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Abstract

The symmetric division deg (SDD) index is one the 148 discrete Adriatic indices,
introduced several years ago. The SDD index has already been proved a valuable
index in the QSPR/QSAR (quantitative structure-property/activity relationships)
studies. In the present paper, we firstly correct an upper bound on the SDD index of
molecular trees, reported in the recent paper [MATCH Commun. Math. Comput.
Chem. 82 (2019) 43–55], by giving the best possible upper bound on the SDD
index of any molecular (n,m)-graph (a molecular graph with order n and size m).
We then establish a lower bound on the SDD index of any molecular (n,m)-graph.
Finally, by extending a theorem of the aforementioned paper, we characterize the
graphs with fifth to ninth minimum SDD indices from the class of all molecular
trees having a fixed, but sufficiently large, order.

1 Introduction
Predicting physicochemical properties of chemical compounds and seeking combinatorial

libraries to find molecular structures that are generally comparative to a target structure,

can be considered some of the important issues in chemistry. Among the various existing

techniques for handling such issues, the method involving molecular descriptors is one

of the simplest and most widely used such techniques [1, 3, 17, 18]. Following Todeschini

and Consonni [14], we define the molecular descriptor as “the final result of a logical and
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mathematical procedure which transforms chemical information encoded within a sym-

bolic representation of a molecule into a useful number or the result of some standardized

experiment”.

Several years ago, Vukičević and Gašperov [16] considered a new class of molecu-

lar descriptors, consisting of one hundred and forty eight descriptors, namely the “dis-

crete Adriatic indices” for improving the various QSPR/QSAR (quantitative structure-

property/activity relationships) studies and they found that only a few descriptors from

this class are useful. One of these useful discrete Adriatic indices is the symmetric division

deg (SDD) index, which is defined as

SDD(G) =
∑

uv∈E(G)

(
du
dv

+
dv
du

)
,

where E(G) is the edge set of a molecular graph G (a graph in which vertices correspond

to atoms of a (hydrogen-suppressed) molecule and edges correspond to bonds between

the atoms) and du, dv denote the degrees of the vertices u, v ∈ V (G), respectively.

Among all the existing molecular descriptors, SDD index has the best correlating

ability for predicting the total surface area of polychlorobiphenyls (PCB) [16]. Recently,

Furtula, Das and Gutman [7] conducted a thorough multifaceted analysis of the SDD

index and they concluded that it deserves to be considered as a viable and applicable

molecular descriptor, whose quality exceeds that of some more popular existing molecular

descriptors. Thus, it is meaningful to establish mathematical properties of the SDD index,

particularly for the molecular graphs. Several papers have been appeared in literature

addressing the mathematical aspects of this descriptor; for example see [2, 5–7, 9–13].

The terminology not defined here can be found in some standard book of (chemical)

graph theory, like [4,15]. All the graphs considered in this paper are simple and connected.

By an n-vertex graph we mean a graph of order n and by an (n,m)-graph we mean an

n-vertex graph of size m. Recently, Pan and Li [13] establish the upper bound on the

SDD index, given in the following theorem.

Theorem 1. (Theorem 3 of [13]) For n ≥ 4, if T is an n-vertex molecular tree then

SDD(T ) ≤ 27n+ 1

8
.

It can be easily checked that if T is an n-vertex tree, with n ≥ 8, consisting of only

vertices of degrees 1 and 4 then SDD(T ) = (7n− 1)/2, which is greater than the bound

-206-



given in Theorem 1. Thus, Theorem 1 is not generally correct. The current paper can

be considered as an extension of [13]. We firstly correct Theorem 1, by giving the best

possible upper bound on the SDD index of any molecular (n,m)-graph (a molecular

graph with order n and size m). We then establish a lower bound on the SDD index

of any molecular (n,m)-graph. Finally, by extending a theorem of [13], we characterize

the graphs with fifth to ninth minimum SDD indices from the class of all molecular trees

having a fixed but sufficiently large number of vertices.

