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Abstract

The peripheral Wiener index, PW (G) is the sum of the distances of all pairs of
vertices in the periphery of a graph G. In this paper it is shown that, an arbitrary
graph G is an induced subgraph of a graph H for which PW (H) = PW (L(H))
holds, where L(K) is the line graph of K. Using Pell-like equations, infinite families
of graphs G are constructed for which PW (G) = PW (L(G)) holds. A connection
between the peripheral Wiener index and the Zagreb index for graphs of small
diameter is presented. It is also demonstrated that the partition distance approach
applicable to the peripheral Wiener index, making some earlier results as very
special cases of this approach.

1 Introduction

Because of the seminal Wiener’s discovery of a close relation between boiling points of

certain alkanes and the Wiener index [32], it became perceptible that graph invariants,

also addressed to as topological indices, can be used to predict properties of chemical
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compounds. During the related history, many additional topological indices have been

studied, in particular several Wiener-like indices such as the hyper-Wiener index [21], the
reciprocal Wiener index [16], and the terminal Wiener index [11, 27], to name just a few

of them.

Unless stated otherwise, the graphs considered in this paper are finite and connected.

If G is a graph, then m(G) denotes the size of G and n(G) the order of G. Let dG(u, v)

denote the usual shortest path distance between vertices u and v in G. The eccentricity

eG(v) or e(v) of a vertex v is the distance to a furthest vertex from v in G. The diameter,

diam(G) of G is the maximum eccentricity of G. A vertex v with eG(v) = diam(G) is

called a peripheral vertex of G. The set of peripheral vertices of G is called the periphery

of G and denoted by P (G). We will also use the notation p(G) = |P (G)| for the order of

the periphery. We note in passing that the periphery of a graph has many applications
(see eg. [19, 20]), in particular because (as stated in [4]), the peripheral attachments of a

molecule are quite often the deciding factor in chemical reactions; cf. also [33].

In [24] another Wiener-like topological index was introduced as follows. If G is a

graph, then its peripheral Wiener index PW (G) is the sum of the distances between all

pairs of peripheral vertices of G, that is,

PW (G) =
∑

{u,v}⊆P (G)

d(u, v) .

The peripheral Wiener index received an immediate attention. In [5] the main focus is

on the peripheral Wiener index of trees, while in [15] different upper and lower bounds

are proved. Moreover, sharp bounds on the difference between the Wiener index and the

peripheral Wiener index are derived. In this paper we continue the study of the peripheral

Wiener index with two main goals: to understand its behaviour on line graphs and to

demonstrate how the cut method is applicable to the peripheral Wiener index.

Recall that the line graph L(G) of a graph G is the graph with V (L(G)) = E(G),

two vertices of L(G) being adjacent if and only if the corresponding edges of G are

adjacent. The concept of line graph has found various applications in chemical research,

cf. [6,10,12,25]. In particular, iterated line graphs turned out to be chemically important,

see [7, 13, 30]. In this paper we are interested in cycle containing graphs G with the

property

PW (G) = PW (L(G)) . (1)
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The related problem has been extensively studied for the Wiener index, a survey of these

developments is given in [23].

Constructions of unicyclic and bicyclic graphs for which one of PW (G) > PW (L(G)),

PW (G) < PW (L(G)), or PW (G) = PW (L(G)) holds can be seen in [29]. In Sec-

tion 2 we show that any graph G is an induced subgraph of a graph H, such that

PW (H) = PW (L(H)) holds. In Section 3 we give two infinite families of graphs G

for which PW (G) = PW (L(G)) hold. Pell-like Diophantine equations are essential for

their analysis. Then, in Section 4, we give a connection between the peripheral Wiener in-

dex and the Zagreb index for graphs of small diameter. In Section 5 we point out that the

very general partition distance approach from [18] is applicable to the peripheral Wiener

index, making several earlier results a very special cases of this approach. A couple of

future research directions are indicated at the end.

2 Embedding graphs into graphs for which (1) holds

In this section we prove the following:

Theorem 2.1. If G is a graph, then there exists a graph H such that G is an induced

subgraph of H and PW (H) = PW (L(H)). Moreover, H − V (G) is a bicyclic graph.

