning. In this section, we review the structures of commonly 

used graphs to investigate their abilities to represent multiple genome alignment information. 

3.1  Alignment graph 
Each multiple alignment can be represented as an alignment graph of sequence segments as 

shown in Figure 1. Let 𝐺	 = 	 (𝑉, 𝐸) be an alignment graph data structure [40], for a set 𝑆	 =

	{S-, S., … , S^}	of n sequences, 𝐺	 = 	 (𝑉, 𝐸) is an n-partite graph for n sequences where the 

vertices represent non overlapping  sequence segments, then 𝑉	 = 	𝑉1	∪ 	𝑉2	∪ …	∪ 	𝑉n and 

each vertex 𝑣@A 	 ∈ 	𝑉𝑖 represents a sequence segment in 𝑆𝑖 of arbitrary length which covers all 

positions of the segment. Every position in S@ 	= 	 𝑆@-	𝑆@. 	…	𝑆@|d@  |	is covered by one and only 

one vertex 𝑣ij	∈ 	𝑉i , where 1 < 𝑖 < 𝑛	, 1 < 𝑗 < |S@|. An edge 𝑒	 = 	 (𝑣@g	, 𝑣Ah) ∈ 	𝐸 with 𝑖	 ≠

	𝑗 indicates that vertex 𝑣@g can be aligned with vertex 𝑣Ah	. In other words, the sequence 

substring in Si covered by 𝑣@g can be aligned without gaps to the substring in SA covered by 𝑣Ah. 

This graph structure  can be a weighted graph by edge weights that capture some kind of 

quantitative measure of alignment quality. The score of aligning 𝑣@g with 𝑣Ah is given by edge-

weight of 𝑒. A possible measure is the pairwise BLOSUM score for each two aligned segments. 
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Figure 1. An alignment graph of 3 short sequences. 

An edge in E is called an alignment edge, the alignment edges represent ungapped matches of 

sequence segments and also gaps are implicitly represented by the topology of the graph, it 

means a vertex without any outgoing edge is aligned to gaps in all other sequences [56]. For 

instance, GCTG vertex in Figure1, has no outgoing edges, so it is aligned to gaps in all other 

sequences. The alignment graph is a very compact and versatile description of an alignment. 

Large-scale alignments can be efficiently stored since long segments are represented by only a 

single vertex. Furthermore, the extension and direction of an alignment is completely defined 

by the alignment  edges. That is, the graph formulation is equally suitable to align globally 

related sequences or thousands of reads where only subsets are related by mutual overlaps. 

An alignment edge is realized by an alignment if the endpoints of the edge are placed in the 

same column of the alignment array. The subset of 𝐸	which realized by an alignment is called 

the trace [57] of this alignment. Our goal is to select the subset of edges of maximum 

cardinality. A more practical approach is to augment the alignment graph by edge weights that 

capture some kind of quantitative measure of alignment quality. The objective is then to find 

the maximum weight trace, that is, the subset of edges with maximum weight [56]. 

Given sequences 𝑆 and a corresponding alignment graph 𝐺	 = 	 (𝑉, 𝐸) with edge weights. The 

maximum weight trace problem is to find a trace 𝑇	 ⊆ 	𝐸 of maximum weight. 

The notion of a trace of two strings is a basic concept in sequence comparison which 

Kececioglu [56] generalized to multiple sequence alignment with the notion of a trace of an 

alignment graph. The relationship between multiple alignment and multi-partite graphs was 

also examined by Vingron and Pevzner [58] in the context of filtering pairwise dot-plots of a 

set of sequences. 

Maximum Trace Problem (MT) is introduced to model the final multiple alignment phase of 

DNA sequence assembly. In MT, every edge in the alignment graph has a positive weight 

representing the benefit of aligning the endpoints of the edge and the goal is to compute an 
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alignment whose trace has maximum weight. Kececioglu [56] showed that MT is NP-complete 

and developed a branch-and-bound algorithm for the problem based on dynamic programming, 

with worst-case time complexity O(k32kN) and space complexity 𝑂(𝑘𝑁), where N= ∏ |𝑆@|@ , 

which is able to solve to optimality relatively small problem instances. The maximum trace 

problem can be generalized to accommodate different scoring schemes.  

Theorem 3.1 [56] Maximum weight trace is NP-complete. 

The Generalized Maximum Trace Problem (GMT) [40] is allowed multiple edges between two 

vertices in the alignment graph 𝐺 and we can partition the edge set 𝐸 into a set 𝐷 of so called 

blocks. 

3.2  Extended alignment graph 
To analyze non-colinear changes among the input genomes, it is convenient to extend the 

alignment graph Ĝ to a mixed graph 𝐺 by adding a set of directed edges (arcs). This model is 

defined with both directed and undirected edges, so 𝐺 is a mixed graph and the set of edges 

decomposes into a set of directed adjacency edges and a set of undirected edges. Because of 

these edges, extended alignment graph is not n-partite as in its original definition. 

A mixed graph 𝐺 is a tuple (𝑉; 	𝐸	 ∪ 	𝐴), where 𝑉 is a set of vertices, 𝐸 is a set of edges and 𝐴 

is a set of arcs. A path in a mixed graph is an alternating sequence of vertices and arcs or edges. 

