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Abstract

The augmented Zagreb index (AZI) of an n-vertex graph G = (V,E) is defined
as AZI(G) =

∑
vivj∈E [didj/(di + dj − 2)]3, where V = {v0, v1, · · · , vn−1}, n ≥ 3,

and di denotes the degree of vertex vi of G. As a variant of the well-known atom-
bond connectivity index, the AZI was shown to have the best predicting ability for
a variety of physicochemical properties among several tested vertex-degree-based
topological indices. In 2010 Furtula et al. [J. Math. Chem. 48 (2010) 370] proposed
the problem of characterizing n-vertex tree(s) with maximal AZI. In the present
paper we solve this problem by proving that the n-vertex balanced double star
uniquely maximizes AZI if n ≥ 19.

1 Introduction

We consider connected simple graphs with at least 3 vertices only. Such a graph will be

denoted by G = (V,E), where V = V (G) = {v0, v1, · · · , vn−1} and E = E(G) are the

vertex set and edge set of G, respectively. Let di = d(vi) denote the degree of vertex vi,

and ∆ = ∆(G) the maximum degree of G. A chemical graph is a graph with ∆ ≤ 4. The

sequence π = π(G) = (d0, d1, · · · , dn−1) is called the degree sequence of G. In particular,
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if G is a tree, then π is called a tree degree sequence. Let C(π) = {G|G is connected and

π(G) = π}, and T(π) = {T |T is a tree and π(T ) = π}.

The atom-bond connectivity (ABC) index of a graph G = (V,E) was defined [1]

as ABC(G) =
∑

vivj∈E
√

(di + dj − 2)/(didj). This topological index turned out to be

closely correlated with the heat of formation of alkanes, and a quantum-chemical expla-

nation for its descriptive ability was provided in [2]. Gutman et al. [3] later confirmed

that the ABC index could reproduce the heat of formation with accuracy comparable to

that of high-level ab initio and DFT (MP2, B3LYP) quantum chemical calculations. Due

to these applications, there is an increased interest in the mathematical properties of the

ABC index in the last few years (see [4-27, 48, 49]). However, the following elementary

problem remains open and was coined [14] as the “ABC index conundrum”.

Problem A. Characterize n-vertex tree(s) with minimal ABC index.

On the other hand, in order to explore better correlation abilities of the ABC index

for the heat of formation of alkanes, Furtula et al. [28] made a generalization of this index

by replacing the exponent 1/2 with an arbitrary non-zero real number −λ. Namely, they

defined ABCλ(G) =
∑

vivj∈E [(di + dj − 2)/(didj)]
−λ, and showed the so-called augmented

Zagreb index AZI = ABC3 is better than ABC index in predicting the heat of formation

of octanes and heptanes. Moreover, in 2013 some experiments [29, 30] showed that, the

AZI has the best predicting ability for a variety of physicochemical properties among

several tested vertex-degree-based topological indices. Consequently, some researchers

initiated the study of the mathematical properties of AZI. Furtula et al. [28] proved that

the star is the unique tree having the minimal AZI among n-vertex trees. Some upper

and lower bounds for the AZI of connected graphs were reported in [31] and [32]. Zhan et

al. [33] determined the n-vertex unicyclic graphs with minimal and second minimal AZI,

as well as the n-vertex bicyclic graphs with minimal AZI. Huang and Liu [34] considered

the ordering of n-vertex connected graphs, trees, unicyclic graphs, and bicyclic graphs with

respect to AZI. In [35] and [36] some bounds for the AZI of catacondensed polyomino

and/or hexagonal chains and/or systems were obtained. The AZI of fluoranthene-type

benzenoid systems were considered in [37] and [38]. Ali et al. [39] characterized the

extremal graphs with maximal AZI among n-vertex connected graphs with given vertex

connectivity or matching number, and determined [40] the graphs with minimal AZI

among n-vertex cacti with given number of cycles. Palacios [41] gave a lower bound of
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AZI in terms of numbers of vertices and edges, and the maximum degree of a graph.