Proof. Let Hp,q, p, q,≥ 2, be the graph obtained from disjoint cycles C2p+1 and C2q by

identifying a vertex of C2p+1 with a vertex of C2q. Setting V (C2p+1) = {u0, u1, . . . , u2p}

and V (C2q) = {w0, w1, . . . , u2q−1}, we may assume without loss of generality that in Hp,q

the vertex u0 is identified with w0, see Fig. 1.

wq

up

up+1

u0 w0C2p+1 C2q

Figure 1. Graph Hp,q.

Let now H be the graph obtained from the disjoint union of G and Hp,q by adding

all possible edges between the vertices of G and the vertices u0 = w0, u2p, and w2q−1. In

-131-



other words, in H there is a join between G and the subgraph of Hp,q induced by the

vertices u0 = w0, u2p, and w2q−1. See Fig. 2 where H is shown (left) and L(H) (right).

L(G)

u2p w2q−1

wq

up

up+1
u0 w0 ep e1

e2

e2p+1

f1

f2

f2q

fq

fq+1

C2p+1 C2q

G

L(C2p+1) L(C2q)

Figure 2. Graphs H (left) and L(H) (right)

It is now straightforward to verify that P (H) = {up, up+1, wq} and consequently

PW (H) = 2(p + q) + 1. Similarly, using the notation for the vertices of L(H) as

shown in Fig. 2, it is also a routine to check that P (L(H)) = {ep, fq, fq+1}. But then

PW (L(H)) = 2(p + q) + 1 and hence PW (H) = PW (L(H)). Since, clearly, G is an

induced subgraph of H and H − V (G) = Hp,q is a bicyclic graph, we are done.

Selecting G to be the empty graph in Therem 2.1, we infer that the graphs Hp,q (as

defined in the proof of the theorem) form an infinite family of bicyclic graphs for which (1)

holds.

3 Two infinite families and Pell-like equations

In this section we propose two families of graphs that lead to infinite families of graphs

with an arbitrary cyclomatic number that fulfil (1). Since a cycle of a graph induces

a cycle of same length in its line graph, the increase of the order of L(G) should be

compensated by decreasing the distances between vertices in L(G).

The first family consists of the graphs G(r, s, µ) as presented on the left part of Fig. 3,

where the below part of the figure displays L(G(r, s, µ)). The notation µ for the number

µ − 1 of triangles above the edge v1v2 is selected because µ(G(r, s, µ)) = µ, where µ(X)

is the cyclomatic number of X defined as µ(X) = m(X)− n(X) + 1.
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rµs

v1 v2

ba

µ− 1s r

Kµ−1Kµ−1

KrKs

Kµ Kµ

Ks Kr

G(r, s, µ) H(r, s, µ)

L(G(r, s, µ)) L(H(r, s, µ))

Figure 3. Graphs G(r, s, µ), H(r, s, µ), and their line graphs.

To simplify the notation, set G = G(r, s, µ). Note that the order of G is µ+ s+ r+ 3

and that p(G) = s + r + 2. Moreover, the order of L(G) is 2µ + s + r + 2 and L(G) is a

self-centered graph, that is, every vertex of it lies in the periphery. Hence

PW (G) = s2 + r2 + 3sr + 4r + 4s+ 1 ,

PW (L(G)) =
1

2

(
6sµ+ 6rµ+ 4sr + s2 + r2 + 5s+ 5r + 6µ2 + 8µ+ 2

)
.

If the equality holds in (1) for G, then we get the following quadratic equation with respect

to the parameters s, r and µ:

s2 + (2r − 6µ+ 3)s+ (−6µ2 − 6µr − 8µ+ r2 + 3r) = 0 .

A suitable root of this equation is equal to

s =
(6µ− 2r − 3) +

√
60µ2 − 4µ+ 9

2
. (2)
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The number s is an integer if and only if the radicand in (2) is an odd perfect square,

that is, y2 = 60µ2 − 4µ + 9 for some odd integer y. Applying substitution x = 30µ − 1,

equality (2) can be rewritten as:

s+ r =
x+ 5y

10
− 7

5
, (3)

with the relation

15y2 − x2 = 134 , (4)

which is a Pell-like Diophantine equation, see [28]. It has an infinite number of solutions.