2 Bounds on the SDD index of molecular
(n,m)-graphs

Before giving a correct and more general version of Theorem 1, we point out an error

made in the proof of this theorem. The main problem in the aforementioned proof, lies

in Equation (3.6) of [13], where it is wrongly claimed that

max
2≤i≤j≤4

αi,j + 2α1,4

(
i−2
i

+ j−2
j

)
5
2
i−4

i
+

5
2
j−4

j

=
α2,4 + 2α1,4

(
2−2
2

+ 4−2
4

)
5
2
·2−4

2
+

5
2
·4−4

4

where

αi,j =
i

j
+

j

i
− 5

2
.

The correct version of this equation is

max
2≤i≤j≤4

αi,j + 2α1,4

(
i−2
i

+ j−2
j

)
5
2
i−4

i
+

5
2
j−4

j

=
α4,4 + 2α1,4

(
4−2
4

+ 4−2
4

)
5
2
·4−4

4
+

5
2
·4−4

4

.

Thus, the correct version of the inequality, given just after Equation (3.6) of [13], is

f(Hn) ≤ n + 2. But, the inequality n + 2 ≤ 7(n+3)
8

holds if and only if n ≤ 5. Hence,

Theorem 1 holds for n ≤ 5.

Next, for establishing the bounds on the SDD index of molecular (n,m)-graphs, we

consider the following system of equations which hold for any non-trivial molecular (n,m)-

graph G:
4∑

i=1

ni = n, (1)

4∑
i=1

i · ni = 2m, (2)
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∑
1≤i≤4
i 6=j

xj,i + 2xj,j = j · nj (3)

where j = 1, 2, 3, 4; ni is the number of vertices of G with degree i and xj,i denotes the

number of those edges of G whose one end vertex has degree j and the other one has

degree i. Clearly, xj,i = xi,j. The SDD index for the graph G can be rewritten as

SDD(G) =
∑

δ(G)≤i≤j≤∆(G)

xi,j(G)

(
i

j
+

j

i

)
. (4)

The following values of x1,4 and x4,4 can be obtained (see also [8]) by solving the system

of Equations (1)-(3):

x1,4 =
4n

3
− 2m

3
− 4

3
x1,2 −

10

9
x1,3 −

2

3
x2,2 −

4

9
x2,3 −

1

3
x2,4 −

2

9
x3,3 −

1

9
x3,4,

x4,4 = −4n

3
+

5m

3
+

1

3
x1,2 +

1

9
x1,3 −

1

3
x2,2 −

5

9
x2,3 −

2

3
x2,4 −

7

9
x3,3 −

8

9
x3,4.

After substituting the values of x1,4 and x4,4 in Equation (4), we have

SDD(G) = 3n+
m

2
− 5

2
x1,2 −

7

6
x1,3 −

3

2
x2,2 −

5

6
x2,3 −

1

4
x2,4 −

1

2
x3,3 −

1

6
x3,4. (5)

The setting

ΓSDD(G) = −5

2
x1,2 −

7

6
x1,3 −

3

2
x2,2 −

5

6
x2,3 −

1

4
x2,4 −

1

2
x3,3 −

1

6
x3,4 (6)

in Equation (5) yields

SDD(G) = 3n+
m

2
+ ΓSDD(G). (7)

Theorem 2. Let G be a molecular (n,m)-graph, where n− 1 ≤ m ≤ 2n and n ≥ 5.

(i) If m+ n ≡ 0 (mod 3) then

SDD(G) ≤ 3n+
m

2

with equality if and only if G contains no vertices of degrees 2 and 3.

(ii) If m+ n ≡ 1 or 2 (mod 3) then

SDD(G) ≤ 3n+
m

2
− 1

2

with equality if and only if either G contains no vertex of degree 2 and contains

exactly one vertex of degree 3, which is adjacent to three vertices of degree 4; or G

contains no vertex of degree 3 and contains exactly one vertex of degree 2, which is

adjacent to two vertices of degree 4.
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Proof. From Equations (1) and (2), the following congruence (see also [8]) follows:

m+ n ≡ n3 − n2 (mod 3). (8)

If m + n ≡ 0 (mod 3) then from (8) we have n2 ≡ n3 (mod 3). We note from (6) that

ΓSDD(G) ≤ 0 with equality if and only if G contains no vertices of degrees 2 and 3.