Ali et al. [42] reported some tight bounds for the AZI of chemical unicyclic and bicyclic

graphs, as well as an Nordhaus-Gaddum-type result. Sun et al. [43] established some lower

bounds for the AZI of trees and unicyclic graphs with perfect matchings. Recently, Chen

and Hao [44] characterized the graphs with maximal ABCλ(G) value for λ > 0 among

n-vertex connected graphs with given vertex connectivity, edge connectivity, or matching

number. It needs to be mentioned here that, the definition of the generalized ABC index

of a graph G = (V,E) they used is ABCα(G) =
∑

vivj∈E [(di + dj − 2)/(didj)]
α.

However, as the counterpart of Problem A, the following elementary problem proposed

by Furtula et al. [28] in 2010 remains open.

Problem B. Characterize n-vertex tree(s) with maximal AZI.

Ali et al. [39] did the first work on this problem. They showed that, n-vertex tree(s)

with maximal AZI share some structural properties with those with minimal ABC index.

Recently, Lin et al. [45] made a solid step towards the problem. Firstly it was showed

that, given a degree sequence π there is a so-called BFS graph with maximal AZI in

C(π). This allows them conducted a computer search for n-vertex tree(s) with maximal

AZI up to n = 200. Based on the search results (see the Table 1 in [45]) they proposed

the following conjecture.

Conjecture 1.1 [45]. If n ≥ 19, D(n; dn−2
2
e, bn−2

2
c) (the balanced double star, see Figure.

1) is the unique n-vertex tree with maximal AZI.

Figure 1. The double star D(n; i, j), i+ j = n− 2

Moreover, towards this conjecture Lin et al. [45] showed that, an n-vertex tree with

maximal AZI has no vertices of degree 2 if n ≥ 19. In the present paper, we will confirm

this conjecture, namely, will completely solve Problem B.
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2 Some properties of [xy/(x + y − 2)]3

For x, y ≥ 1 with x + y ≥ 3 let h(x, y) = [xy/(x + y − 2]3, and for x ≥ 2 and y ≥ 1 with

x+ y ≥ 4 let l(x, y) = h(x, y)−h(x−1, y). Since AZI(G) is just the sum of h(di, dj) over

all pairs of adjacent vertices vi and vj of G, it is purposeful to establish some properties

of h(x, y).

Lemma 2.1 [32].

(1) h(x, 1) strictly decreases with x ≥ 2.

(2) h(x, 2) = 8.

(3) If y ≥ 3 is fixed, then h(x, y) strictly increases with x ≥ 2.

Lemma 2.2 [45]. If x, y, z ≥ 3 and w ≥ 2, then

1 < h(z, 1) ≤ h(3, 1) = (3/2)3 < h(2, 1) = h(2, w) = 8 < (9/4)3 = h(3, 3) ≤ h(x, y),

with the equalities iff z = 3 and x = y = 3, respectively.

Lemma 2.3 [45] . l(x, y + 1) > l(x, y) for x ≥ 2 and y ≥ 1 with x+ y ≥ 4.

Lemma 2.4 [45] . For x ≥ 2 and y ≥ 1,

(1) l(x, 1) (< 0) strictly increases with x ≥ 3.

(2) l(x, 2) = 0 for x ≥ 3.

(3) If y ≥ 3 is fixed, then l(x, y) (> 0) strictly increases with 2 ≤ x ≤ y − 1, and

strictly decreases with x ≥ y.

Lemma 2.5. If y > x ≥ 2, then l(x, y) > l(y, x). Hence h(x + 1, y − 1) > h(x, y) if

y ≥ x+ 2 ≥ 3.

Proof. From Lemmas 2.3 and 2.4 we have l(x, y) ≥ l(x, x+ 1) > l(x, x) > l(y, x). Hence

h(x+ 1, y − 1)− h(x, y) = l(x+ 1, y)− l(y, x+ 1) > 0.

Lemma 2.6. Let x ≥ 3 and f(x) = (x− 2)l(x, 1) + h(x, 1). Then f(x) strictly increases

with x, and −1.25 ≤ f(x) < 1.

Proof. Let g(x) = (x − 1)h(x, 1). It is easily seen that g′(x) = [x3/(x − 1)2]′ = x2(x −

3)/(x− 1)3, and so g′′(x) = 6x/(x− 1)4 > 0. Hence g(x) is strictly convex in [2,+∞). It

follows that f(x) = (x− 1)h(x, 1)− (x− 2)h(x− 1, 1) = g(x)− g(x− 1) strictly increases

with x ≥ 3. Immediately we have f(x) ≥ f(3) = −1.25.