A path is called a mixed path if it contains at least one arc in 𝐴 and one edge in 𝐸. A mixed 

path is called a mixed cycle if and only if the first and the last vertex on the path is the same. 

Since a mixed path 𝑃 (or a mixed cycle 𝐶) is determined by the set of arcs and edges in 𝑃 

(respectively in 𝐶), we often identify paths and cycles by their set of edges and arcs. The length 

of a mixed path P (cycle 𝐶) is the number of edges and arcs it contains. The size of a mixed 

path 𝑃 (cycle 𝐶) is the number of edges in 𝐸 it contains. 

 

Figure 2. An extended alignment graph. 
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Let Ĝ	 = 	 (𝑉; 	𝐸) be an alignment graph and 𝐺	 = 	 (𝑉; 	𝐸 ∪ 𝐴) be the extended alignment graph 

according to Ĝ by adding a set of arcs which are horizontal directed edges between each vertex 

in each part of n-partite alignment graph.  

We call a mixed cycle R in G critical if all vertices related to each sequence which is in R, 

occur consecutively in R. The extended alignment graph gives us a simple way of testing 

whether its edge set represents a trace or not by simply looking for a critical mixed cycle in it 

which is proved in the following theorem. 

Theorem 3.2 [26] Let 𝐺	 = 	 (𝑉; 	𝐸 ∪ 𝐴) be an extended alignment graph, let 𝑇	 ⊆	E and 𝐺t 	=

	(𝑉; 	𝑇 ∪ 𝐴) be the extended alignment graph induced by T. Then T is a trace if and only if 

there is no critical mixed cycle in 𝐺t. 

To find a characterization of the Generalized Maximum Trace Problem (GMT) according to 

the extended alignment graph structure, if we are given a graph and a partition 𝐷 of blocks, 

using Theorem 3.2, we can formulate the GMT problem for extended alignment graph 𝐺	 =

	(𝑉; 	𝐸; 𝐻)  as follows:  

Given an extended alignment graph 𝐺	 = 	 (𝑉; 	𝐸; 𝐻) and a partition D into blocks with weights 

𝑤d	(∀𝑑	 ∈ 	𝐷). Find a set 𝑀	 ⊆ 𝐷 of maximum weight such that ⋃ 𝑑z∈{   does not induce a 

critical mixed cycle on 𝐺. 

3.3  De-Bruijn graph 
The De-Bruijn graph is a data structure, which first brought to bioinformatics as a method to 

assemble genomes from the experimental data generated by sequencing by hybridization [59]. 

It later became the base of algorithm in genome assembly that resulted in dozens of software 

tools. In addition, the De-Bruijn graphs have been used for repeat classification, de novo 

protein sequencing [60], synteny block construction, multiple sequence alignment, and other 

applications in genomics and proteomics [61]. The classical De-Bruijn graph is defined on a 

single genome string. Given a string	𝑆 = 	𝑠-𝑠.…𝑠^, the De-Bruijn graph 𝐷𝐵(𝑠-𝑠. … 𝑠^, 𝑘) is 

defined as follows: 

Each vertex in the graph is labeled by a (𝑘 − 1)-mer. The De-Bruijn graph DB(S, k) results 

from gluing identically labeled vertices in the graph whose (𝑛	 − 	𝑘	 + 	1) edges are labeled by 

𝑘-mers 𝑠-𝑠.…𝑠~, 		𝑠.𝑠�…𝑠~�-, … , and 𝑠^�~�-𝑠^�~�.…𝑠^. Implicitly, [28]. An example of a 

De-Bruijn graph for a single sequence is shown in Figure 3. 
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Figure 3. A De-Bruijn graph. 

Given genomes 𝐺𝐴 and 𝐺𝐵 (represented as sets of strings), we classify their 𝑘-mers into 3 

classes: 𝐴 (occur only in 𝐺𝐴), 𝐵 (occur only in 𝐺𝐵) and 𝐴𝐵 (occur in both	𝐺𝐴 and 𝐺𝐵). 

De-Bruijn graphs for representing an alignment are constructed by subdividing each sequence 

into overlapping 𝑘-mers, where a 𝑘-mer is a contiguous substring of length 𝑘. Two adjacent 𝑘-

mers overlap by 𝑘	 − 1 letters. Vertices are connected by an edge if there is at least one pair of 

adjacent k-mers present in one of the sequences. In other words, the (𝑘	 + 	1)-mer defined by 

two adjacent vertices must be present in one of the sequences. The edge weight usually 

indicates how often this (𝑘	 + 	1)-mer was observed.  

In a De-Bruijn graph of multiple sequences, each original input sequence is mapped to a path 

traversing the graph. Conserved subsequences are highlighted by heavy weight edges, that is, 

edges that are part of almost all sequence paths. 

3.4  A-Bruijn graphs 
Let 𝑆 be a genomic sequence of length 𝑛 and 𝐴	 = 	 (𝑎@A) be a binary 𝑛 × 𝑛 similarity matrix 

representing the set of all significant local pairwise alignments between regions from 𝑆. The 

matrix 𝐴 is defined as 𝑎@A 	= 	1	if and only if the positions i and j are aligned in at least one of 

the pairwise alignments and 𝑎@A 	= 	0 otherwise.  