Hence, from Equations (6) and (7) the first part of the theorem follows. In what follows,

we assume that m+ n ≡ 1 or 2 (mod 3). By (8), we have

n3 − n2 ≡ 1 or 2 (mod 3). (9)

But, (9) ensures that either n2 ≥ 1 or n3 ≥ 1. If either at least one of x1,2, x1,3, x2,2,

x2,3 is non-zero or x3,3 ≥ 2 then by using (6) and (7), we have SDD(G) < 3n + m
2
− 1

2
.

If x1,2 = x1,3 = x2,2 = x2,3 = 0 and x3,3 = 1, then n3 ≥ 2, which implies (due to (3) for

j = 3) x3,4 ≥ 4 and hence again from (6) and (7), it follows that SDD(G) < 3n+ m
2
− 1

2
.

The final case to be considered is x1,2 = x1,3 = x2,2 = x2,3 = x3,3 = 0. In this case,

bearing in mind (3) for j = 2, 3, we have x2,4 = 2n2 and x3,4 = 3n3. If any of n2 and

n3 is greater than or equal to 2, or n2 = n3 = 1, then (bearing in mind x2,4 = 2n2 and

x3,4 = 3n3 and) by using (6) and (7), we have SDD(G) < 3n + m
2
− 1

2
. If n2 = 0, n3 = 1

or n2 = 1, n3 = 0 then (x2,4 = 0, x3,4 = 3 or x2,4 = 2, x3,4 = 0, respectively, and) by using

(6) and (7), we have SDD(G) = 3n+ m
2
− 1

2
.

The setting m = n − 1 in Theorem 2 gives a corrected (but stronger) version of

Theorem 1.

Corollary 1. For n ≥ 5, let T be an n-vertex molecular tree.

(i) If n ≡ 2 (mod 3) then

SDD(G) ≤ 7n− 1

2

with equality if and only if G contains no vertices of degrees 2 and 3.

(ii) If n ≡ 0 or 1 (mod 3) then

SDD(G) ≤ 7n− 2

2

with equality if and only if either G contains no vertex of degree 2 and contains

exactly one vertex of degree 3, which is adjacent to three vertices of degree 4; or G

contains no vertex of degree 3 and contains exactly one vertex of degree 2, which is

adjacent to two vertices of degree 4.
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Next, we derive a lower bound on the SDD index of molecular (n,m)-graphs. The

following values of x1,2 and x2,2 can be obtained (see also [8]) by solving the system of

Equations (1)-(3):

x1,2 = 2n− 2m− 2

3
x1,3 −

1

2
x1,4 +

1

3
x2,3 +

1

2
x2,4 +

2

3
x3,3 +

5

6
x3,4 + x4,4,

x2,2 = 3m− 2n− 1

3
x1,3 −

1

2
x1,4 −

4

3
x2,3 −

3

2
x2,4 −

5

3
x3,3 −

11

6
x3,4 − 2x4,4.

After substituting the values of x1,2 and x2,2 in Equation (4), we get

SDD(G) = n+m+ x1,3 + 2x1,4 +
1

3
x2,3 +

3

4
x2,4 +

1

3
x3,3 +

1

2
x3,4 +

1

2
x4,4. (10)

The setting

Γ′
SDD(G) = x1,3 + 2x1,4 +

1

3
x2,3 +

3

4
x2,4 +

1

3
x3,3 +

1

2
x3,4 +

1

2
x4,4 (11)

in Equation (10) yields

SDD(G) = n+m+ Γ′
SDD(G). (12)

Clearly, it holds that Γ′
SDD(G) ≥ 0 with equality if and only if maximum degree of G is

2 and hence we have the next result.

Theorem 3. For n ≥ 3 and n− 1 ≤ m ≤ 2n, if G is a molecular (n,m)-graph then

SDD(G) ≥ n+m

with equality if and only if G is isomorphic to either the path graph Pn or the cycle graph

Cn.

The following result is due to Pan and Li [13].