To prove f(x) < 1, it suffices to show lim
x→+∞

f(x) = 1, which is easily seen from

f(x) =
x3

(x− 1)2
− (x− 1)3

(x− 2)2
=

x4 − 6x3 + 10x2 − 5x+ 1

x4 − 6x3 + 13x2 − 12x+ 4
.
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The proof is thus completed.

Lemma 2.7. If x ≥ 3, then (x− 2)l(x, 1) ≥ −4.625.

Proof. From Lemmas 2.2 and 2.6 we have

(x− 2)l(x, 1) ≥ −1.25− h(x, 1) ≥ −1.25− h(3, 1) = −4.625.

Lemma 2.8 [45] . l(y + 1, y) strictly increases with y ≥ 4.

Lemma 2.9. h(y + 1, y + 1) + h(y − 2, y) > 2h(y, y) > h(y + 1, y) + h(y − 1, y) if y ≥ 4.

Proof. By elementary computations we have

h(y + 1, y + 1) + h(y − 2, y) > 2h(y, y)⇔ (y + 1)6

(2y)3
+
y3(y − 2)3

[2(y − 2)]3
> 2

y6

[2(y − 1)]3

⇔ 3y7 − 9y6 − 6y5 + 6y4 + 8y3 − 3y − 1 > 0

⇐ 3y5(y2 − 3y − 2) > 0

⇐ y ≥ 4.

On the other hand, from Lemma 2.4 we have l(y, y) > l(y+ 1, y), and the second part

follows immediately.

Lemma 2.10. yl(y + 1, y − 1) ≥ (y − 3)l(y − 1, y) if y ≥ 3, with the equality iff y = 3.

Proof. The conclusion holds obviously if y = 3, hence assume y ≥ 4. By elementary

computations we have

yl(y + 1, y − 1) = y(y − 1)3[
(y + 1)3

(2y − 2)3
− y3

(2y − 3)3
]

= y(y − 1)3[
y + 1

2y − 2
− y

2y − 3
][(

y + 1

2y − 2
)2 +

y(y + 1)

(2y − 2)(2y − 3)
+ (

y

2y − 3
)2]

> 3y(y − 1)3 y − 3

(2y − 2)(2y − 3)
(

y

2y − 3
)2

=
3(y − 3)(y − 1)2y3

2(2y − 3)3
.

Analogously we have l(y− 1, y) < 3(y− 1)2y3/[2(2y− 3)3], and the conclusion follows

immediately.

3 Main results

To prove Conjecture 1.1 we need more preliminaries. For convenience, we call an n-vertex

tree with maximal AZI is optimal. If π is the degree sequence of an optimal tree, then π is

said to be an optimal tree degree sequence. In this section we always assume: (1) n ≥ 19;

(2) π = (∆ = d0, d1, · · · , dt, 1n−t−1) is a non-increasing optimal tree degree sequence,
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where dt ≥ 2 and 1k denotes k successive 1’s; and (3) T is the (unique) greedy (rooted)

tree in T(π). For the concepts and properties of the so-called BFS graphs and greedy

trees, one can refer to [46] and [47].

From the Lemmas 20-22 and the Theorem 23 in [45], we conclude some features of an

optimal tree degree sequence π and the corresponding greedy tree T .

Lemma 3.1 [45] . t ≥ 1, ∆ ≥ 10, and dt ≥ 3.

Lemma 3.2. If t ≥ 2, 1 ≤ τ ≤ t− 1, and p is the parent of vτ , then dτ ≥ d(p)− 1.

Proof. By contradiction suppose dτ ≤ d(p)− 2. Let u be the parent of vt, and w a child

of vt. Let T1 = T −vtw+vτw. For convenience let x = dt, y = dτ , z = d(u), and r = d(p).

yi’s, i = 1, 2, · · · , y − 1, will denote the degrees of the children of vτ . The degree of u in

T1 is z + 1 or z, depending on if u = vτ or not. Since T is greedy, we have r ≥ z and

r − 2 ≥ y ≥ x ≥ 3. From Lemmas 2.2-2.4 and 2.6 we have

AZI(T1)− AZI(T ) ≥ h(y + 1, r) + h(x− 1, z) + (x− 2)h(x− 1, 1) + h(y + 1, 1)

+
∑y−1

i=1
h(y + 1, yi)− [h(y, r) + h(x, z) + (x− 1)h(x, 1)

+
∑y−1

i=1
h(y, yi)] (Lemma 2.2)

≥ l(y + 1, r)− l(x, z) + [(y − 1)l(y + 1, 1) + h(y + 1, 1)]

− [(x− 2)l(x, 1) + h(x, 1)] (Lemma 2.3)

> l(y + 1, r)− l(y, r) (Lemmas 2.3, 2.4, 2.6)

> 0, (y ≤ r − 2 and Lemma 2.4)

a contradiction. The proof is thus completed.