Matrix 𝐴	represents an adjacency matrix of a graph which called the A-graph on 𝑛 

vertices1,… , 𝑛	, where vertices	𝑖 and 𝑗 are connected if and only if 𝑎@A 	= 	1. Let 𝑉 be the set 

of connected components of this graph and let 𝑣𝑖	 ∈ 	𝑉 be the connected component containing 

vertex𝑖	(1	 ≤ 	𝑖	 ≤ 	𝑛).  

The A-Bruijn graph 𝐺(𝑉, 𝐸) is defined as the multigraph on the vertex set 𝑉 with (𝑛 − 1) 

directed edges (𝑣	@, 𝑣	@�-) for 1 ≤ 	𝑖	 ≤ 	𝑛. an A-graph and related A-Bruijn graph are shown 

in Figure 4. The A-Bruijn graph can be considered as the Eulerian path obtained from the path 

(1, … , 𝑛) after contracting each connected component into a single vertex [62].When the matrix 

A corresponds to all starting positions of perfect alignments of length l within a genome, the 
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A-Bruijn graph corresponds to the classical De-Bruijn graph with minor technical 

modifications. However, the A-Bruijn graph is well defined for any collection of alignments. 

The A-Bruijn graphs can be viewed as weighted graphs with the weight of an edge between 

two vertices equal to the number of edges connecting these vertices. A cycle in a graph is called 

short if it has less than girth edges, where girth is a parameter. There are two types of short 

cycles in the A-Bruijn graphs: whirls and bulges. Whirls are short, oriented cycles, where all 

edges are oriented the same way. Bulges are short cycles that contain both forward and reverse 

edges. A gap of length 𝛿 in a pairwise alignment typically creates a bulge of length 𝛿	 + 	2 in 

the A-Bruijn graph. Whirls are caused by inconsistencies in pairwise alignments. Bulges and 

whirls may further aggregate into networks of bulges/ whirls that complicate the analysis of 

the A-Bruijn graph (as compared with the De-Bruijn graph) and hide the underlying repeat 

structure. The De-Bruijn graphs often can be simplified by collapsing every simple path (a 

maximal directed path in the graph satisfying the condition that all its internal vertices have 

one incoming and one outgoing edge) into a single edge. Such collapsing does not help much 

in the case of A-Bruijn graphs with numerous bulges and whirls. To produce a sensible repeat 

classification, one has to remove whirls and bulges. Such removal may sacrifice the fine details 

of some repeats in favor of revealing the mosaic structure shared by different repeat copies 

[62]. 

 

Figure 4. A-graph and A-Bruijn graph. 

To represent a multiple genome alignment as an A-Bruijn graph, given 𝑡 sequences 𝑆-, … , 	𝑆� 

of total length 𝑛 and 𝑡(𝑡 − 1)/2 pairwise alignments between these sequences, one can 

concatenate 𝑆1,… , 𝑆𝑡 into a single sequence 𝑆 of length n and compose the 𝑛	 × 	𝑛 similarity 

matrix 𝐴	from 𝑡(𝑡 − 1)/2 pairwise alignments. The only difference between the A-Bruijn 
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graph of multiple sequences 𝑆-, … , 	𝑆�	and the A-Bruijn graph of a single sequence S is that 

edge (𝑣@	, 𝑣@�-) is removed from the A-Bruijn graph of multiple sequences if positions 𝑖 and 

(𝑖	 + 	1) in 𝑆 correspond to the last and the first positions in the consecutive sequences 𝑆~ and 

𝑆~	�	-. Therefore, the A-Bruijn graph may have up to 𝑡 sources and 𝑡 sinks. 

3.5  Partial order graphs 
An algorithm for aligning some multiple sequences encoded as a partial order alignment graph 
was given in [47]. The partial order alignment-based algorithm is an extension of the traditional 
dynamic programming algorithms for sequences [31] to handle partial orders. Partial order 
alignment (POA) graphs are directed acyclic graphs (DAGs) where the sequences are encoded 
as paths. Under such a formulation, gapped alignment of a 𝑚 length sequence to a POA graph 
on 𝐸 edges takes 𝑂(𝑚𝐸) time [63]. 
The POA graphs share resemblance to genome variation graphs in the sense that the variations 
are encoded as alternative paths using additional vertices and edges. In [64], POA-based 
technique was used for aligning sequences to genome variation graphs. POA-based techniques 
are restricted to acyclic graphs whereas genome variation graphs can have cycles. To handle 
cycles, they first construct acyclic extensions of the input graphs through expensive loop 
unrolling (DAGification) steps and the alignment is then performed on the acyclic extensions. 
A 𝑘-length DAGification of a graph 𝐺	aims to compute a DAG 𝐺′ such that all paths (not 
necessarily simple) of length k or less in 𝐺 are present in 𝐺′ and vice versa. For aligning an m 
length sequence, the value of k has to be m or more. Acyclic graph extensions can have 
considerable blowup in their size. The edge and vertex blow-up factor in the worst case is 
proportional to the input sequence length. Prohibitively large size of the DAGified graph results 
in increased preprocessing and alignment time and thereby affects the overall alignment 
performance [63]. For large reference graphs, the sequence alignment follows a seed and 
extend strategy where candidate subgraphs of the reference graph with potentially large 
alignment scores are first identified [64]. The final alignment is then performed on these filtered 
subgraphs. In this case, the DAGification is restricted to these candidate subgraphs. 
 