Proposition 2. [13] If G is a graph with k pendant paths and m edges then it holds that

SDD (G) ≥ 2m+
2k

3
. (13)

Remark 3. It is easy to see that

SDD(G) = 2m+ f(G), (14)

where f(G) =
∑

uv∈E(G)
(du−dv)2

dudv
. Combining (13) and (14), we get

f(G) ≥ 2k

3
. (15)

If G is either a regular graph or it has maximum degree 3 with x1,2 = k = x2,3 and

x1,3 = 0, then equality sign in (15), and hence in (13), holds.
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3 The (molecular) trees with fifth to ninth minimum
SDD indices

The problem of characterizing the graphs, with minimum SDD index, from the class of

all n-vertex (molecular) trees was solved in [2].

Theorem 4. [2] The path graph Pn is the unique graph with minimum SDD index among

all (molecular) trees for n ≥ 4.

A vertex v ∈ V (G) with degree 1 or degree greater than 2 is called pendant vertex

or branching vertex, respectively. A path P : v1v2 · · · vr (of length r − 1) in a graph

is called pendant path if and only if one of the vertices v1, vr is pendant and the other

is branching, and the remaining vertex/vertices (if exist(s)) of P has/have degree 2.

A path P : v1v2 · · · vr in a graph is called internal path if and only if both the ver-

tices v1, vr are branching and the remaining vertex/vertices (if exist(s)) of P has/have

degree 2. A tree containing exactly one branching vertex is called a starlike tree. De-

note by Sn(r1, r2, . . . , rk) the n-vertex starlike tree whose pendant paths have lengths

r1, r2, . . . , rk, where r1 ≥ r2 ≥ · · · ≥ rk ≥ 1 and r1 + r2 + · · · + rk + 1 = n. Denote by

Sα,β(r1, r2, . . . , rα; s1, s2, . . . , sβ) the n-vertex double starlike tree, that is the tree obtained

from the 2-vertex path graph P2 by attaching α pendant paths of lengths r1, r2, . . . , rα to

one vertex of P2 and β pendant paths of lengths s1, s2, . . . , sβ to its other vertex, where

r1 ≥ r2 ≥ · · · ≥ rα ≥ 1, r1+r2+ · · ·+rα+s1+s2+ · · ·+sβ+2 = n, s1 ≥ s2 ≥ · · · ≥ sβ ≥ 1

and α ≥ β ≥ 2. Let Sα,β = Sα,β(1, 1, . . . , 1; 1, 1, . . . , 1), that is the double star on α+β+2

vertices.

Recently, Pan and Li [13] extended Theorem 4 by characterizing the graphs, with

second to fourth minimum SDD indices, from the class of all n-vertex (molecular) trees

for sufficiently large n.

Theorem 5. [13] Let r1 ≥ r2 ≥ r3 ≥ 2 and s1 ≥ s2 ≥ 2 (for i = 1, 2, the values of ri

may vary in different parts of this theorem). Among all n-vertex (molecular) trees,

1. only the starlike tree(s) Sn(r1, r2, r3) has/have the second minimum SDD index,

which is equal to 2n, for n ≥ 7;

2. only the following trees attain the third minimum SDD index, which is equal to

2n+ 2
3
:
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(a) starlike trees Sn(r1, r2, 1) for n ≥ 7,

(b) double starlike tree(s) S2,2(r1, r2; s1, s2) for n ≥ 10;

3. only the trees with exactly two vertices of maximum degree 3, each adjacent to three

vertices of degree 2, have the fourth minimum SDD index, which is equal to 2n+1,

for n ≥ 11.

In what follows, we extend Theorem 5 by characterizing the graphs, with fifth to ninth

minimum SDD indices, from the class of all n-vertex (molecular) trees for sufficiently large

n.

Theorem 6. (In the statement of this theorem, by a “path” in a graph, we mean a

“pendant path” unless otherwise stated. For i = 1, 2, 3, the values of ri as well as of s1
may vary in different parts of this theorem.) Let r1 ≥ r2 ≥ r3 ≥ r4 ≥ 2 and s1 ≥ s2 ≥ 2.