Lemma 3.3. t ≤ ∆.

Proof. Suppose t > ∆. Let u be the parent of vt, and w a child of vt. Let T1 =

T − vtw + v0w. For convenience let x = dt, y = d0 = ∆, and z = d(u). Let yi’s,

i = 1, 2, · · · , y, denote the degrees of the children of v0. From Lemmas 3.1 and 3.2 we

have y∆ ≥ y − 1 ≥ 9. In addition we have y ≥ z ≥ x since T is greedy. From Lemmas

2.2-2.4 and 2.6 we have

AZI(T1)− AZI(T ) =
∑y

i=1
h(y + 1, yi) + h(y + 1, 1) + h(x− 1, z) + (x− 2)h(x− 1, 1)

− [
∑y

i=1
h(y, yi) + h(x, z) + (x− 1)h(x, 1)]

≥ yl(y + 1, y − 1)− l(x, z) + h(y + 1, 1)

− [(x− 2)l(x, 1) + h(x, 1)] (Lemma 2.3)
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> yl(y + 1, y − 1)− l(y − 1, y) (Lemmas 2.2− 2.4 and 2.6)

> 0, (y ≥ 10 and Lemma 2.10)

a contradiction. The proof is thus completed.

Now we are in the position to prove Conjecture 1.1.

Proof of Conjecture 1.1. For convenience let z = d0, y = d1, and x = d2. From

Lemmas 3.1 and 3.3 we have 1 ≤ t ≤ ∆. Hence all children of vi, 1 ≤ i ≤ t, are pendent

vertices. We distinguish the following two cases.

Case 1. t = 1. Then T = D(n; z − 1, y − 1). If T 6= D(n; dn−2
2
e, bn−2

2
c), then

z − 2 ≥ y ≥ 3. Let T1 = D(n; z − 2, y). From Lemmas 2.3, 2.4, and 2.6 we have

AZI(T1)− AZI(T ) = h(y + 1, z − 1) + yh(y + 1, 1) + (z − 2)h(z − 1, 1)

− [h(y, z) + (y − 1)h(y, 1) + (z − 1)h(z, 1)]

= [h(y + 1, z − 1)− h(y, z)] + [(y − 1)l(y + 1, 1) + h(y + 1, 1)]

− [(z − 2)l(z, 1) + h(z, 1)]

> l(y + 1, z − 1)− l(z, y)− 1.25− 1 (Lemma 2.6)

≥ l(y + 1, y + 1)− l(y + 2, y)− 2.25 (Lemmas 2.3 and 2.4)

= h(y + 1, y + 1)− h(y + 2, y)− 2.25

= [(y + 1)6 − y3(y + 2)3]/(8y3)− 2.25

= [3y4 + 12y3 + 15y2 + 6y + 1]/(8y3)− 2.25

> (3y + 12)/8− 2.25

≥ 0.375, (y ≥ 3)

contradicting that T is optimal.

Case 2. t ≥ 2. Then z ≥ y ≥ x ≥ 3 and y ≥ z − 1 ≥ 9 from Lemmas 3.1 and 3.2.

Denote the degrees of the children of v0 by zi’s, 1 ≤ i ≤ z. Note that z1 = y and z2 = x.

Let u1 and u2 be two children of v2, and T1 = T − v2u1 − v2u2 + v0u1 + v1u2.