 
Figure 5. A partial order alignment graph. 
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An individual sequence can be represented by a trivial partial order graph. Each character is 

converted to a vertex and all vertices have exactly one outgoing edge to the vertex for the 

subsequent character, except for the vertex of the last sequence character. In a MSA these 

single-sequence graphs are merged. Similar to the De-Bruijn graph, each sequence is mapped 

to a path traversing the graph but since it is a partial order graph no cycles are allowed. That 

is, the partial order graph is a directed acyclic graph. Consequently, the partial order graph 

enforces the collinearity condition and does not allow two crossing aligned regions where the 

order of characters in the sequences is not preserved. The key characteristic of the partial order 

graph is that matching sequence characters are merged to a single node whereas mismatches 

cause the graph to bifurcate. This is shown in Figure 5. 

3.6  Enredo graphs 
Let G = (V, E) be an Enredo graph structure model. This model takes two inputs, the first input 

is a set of complete genomes which comprised of a set of chromosomes. Each chromosome is 

a non-zero length linear or circular string of double-stranded DNA. And the second input is 

some short segment-groups, which each group containing two or more homologous segments. 

A segment-group is defined as a set of directed segments where the global alignment of directed 

segments is significant. Segment-groups overlap if their segments share any common positions. 

Let the term genome point anchor (GPA) be synonymous for a short segment-group containing 

two or more homologous segments, each of which is between 50 and a few hundred positions 

in length. More precisely, the second input to Enredo is a set of non-overlapping GPAs. In this 

method, generally prefer GPAs to be short because this makes it easier to avoid overlap 

between the ends of GPAs, though GPAs must necessarily be long enough for us to be 

confident of the homology relationships they contain.  

 

Figure 6. An Enredo graph structure. 

In an Enredo graph [65], there is two sets of edges; a set of directed adjacency edges E1 

(between the GPAs) and a set of undirected edges E2 (inside the GPA). Then the set of edges 

would be 𝐸	 = 	𝐸1	∪ 	𝐸2. Let ∗A and A∗ represent the two ends of a GPA A. For each A in the 

-47-



set of non-overlapping GPAs an undirected edge connects the vertices representing ∗A and A∗. 

For each segment x in a GPA A, let 𝑒(𝑥,∗ 𝐴)	denote the position in x closest in the order of the 

segment to the GPA end ∗A. Let 𝑒′(∗ 𝐴) 	=	∪ 𝑥𝑒(𝑥,∗ 𝐴). An adjacency-edge exists between 

the vertices representing two GPA ends a and b if and only if there exists a segment that defines 

a contiguous, maximal range between a member of 𝑒’(𝑎) and 𝑒’(𝑏) and this segment does not 

contain any position that is a  member of a GPA in the no overlapping GPA set, also this 

segment be <200 kb in length.  

3.7  Cactus graph 
In graph theory, a cactus graph is a connected graph which any two simple cycles have at most 

one vertex in common. To represent the common structure between substrings of homologous 

bases in a cactus structure model, we consider two types of aforementioned homology 

structure: blocks and ends. A block is formally a maximal set of maximal-length homologous 

oriented strings. Each maximal length oriented string in a block is a segment. The blocks are 
boxes containing gapless two-dimensional alignments and the ends are maximal sets of 

homologous caps. Paten et al.,[66] have defined two types of end for this graphs, block ends, 

which are the ends of blocks and stub ends, which include the previously mentioned telomeres, 

and which will also include block ends from higher level problems which we introduce multi-

level cactus graphs in the next section. 

The adjacency graph in Figure7.A is a graph with a node for every end and an adjacency edge 

between two ends if there is an adjacency, potentially containing a nonempty substring from 

the input sequence, between a cap in one of the ends and a cap in the other end, i.e., if the caps 

would abut except for a possibly non-empty intervening adjacency substring in the input 
chromosome in which they appear. Self-edges are allowed in the adjacency graph and occur 

when two homologous caps in opposite orientation share an adjacency. Multi edges are not 

included in the adjacency graph; i.e., there is at most one adjacency edge between any two 

nodes, even if there are several adjacencies between them. In this case, the adjacency edge is 

labeled with the set of adjacencies and their substrings, which uniquely pair caps between the 

ends they link. Unlike blocks, the substrings within the adjacencies of an adjacency edge are 

not assumed to be homologous and are therefore not aligned. The two ends of each block are 

also connected by an edge in the adjacency graph; these edges are called block edges and are 

labeled with the oriented set of aligned segments of the block they represent. In addition to the 

block edges, the adjacency graph also includes end edges; for each stub end, the adjacency 

graph includes one end edge that connects the node representing the stub end to a special dead-
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end node. All dead end nodes are in turn connected in a clique by unlabeled backdoor adjacency 

edges [67]. 

Figure 7. Construction of the final cactus graph from an initial adjacency graph 𝐺�	 (A), the same graph 
after the collapse of the adjacency components 𝐺-	(B) after the collapse of the three edge connected 
components 𝐺.(C) after modifications to bridge edge components to make the graph Eulerian 𝐺�(D). 