Among all n-vertex (molecular) trees,

1. only the following trees attain the fifth minimum SDD index, which is equal to

2n+ 4
3
:

(a) starlike tree Sn(r1, 1, 1) for n ≥ 11,

(b) double starlike trees S2,2(r1, r2; s1, 1) for n ≥ 11,

(c) trees obtained from the 3-vertex path graph P3 by attaching two paths to every

pendant vertex and one path to the unique non-pendant vertex such that all

the attached five paths have lengths at least 2, for n ≥ 13;

2. only the following trees attain the sixth minimum SDD index, which is equal to

2n+ 5
3
:

(a) trees obtained from a path graph of order at least 3, by attaching two paths to

each pendant vertex such that among the attached four paths, exactly one has

length 1, for n ≥ 11,

(b) trees obtained from a path graph of order at least 4, by attaching two paths to

every pendant vertex and one path to the neighbor of a pendant vertex, such

that all the attached five paths have lengths at least 2, for n ≥ 14;
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3. only the following trees attain the seventh minimum SDD index, which is equal to

2n+ 2:

(a) starlike trees Sn(r1, r2, r3, r4) for n ≥ 11,

(b) double starlike trees S2,2(r1, r2; 1, 1) and S2,2(r1, 1; s1, 1) for n ≥ 11,

(c) trees obtained from a path graph of order at least 5, by attaching two paths

to every pendant vertex and one path to that vertex of degree 2 whose both

neighbors have also degree 2, such that all the attached five paths have lengths

at least 2, for n ≥ 15,

(d) trees obtained from the 3-vertex path graph P3 by attaching two paths to every

pendant vertex and one path to the unique non-pendant vertex such that among

the attached five paths, exactly one has length 1, for n ≥ 12,

(e) trees of the form, shown in Figure 1, such that every internal path has length

1 and all the pendant paths have length at least 2, for n ≥ 16;

4. only the following trees attain the eighth minimum SDD index, which is equal to

2n+ 7
3
:

(a) trees obtained from a path graph, on at least 3 vertices, by attaching two paths

to each pendant vertex such that among the attached four paths, exactly two

have length 1, for n ≥ 11;

(b) trees obtained from a path graph, on at least 4 vertices, by attaching two paths

to every pendant vertex and one path to the neighbor of a pendant vertex such

that among the attached five paths, exactly one has length 1, for n ≥ 13,

(c) trees of the form, shown in Figure 1, such that exactly two internal paths have

length 1 and all the pendant paths have length at least 2, for n ≥ 17;

5. only the double starlike tree(s) S3,2(r1, r2, r3; s1, s2) attain(s) the ninth minimum

SDD index, which is equal to 2n+ 29
12

, for n ≥ 12.
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Figure 1. Two general structures of a tree having maximum degree 3 and contain-
ing exactly four vertices of degree 3.

Proof. Let T be an n-vertex tree different from the extremal trees specified in Theorems

4 and 5, with n ≥ 11. It is clear that

SDD(T ) = 2n− 2 +
∑

uv∈E(T )

(du − dv)
2

dudv
= 2n− 2 + f(T ) . (16)

It can be easily verified that the tree(s) specified in each part of the theorem has/have

SDD index given in that part. Consequently, bearing in mind Theorems 4 and 5, we

deduce that any tree having SDD index greater than 2n + 29
12

(which is claimed to be

the ninth minimum SDD index) must have kth minimum SDD index, for some k ≥ 10,

among all n-vertex trees. Hence, we have to find all those n-vertex trees whose SDD

index is at most 2n + 29
12

. But, from Equation (16), it is clear that the SDD index of an

n-vertex tree T is at most 2n+ 29
12

if and only if f(T ) ≤ 53
12

. Thereby, we have to find all

those trees which satisfy the inequality

f(T ) ≤ 53

12
. (17)

Certainly, the functions g and h, defined by

g(x) =
(1− x)2

(1)(x)
and h(x) =

(1− 2)2

(1)(2)
+

(2− x)2

(2)(x)
,

are increasing for x ≥ 3. This implies that a pendant path of length 1 and a pendant

path of length at least 2 in T contributes to f(T ) at least (1−3)2

(1)(3)
= 4

3
and (1−2)2

(1)(2)
+ (2−3)2

(2)(3)
=(

1
2
+ 1

6

)
= 2

3
, respectively. Consequently, if T has at least seven pendant paths, then (17)

does not hold because f(T ) ≥ 7 × 2
3
> 53

12
. Hence, we need only to consider the cases

when T has at most 6 pendant paths. Let p be the number of pendant paths of length 1

in T .
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Case 1. T has exactly three pendant paths.