Subcase 2.1. z = y + 1. From Lemmas 2.2-2.8 we have

AZI(T1)− AZI(T ) = h(x− 2, y + 2) + h(y + 1, y + 2) +
∑y+1

i=3
h(y + 2, zi) + h(y + 2, 1)

+ yh(y + 1, 1) + (x− 3)h(x− 2, 1)− [h(x, y + 1) + h(y, y + 1)

+
∑y+1

i=3
h(y + 1, zi) + (y − 1)h(y, 1) + (x− 1)h(x, 1)]
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≥ [h(x− 2, y + 2) + h(y + 1, y + 2)− h(x, y + 1)− h(y, y + 1)]

+ (y − 1)l(y + 2, 1) + (x− 3)[h(x− 2, 1)− h(x, 1)] + h(y + 2, 1)

+ [(y − 1)l(y + 1, 1) + h(y + 1, 1)]− 2h(x, 1) (Lemma 2.3)

> [h(x− 2, y + 2) + h(y + 1, y + 2)− h(x, y + 1)− h(y, y + 1)]

+ (y − 1)l(y + 1, 1) + 1− 1.25− 2h(3, 1) (Lemmas 2.2, 2.4, 2.6)

> h(x, y)− h(x, y + 1) + h(y + 1, y + 2)

− h(y, y + 1)]− 11.625 (Lemmas 2.5 and 2.7)

= l(y + 2, y + 1) + [l(y + 1, y + 1)− l(y + 1, x)]− 11.625

> l(y + 2, y + 1)− 11.625 (Lemma 2.3)

≥ l(11, 10)− 11.625 (y ≥ 9 and Lemma 2.8)

= 10.9588.

Hence AZI(T ) < AZI(T1), a contradiction.

Subcase 2.2. z = y (≥ 10). From Lemmas 2.2-2.9 we have

AZI(T1)− AZI(T ) = h(x− 2, y + 1) + h(y + 1, y + 1) +
∑y

i=3
h(y + 1, zi) + h(y + 1, 1)

+ yh(y + 1, 1) + (x− 3)h(x− 2, 1)− [h(x, y) + h(y, y)

+
∑y

i=3
h(y, zi) + (y − 1)h(y, 1) + (x− 1)h(x, 1)]

≥ h(x− 2, y + 1) + h(y + 1, y + 1)− h(x, y)− h(y, y)

+ (y − 2)l(y + 1, 1) + (x− 3)[h(x− 2, 1)− h(x, 1)] + h(y + 1, 1)

+ [(y − 1)l(y + 1, 1) + h(y + 1, 1)]− 2h(x, 1) (Lemma 2.3)

> h(x− 2, y + 1) + h(y + 1, y + 1)− h(x, y)− h(y, y)

+ (y − 2)l(y, 1) + 1− 1.25− 2h(3, 1) (Lemmas 2.2 and 2.6)

> h(x− 1, y) + h(y + 1, y + 1)

− h(x, y)− h(y, y)− 11.625 (Lemmas 2.5 and 2.7)

= −l(x, y) + l(y + 1, y + 1) + l(y + 1, y)− 11.625

> −l(y − 1, y) + l(y + 1, y + 1) + l(y + 1, y)− 11.625 (Lemma 2.4)

= h(y + 1, y + 1) + h(y − 2, y)− [h(y, y + 1) + h(y − 1, y)]

+ l(y + 1, y)− 11.625

> l(11, 10)− 11.625 (y ≥ 10 and Lemmas 2.8 and 2.9)
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= 10.9588.

Hence AZI(T ) < AZI(T1), again a contradiction.

The proof is thus completed.

4 Discussions

It is interesting that, among n-vertex trees (n ≥ 19) the star K1,n−1 uniquely minimizes

the AZI, while the balanced double star D(n; dn−2
2
e, bn−2

2
c) uniquely maximizes the AZI.

Both K1,n−1 and D(n; dn−2
2
e, bn−2

2
c) have many pendent vertices, and both their diameters

are small. It may be worthy of investigating the change of the AZI of a tree when it

evaluates from K1,n−1 to D(n; dn−2
2
e, bn−2

2
c). Another, it is easily known that, among n-

vertex connected graphs the complete graph Kn uniquely maximizes the AZI. However,

which graph(s) have maximal AZI among (m,n)-graphs (connected graphs with n vertices

and m edges) for m ≥ n? Therefore the following problems may be interesting.

Promblem 4.1. Characterize extremal trees with given diameter.

Promblem 4.2. Characterize extremal trees with given number of leaves.

Promblem 4.3. Order trees by their AZI.

Promblem 4.4. Characterize extremal (m,n)-graphs for m ≥ n.
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