Let 𝐺� be the adjacency graph. The cactus graph is built from 𝐺� in a series of steps in thioe 

following. Also is shown in Figure 7.  

(1) Ignoring the block and end edges, we compute the connected components of 𝐺� formed by 

the adjacency edges only. These are called adjacency-connected components. All dead ends 

will be in a single component, which we call the origin component. The graph 𝐺- represents 

this decomposition of 𝐺� into the resulting adjacency-connected components (Fig. 7B). There 

is a node in 𝐺- for every adjacency-connected component in 𝐺�. The graph 𝐺- has only block 

and end edges, no adjacency edges. Two nodes 𝑋 and 𝑌 in 𝐺- representing adjacency-connected 

components in 𝐺� which are connected by an edge in 𝐺- for every block or end edge in 𝐺� from 

some 𝑥	 ∈ 	𝑋 to some 𝑦	 ∈ 	𝑌. Thus, the graph 𝐺- is formed by merging adjacency-connected 

nodes in 𝐺� and retaining only the block and end edges in the merged graph. We call the node 

in 𝐺- and subsequent graphs containing the origin component of 𝐺� the origin node. 

(2) Computing the decomposition of G1 into three-edge connected components using the linear 

time algorithm in [68]. To define this decomposition, consider that two nodes x and y in 𝐺- are 

equivalent if there is no set of up to two edges in 𝐺- which, upon removal, disconnect 𝐺- in 

such a way that there is no path from 𝑥 to 𝑦. Thus, two nodes are equivalent if it takes the 

removal of three or more edges to disconnect them. The equivalence classes of nodes are called 

Three-edge connected components. The graph 𝐺. represents this decomposition (Fig. 5C). It 

has one node for each three edge connected component. Two nodes 𝑋 and 𝑌 in 𝐺. are connected 
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by an edge for every edge in 𝐺- between some node 𝑥	 ∈ 	𝑋	and some node 𝑦	 ∈ 	𝑌. Thus, the 

graph 𝐺. is formed by merging equivalent nodes in 𝐺-. The theory of graph decomposition into 

three-edge connected components shows that 𝐺.	is in fact a cactus graph in the combinatorial 

sense. However, it is not yet the cactus graph. 

(3) Finally, to construct the cactus graph, the tree-like structures in 𝐺.	are folded in to obtain 

an Eulerian cactus graph 𝐺	 = 	𝐺�	(Fig. 5D). Formally, an edge in 𝐺., or indeed in any graph, 

is called a bridge if its removal disconnects the connected component in which it is contained. 
Consider the subgraph formed by only the bridge edges. It is easy to see that this subgraph is a 

forest, i.e., a collection of disjoint trees. In the fold-in process, for each such tree, we merge all 

leaf nodes and branching nodes into a single tree loop node. Only the non-branching internal 

nodes in the tree are left out of this merge, and appear on simple cycles emanating from the 

tree loop node, along with other cycles that were already present before this merge step. It is 

easy to see that the resulting graph 𝐺 is also a cactus graph with one origin node. In fact, every 
node is either in a unique simple cycle or is the unique intersection of two or more simple 

cycles. Thus, all the nodes in 𝐺 have an even number of edges incident upon them, i.e., are of 

even degree [66].  

3.8  Multilevel cactus graph 
In this section, an extension to the basic cactus graph is described which formed by nesting 

cactus graphs within cactus graphs. Paten et al., [67] called this graph structure, a multi-level 

cactus graph and described how it can represent progressively more detailed levels of 

alignment. This approach, allows us to define sparse cactus graphs in which only a portion of 
the genomes are aligned; for example, one might initially define a high level sparse cactus 

graph in which the blocks were composed of homologous sets of exons. All bases outside the 

exons are contained in the adjacencies. Each node in the cactus graph is a net that is built from 

some set of these adjacencies. Now, suppose we extend our notion of homology by aligning 

some of the bases that occur inside the adjacencies in the nets. It is easier to define a high-level 

cactus graph using the segments and adjacencies at the lower level. 

Essentially, an adjacency at the higher level is a thread at the lower level. Formally, let us say 

that two threads are similar if they have homologous caps in the at least one end. A group is a 

minimal set of disjoint threads that is closed under similarity, i.e., a pairwise non-overlapping 

set of threads such that there are no threads that are similar to any of those in the set that are 

not already in the set, and there is no proper subset of these threads that has this closure 

property. A group is self-contained if there is no homology between any segment in a thread in 
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the group with any segment outside of the threads in the group. Each net in a high-level cactus 

graph is a union of self-contained groups from the lower level segments and adjacencies. There 

are two kinds of groups. A link is a group in which all the caps are part of two homology classes 

and a tangle is a group in which the caps form more than two homology classes. We call a net 

whose adjacencies contain non-empty substrings of S non-terminal and conversely a net whose 

adjacencies contain only empty substrings terminal [68]. In a multi-level cactus graph, for each 

self-contained group in a net, termed a net contained group (either link or tangle), a child cactus 

graph is constructed in which: (1) Threads connecting caps from the group’s ends are treated 

as linear chromosomes. (2) The group’s ends become stub ends in the child cactus graph, and 

thus map the boundaries between the parent net and the child cactus graph. (3) Homologies 

between segments within the threads form the blocks. Then the adjacencies in the parent net 

are divided up into lower level segments and further adjacencies in the child cactus graph, 

repeating the process recursively that was used to construct the cactus graph containing the 

parent net.  