Since we have assumed that T is different from the extremal trees specified in Theorem

5, so p = 2 and hence (17) holds in this case.

Case 2. T has exactly four pendant paths.

We consider two subcases.

Subcase 2.1. Maximum degree of T is 3.

We note that, in this subcase, T contains exactly two vertices of degree 3. Since we have

assumed that T is different from the extremal trees specified in Theorem 5, so p ≥ 1. Let

u and v be the vertices of degree 3. If u and v are adjacent, then we have f(T ) =
8

3
+

2p

3

and if u and v are nonadjacent, then it holds that f(T ) = 3 +
2p

3
. Clearly, whether

the vertices u and v are adjacent or not, Inequality (17) holds only for p = 1, 2 in this

subcase.

Subcase 2.2. Maximum degree of T is 4.

In this subcase, T contains exactly one vertex of degree greater than 2 and hence

f(T ) = 4 +
5p

4
. Thus, Inequality (17) holds only for p = 0 in this subcase.

Case 3. The tree T has exactly five pendant paths.

Here, we consider three subcases.

Subcase 3.1. Maximum degree of T is 3.

In this subcase, T contains exactly three vertices of degree 3. We have following three

possibilities.

i) T has exactly two pairs of adjacent vertices of degree 3.

For this possibility, Inequality (17) holds only for p = 0, 1, because f(T ) =
10

3
+

2p

3
.

ii) T has exactly one pair of adjacent vertices of degree 3.

For this possibility, (17) holds only for p = 0, 1, because f(T ) =
11

3
+

2p

3
.

iii) T has no pair of adjacent vertices of degree 3.

For this possibility, (17) holds only for p = 0 because f(T ) = 4 +
2p

3
.

Subcase 3.2. Maximum degree of T is 4.

We note that T contains exactly one vertex of degree 4 and exactly one vertex of degree

3. Let u and v be the vertices of degrees 3 and 4, respectively. Let p1 and p2 be the

number of pendant vertices adjacent to u and v, respectively. Evidently, 0 ≤ p1 ≤ 2 and
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0 ≤ p2 ≤ 3. There are two possibilities.

i) The vertices u and v are adjacent.

For this possibility, Inequality (17) holds only for p1 = 0 and p2 = 0 because

f(T ) =
53

12
+

2p1
3

+
5p2
4

.

ii) The vertices u and v are nonadjacent.

For this possibility, (17) does not hold because

f(T ) = 5 +
2p1
3

+
5p2
4

>
53

12
.

Subcase 3.3. Maximum degree of T is 5.

In this subcase, T contains exactly one vertex of degree greater than 2 and hence (17)

does not hold because

f(T ) = 7 +
9p

5
>

53

12
.

Case 4. T has exactly six pendant paths.

We consider five subcases.

Subcase 4.1. Maximum degree of T is 3.

We note that T contains exactly four vertices of degree 3 and it has one of the forms

depicted in Figure 1. We consider following four possibilities.

i) T has exactly three pairs of adjacent vertices of degree 3.

For this possibility, Inequality (17) holds only for p = 0 because f(T ) = 4 +
2p

3
.

ii) T has exactly two pairs of adjacent vertices of degree 3.

Also for this possibility, (17) holds only for p = 0 because f(T ) =
13

3
+

2p

3
.

iii) T has exactly one pair of adjacent vertices of degree 3.

For this possibility, (17) does not hold for any value of p because f(T ) =
14

3
+

2p

3
.

iv) T has no pair of adjacent vertices of degree 3.

Also for this possibility, (17) does not hold for any value of p because f(T ) = 5 +
2p

3
.

Subcase 4.2. T contains a single vertex of maximum degree 4 and it contains exactly

two vertices of degree 3.

Let u ∈ V (T ) be the vertex of maximum degree 4 and v, w ∈ V (T ) be the vertices of

degree 3. Let p1, p2, p3 be the number of pendant vertices adjacent to u, v, w, respectively.

We consider two subcases.

Subcase 4.2.1. The vertex u lies on the unique v-w path.
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It is clear that 0 ≤ pi ≤ 2 for i = 1, 2, 3. We have three possibilities.
i). The vertex u is adjacent to both v and w.
For this possibility, it holds that

f(T ) =
29

6
+

5p1
4

+
2p2
3

+
2p3
3

>
53

12
.

ii). The vertex u is adjacent to exactly one of the vertices v, w.

For this possibility, it holds that f(T ) =
65

12
+

5p1
4

+
2p2
3

+
2p3
3

>
53

12
.

iii). The vertex u is neither adjacent to v nor to w.

For this possibility, it holds that f(T ) = 6 +
5p1
4

+
2p2
3

+
2p3
3

>
53

12
.

Thus, in this subcase, T does not satisfy (17).

Subcase 4.2.2. Either v lies on the u-w path or w lies on the u-v path.
Without loss of generality, we assume that v lies on the u-w path. Then, it holds that
0 ≤ p1 ≤ 3, 0 ≤ p2 ≤ 1 and 0 ≤ p3 ≤ 2. We have four possibilities.

i). The vertex v is adjacent to both u and w.
For this possibility, it holds that f(T ) = 61

12
+ 5p1

4
+ 2p2

3
+ 2p3

3
> 53

12
.

ii). The vertex v is adjacent to w and but v is not adjacent to u.

For this possibility, it holds that f(T ) = 17
3
+ 5p1

4
+ 2p2

3
+ 2p3

3
> 53

12
.

iii). The vertex v is adjacent to u and but v is not adjacent to w.

For this possibility, it holds that f(T ) = 65
12

+ 5p1
4

+ 2p2
3

+ 2p3
3

> 53
12
.

iv). The vertex v is neither adjacent to u nor adjacent to w.

For this possibility, it holds that f(T ) = 6 + 5p1
4

+ 2p2
3

+ 2p3
3

> 53
12
.

Hence, also for this subcase, T does not satisfy (17).
Subcase 4.3. T has exactly two vertices of degree 4.
Let u and v be the vertices of degree 4. Recall that 0 ≤ p ≤ 6. It is clear that all
the vertices of T except u and v have degrees less than 3. If u and v are adjacent then

f(T ) = 6 +
5p

4
>

53

12
and if u and v are nonadjacent then f(T ) = 7 +

5p

4
>

53

12
. Thus,

for this subcase too, T does not satisfy (17).
Subcase 4.4. Maximum degree of T is 5.

We note that, in this subcase, T has exactly one vertex of degree 5, exactly one vertex
of degree 3, and its all other vertices have degrees less than 3. Let u and v be the ver-
tices of degrees 3 and 5, respectively. Let p1 and p2 be the number of pendant vertices

adjacent to u and v, respectively. Then, 0 ≤ p1 ≤ 2 and 0 ≤ p2 ≤ 4. If u and v are

adjacent then f(T ) =
36

5
+

2p1
3

+
9p2
5

>
53

12
and if u and v are nonadjacent then we have

-217-



f(T ) = 8+
2p1
3

+
9p2
5

>
53

12
. Therefore, Inequality (17) does not hold also in this subcase.

Subcase 4.5. Maximum degree of T is 6.

Also for this subcase, T does not satisfy (17) because f(T ) = 11 +
7p

3
>

53

12
.

Subcase 4.1(i): p = 0

Subcase 3.1(ii): p = 0, 1

Subcase 3.2(i)

Subcase 2.2 Subcase 3.1(i): p = 0, 1

Subcase 4.1(ii): p = 0

Case 1 Subcase 2.1, p = 1, 2

Subcase 3.1(iii): p = 0

Figure 2. General structures of those trees which satisfy Inequality (17), together
with the case numbers where such trees occur. Here, p denotes the num-
ber of pendant paths of length 1. Also, the (pendant or internal) path
in which a vertex of degree 2 is shown, has length at least 2 otherwise
it has length at least 1.

From the above arguments, we deduce that Inequality (17) may holds only if T is the

tree specified in either of the following cases: Case 1, Subcase 2.1, Subcase 2.2, Subcase

3.1, Subcase 3.2 (i), Subcase 4.1 (i), Subcase 4.1 (ii). General structures of those trees

which satisfy Inequality (17), together with the case numbers where such trees occur, are

depicted in Figure 2. We calculate the output values under f for all these aforementioned

trees and then obtain the ordering of these values. Finally, by using Equation (16), we

get the desired result.
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