 

Figure 8. A multi-level cactus graph (A) and a multi-level cactus tree (B). 

The recursion creating child cactus graphs can be continued until all non-terminal nets have 

defined child chains and child cactus graphs, and thus all bases in S become part of a block in 

one cactus graph of the set of cactus graphs that comprise a multi-level cactus graph (Fig. 8 A). 

Just as the parent-child organization of chains and nets in a cactus graph can be represented by 

a bi-layered cactus tree, a multilevel cactus graph’s chains, nets, and net-contained groups can 
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be represented in a bi-layered multi-level cactus tree (Fig. 8 B). The chain layer of a cactus tree 

in the multi-level cactus tree contains both chain- and net-contained group nodes. 

3.9  Outerplanar graph 
Outerplanar graphs occur for the first time in the literature in Harary’s classical book [69]. In 

graph theory, a graph is outerplanar if it can be embedded in the plane such that all vertices lie 

on the outerface boundary. A graph 𝐺 is called biconnected if |𝐺| 	> 	2 and 𝐺 − {𝑢} be 

connected for every vertex 𝑢	 ∈ 	𝐺. The outerplanar graphs are a subset of the planar graphs 

and the circle graphs. The maximal outerplanar graphs, those to which no more edges can be 

added while preserving outerplanarity, are also chordal graphs and visibility graphs. There are 

some useful theorems related to outerplanar graph structure. 

Theorem 3.3. [69] A graph 𝐺 is outerplanar if and only if it contains no induced subgraph 

isomorphic to  𝐾� or	𝐾.,�	.  

Theorem 3.4.  [69] A biconnected outerplanar graph contains a unique Hamiltonian cycle. 

Theorem 3.5.  [69] Every maximal outerplanar graph of order at least 3 is biconnected. 

In [70], a construction of outerplanar graph model structure for genomic data is described 

which introduce in the following.  

 Let 𝑆	be the set of input whole genome sequences, we can assume that the input sequences be 

either linear or circular sequences. Mathematically, a sequence is just a string (likely circular) 

of symbols taken from an alphabet set. 

The whole genome base pairs alphabet set is {𝐴/𝑇, 𝑇/𝐴, 𝐶/𝐺, 𝐺/𝐶} and using sings according 

to oriented reverse complement, we have: 𝐴/𝑇 = −	𝑇/𝐴 and	𝐶/𝐺 = −𝐺/𝐶. 

To represent the common structure between homologous segments in a set of whole genome 

sequences, we define the concept of "Alignment-set" as follows: 

"Alignment-set" is a set of maximal homologous segments with maximal length and denoted 

by 𝐴-set. The size of "𝐴-set" is the number of aligned segments. 

We denote all of the 𝐴-sets of genome 𝑆 by 𝛴d which is the input for building a genome 

alignment graph. Two 𝐴-sets 𝜎-, 𝜎. ∈ 𝛴d are adjacent if there exist two segments 𝑠	-∈ 𝜎-,  and 

𝑠. ∈ 𝜎. which are adjacent. The adjacency is defined by the set of positions.  

The biconnected outerplanar graph 𝐺- is built in fourth steps: 

1. At first we construct a graph 𝐺 which every 𝐴-set is a vertex of 𝐺 and there is an edge 

between two 𝐴-sets if there adjacency between two segments of them. In fact, the graph 

𝐺 is an adjacency graph. As an example see Figure 9. Since one 𝐴-set may contain more 
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than one segment from the same genome, each 𝐴-set can be adjacent to itself and also 

there may be multiple edges between two vertices. 

2. Using pDFS 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 [71], we compute biconnected components of 𝐺. Since in [69] 

has shown that a graph is outerplanar if and only if every one of its biconnected 

components is outerplanar, we restrict the outerplanarity to biconnected subgraphs. In 

[72] a conceptually simple algorithm is presented to determine if a graph is a maximal 

outerplanar or outerplanar graph. The algorithm is linear in the number of vertices. It 

relies on the fact that a maximal outerplanar graph has a unique Hamiltonian cycle 

which forms the outer face, the remainder of the graph is a triangulation of this cycle. 

So we apply MOP-TEST	𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	[72] to recognize outerplanar and non-

outerplanar subgraphs of . If all of the connected components of 𝐺 are outerplanar 

graphs, then we do not need to third step and we can skip that. But if there is one or 

more non-outerplanar components, they contain some minors isomorphic to  𝐾� or	𝐾.,�	.  

3. By merging two adjacency-connected vertices of 𝐾� minors and two non-adjacency 

vertices of 	𝐾.,�	minors, we form graph 𝐺  to an outerplanar graph	𝐺- 

4. Finally, to make our graph biconnected, we need to make it bridgeless. In the second 

step, if there is any bridge as a biconnected component, we easily merge vertices of that 

bridge.  

 

Figure 9. The graph 𝐺 according to 3 sequences ATCGGTTGGGATCGT (Red), 
ATCAGGATGATCGT (Green) and ATCTGGCCATAGG (Blue). 

To show a circular visualization of this model, we can use 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚	1 in [73]. We close this 

section by another interesting property of this method which show that there is a unique 

permutation of vertices which give us a cross-free circular visualization of our outerplanar 

graph data structure model. 
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Theorem 3.6. [73] There exists only one clockwise ordering of the nodes in a biconnected 

outerplanar graph 𝐺 such that the drawing of 𝐺 with the nodes in that order around the 

embedding circle is plane. 

3.10  Line outerplanar graph 
The Line graph 𝐿(𝐺) of undirected graph 𝐺	is another graph that represents the adjacencies 

between the edges of 𝐺. The Line graph is defined as follows: 

The Line graph of 𝐺 denoted by	𝐿(𝐺) is the intersection graph of the edges of 𝐺, representing 

each edge by the set of its two end vertices. In other words, 𝐿(𝐺) is a graph such that each 

vertex of 𝐿(𝐺) represents an edge of 𝐺 andTwo vertices of 𝐿(𝐺) are adjacent if their 

corresponding edges share a common end point in 𝐺. 

In this method [70], we start with graph 𝐺-	which we have mentioned it is a biconnected 

outerplanar graph with a Hamiltonian cycle which passes every 𝐴-set just once. So we are 

going to construct a new graph 𝐺.	which the Line graph of this graph, is isomorphism to 𝐺-. 

This approach is inspired by Pevsner’s approach [45] for fragment assembly using De-bruijn 

graphs. We need the following theorems to prove that 𝐺.	is Eulerian.  

Theorem 3.7. [74] Let 𝐺	be a non-outerplanar graph, then 𝐿(𝐺) is also non-outerplanar. 

Theorem 3.8. [75] Let 𝐻 be the line graph of 𝐺, then there is an Eulerian path/circuit in 𝐺 if 

and only if there is a Hamiltonian path/circuit in 𝐻. 

Our new graph 𝐺. is built in the following steps: 

1. Let 𝐶	be the set of all adjacencies of segments. The vertices 𝑉 of 𝐺.  will be a pairwisely 

disjoint subset of 𝐶	and the edges 𝐸 of 𝐺. represent 𝐴-sets. It’s like block edges in 

Enredo graph [6]. We consider each 𝐴-set, as an undirected edge 𝑒	 = 	𝑢, 𝑣 which the 

endpoint 𝑢	 ∈ 	𝑉 of 𝑒 represents a subset of adjacencies in 𝐶 that contains all adjacencies 

at one end of 𝑒, and the other endpoint 𝑣	 ∈ 	𝑉 contains all adjacencies at the other end 

of 𝑒. It is possible that 𝑢	 = 	𝑣. Easily one can see that each maximal component in 𝐺 

which includes vertices connected only by adjacency edges is considered as a vertex in 

this new graph by ignoring all the  𝐴-sets	which were defined as edges in 𝐺.. 

2. According to the collapsed vertices of 𝐺-, we do similar collapses for some edges in 

graph 𝐺.	corresponded to those vertices.  

In 2015, Liu [76] presented a new and efficient algorithm, “ILIGRA”, for inverse line graph 

construction. Given a line graph 𝐻, ILIGRA constructs its root graph G with the time 
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complexity being linear in the number of nodes in H. using ILIGRA 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 and considering 

𝐺- as input, easily we can compute the graph G. which 𝐿(𝐺.) 	= 	𝐺-. 

Theorem 3.9. [70] The graph 𝐺. is an Eulerian Outerplanar graph.  

4  Discussion  
In this section, we discuss about the usage of mentioned graph data structures to multiple 

genome alignment. Also we investigate and compare them to how each method is different 

from others. The investigations of genome rearrangements often employ graph data structures 

used for multiple genome alignment. Graphs can assist in improving genome comparison 
through multiple alignments and also analysis of rearrangements. In addition, graph data 

structures provide an intuitive representation of similarities and changes between genomes, and 

so visualize alignment structures. In comparison to tabular alignments, genome alignment 

graphs are more versatile insofar that it is possible to model collinear and non-collinear changes 

without the need of choosing a reference genome [77]. The earliest graph is the alignment graph 

which has been proposed by Kececioglu [56]. The alignment graph defined for collinear 

multiple alignment and this graph contains a vertex for each sequence character and edges for 
aligned characters. The alignment graph has been used in various versions which a collinear 

alignment can be obtained from the alignment graph by solving the maximum weight trace 

problem [33]. In alignment graph data structure, the graph contains a vertex for each sequence 

character and edges for aligned characters. The alignment graph has since been used in various 

versions, e. g., with additional sequence edges, with weighted edges and with genes or 

segments instead of single characters. The extended of alignment graph structure can model 

non-colinear changes among the input genomes, in particular translocations and duplications. 
Translocations appear in extended alignment graph as mixed cycles. Duplications appear as 

block edges within the set of vertices of one genome. Because of these edges an extended 

alignment graph is not an n-partite as in its original graph alignment.  

The de Bruijn graph are a key data structures in the studies of genome rearrangements and 

genome assembly. Comparing graph alignment structure, the classical de Bruijn graphs are 

defined on a single genome (represented as DNA strings). The use of the de Bruijn graphs in 

computational molecular biology to fragment assembly, resequencing with DNA arrays, EST 

analysis and computational mass spectrometry. The de Bruijn graph represents every k-mer in 

a genomic sequence as a vertex and connects two vertices by a directed edge if they correspond 

to a pair of overlapping k-mers in the genome. The genomic sequence corresponds to an 

Eulerian path in the resulting multigraph. A-Bruijn graphs are introduced as a generalization 
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of de Bruijn graphs which often use for genome sequencing and fragment assembly. The 
structure of A-Bruijn graphs revisits an idea briefly mentioned by Kececioglu [33], the idea of 

merging aligned vertices. A-Bruijn graphs have one vertex for sets of aligned positions, and 

edges represent sequence adjacencies. A-Bruijn graph is defined for an arbitrary collection of 
alignments. The A-Bruijn graphs are equivalent to the de Bruijn graphs in the special case that 

is the collection of all perfect similarities of length k (k-mers). The applications of A-Bruijn 

graphs in bioinformatics extend well beyond repeat classification and include multiple 

alignments and fragment assembly. Repeat classification is a multifaceted problem that covers 

many biological tasks. The A-Bruijn graphs can be viewed as weighted graphs with the weight 

(multiplicity) of an edge between two vertices equal to the number of edges connecting these 

vertices. An individual sequence can be represented by a trivial partial order graph. Each 
character is converted to a vertex and all vertices have exactly one outgoing edge to the vertex 

for the subsequent character, except for the vertex of the last sequence character. In a multiple 

alignment these single-sequence graphs are merged. Similar to the De-Bruijn graph, each 

sequence is mapped to a path traversing the graph but since it is a partial order graph no cycles 

are allowed. That is, the partial order graph is a directed acyclic graph. Consequently, the partial 
order graph enforces the collinearity condition and does not allow two crossing aligned regions 

where the order of characters in the sequences is not preserved. The key characteristic of the 

partial order graph is that matching sequence characters are merged to a single node whereas 

mismatches cause the graph to bifurcate. In contrast to partial order graphs, a De Bruijn graph 
allows cycles and hence, it can be used to detect repeated, in other words, the De Bruijn graph 

does not enforce a collinear alignment where one alignment column precedes the next one. 

Enredo graphs which applied for collinear alignments of segments, have two vertices per set 
of aligned segments, a head and a tail vertex, resembling breakpoint graphs from rearrangement 

studies. The Enredo method iteratively eliminates various substructures from the Enredo graph 

before deriving a final genome segmentation. The construction of the Enredo graph has some 

similarities to the use of de Bruijn-like graphs in sequence analysis where consistent sequences 

between two nodes in extant species are collapsed on to the same edge. Clearly the Enredo 
graph and the de Bruijn graph are radically different in terms of elements. The nodes in the 

Enredo graph are sets of genomic anchor points, and the edges are the large intervening 

sequences, whereas the nodes in a de Bruijn are strings of length k (k-mers) and the edges 
represent the adjacencies between these k-mers in an observed sequence. A cactus graph model 

structure is introduced as a dissimilar graph which has vertices for adjacencies and edges for 
genome segments. Their structure has two valuable properties. The cactus property subdivides 
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the graph (and genomes) into independent units by ensuring that any edge is part of at most 

one simple cycle. The second property is the existence of an Eulerian circuit. This circuit 

traverses all genome segments exactly once, even duplicated segments, conveniently providing 

a consensus genome. For substantial regions, it is possible to construct large multi-level cactus 

graphs that are reasonably balanced and highly branching so that their median depth from root 

to leaves is short. The generality of the cactus graph representation makes them widely 

applicable to almost any genome comparison problem. An outerplanar graph data structure is 

presented for multiple genome alignment and analyzing genome rearrangement which  

comparing with traditional alignment matrix or partial order alignment graph, in common with 

A-Bruijn and Cactus graphs, this model is flexible by classification non-collinear structural 

changes like inversion, translocations and duplications as well as collinear changes like 

insertion and deletion. But in addition, outerplanar graph data structure provides a unique 

circular visualization to simplify the study of evolutionary relationships between aligned 

genomes. Also in the line graph of this structure, we can get a unique Eulerian path in the 

representation.  

5  Conclusion  
Multiple genome alignment is an indispensable tool for comparing genomes and finding their 

shared histories. In bioinformatics, a sequence alignment is a way of arranging the sequences 

of DNA, RNA, or protein to identify regions of similarity that may be a consequence of 

functional, structural, or evolutionary relationships between the sequences. Genome sequence 

alignment problem try to uncover homologies by assigning sequence positions. This review 

provided an overview on the different approaches for multiple genome alignment methods with 

focused on application of graph data structures. Graphs have proven to be a powerful tool for 

coping with the complexity of genome-scale sequence alignments. Also graphs provide an 

intuitive representation of similarities and changes between genomes, and so visualize 

alignment structures. In addition by having a graph data structure for a multiple genome 

alignment, it is possible to model colinear and non-colinear changes without the need of 

choosing a reference genome. In this investigation, we first, briefly introduced four type of 

algorithms which are used for computational part of genome alignment and then we described 

ten data structures of commonly used graphs in terms of their abilities to represent alignment 

information. 
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