All solutions of equation (4) can be generated by the following explicit formulae for integers

n ≥ 1: {
xn = 4xn−1 + 15yn−1

yn = xn−1 + 4yn−1

(5)

with the initial values x0 + y0
√
15 = 1 + 3

√
15 or x0 + y0

√
15 = 41 + 11

√
15, since both

initial values are fundamental solutions of (4).

Consider next graphs H(r, s, µ) and L(H(r, s, µ)) as shown in Fig. 3. We again use

the parameter µ to indicate that the cyclomatic number of H(r, s, µ) is µ.

To simplify the presentation, set for the rest H = H(r, s, µ). The graph H has

µ+ s+ r + 2 vertices among which s+ r are peripheral. So we have

PW (H) = 3sr + s2 + r2 − s− r .

PW (L(H)) =
1

2
(6µs+ 6µr + 4rs+ s2 + r2 − s− r + 6µ2 − 4µ) .

If the equality holds in (1) for H, then

s2 + 3sr − s+ r2 − r =
1

2
(6µs+ 6µr + 4rs+ s2 + r2 − s− r + 6µ2 − 4µ).

Solving this for s, we have a suitable solution of the form

s =
6µ− 2r + 1 +

√
60µ2 − 4µ+ 1

2
. (6)

The number s is an integer if and only if y2 = 60µ2 − 4µ + 1, for some odd integer y.

Using substitution x = 30µ− 1, equality (6) can be presented as:

s+ r =
x+ 5y

10
+

3

5
, (7)

with the relation

15y2 − x2 = 14 , (8)
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which is a Pell-like Diophantine equation.

Solution of (8) can be obtained from the explicit equations for odd n{
xn = 4xn−1 + 15yn−1

yn = xn−1 + 4yn−1

(9)

with the initial condition x0 + y0
√
15 = 1 +

√
15 or x0 + y0

√
15 = 11 + 3

√
15, since both

initial values are fundamental solutions of (9) .

The solutions of (4) and (8) have basically the same form, except their initial condi-

tions. The first solutions are presented in Table 1. Here the value of N in the Diophantine

equations 15y2−x2 = N in (4) and (8) are shown. Below the value N = 134 the first two

columns are for the first initial condition x0+y0
√
15 = 1+3

√
15 and the next two columns

are for the second initial condition x0 + y0
√
15 = 41 + 11

√
15. Similarly, below the value

N = 14 the first two column are for the first initial condition x0 + y0
√
15 = 1 +

√
15 and

the next two columns are for the second initial condition x0 + y0
√
15 = 11 + 3

√
15.

Table 1. First solutions for recurrence relations (5) and (9)

N = 134 N = 14
n xn yn xn yn xn yn xn yn
0 1 3 41 11 1 1 11 3
1 49 13 329 85 19 5 89 23
2 391 101 2591 669 151 39 701 181
3 3079 795 20399 5267 1189 307 5519 1425
4 24241 6259 160601 41467 9361 2417 43451 11219
5 190849 49277 1264409 326469 73699 19029 342089 88327
6 1502551 387957 9954671 2570285 580231 149815 2693261 695397
7 11829559 3054379 78372959 20235811 4568149 1179491 21203999 5474849

To construct an infinite sequence of graphs with increasing cyclomatic number that

satisfy (1), we find an infinite sequence of solutions of (4) and (8) with integer µ.

Consider the family based on the graph G. Since µ = x+1
30

, the values of x must equal

to 29 (mod 30) so that µ will has integer value. These values of x depend on the initial

values x0 + y0
√
15. For the initial value 1+ 3

√
15, One can easily observe that the values

of x are either 1 (mod 30) or 19 (mod 30), which are irrelevant.

For the initial value 41 + 11
√
15, the values of x are either 11 (mod 30) or 29 (mod 30).

Thus µ has integer values for an odd integer n for which the initial value 41 + 11
√
15 is

taken. Few examples of respective values of xn and yn are presented in Table 2 for which

µ has integer values.
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Table 2. First five solutions of recurrence relation (5) for which µ has integer values.

n xn yn µ
1 329 85 11
3 20399 5267 680
5 1264409 236469 42147
7 78372959 20235811 2612432
9 4857859049 1254293813 161928635

Since s+ r = 3µ+ y−3
2
, there are at least

⌊
6µ+y−3

4

⌋
+ 1 non-isomorphic graphs having

property (1) for a given µ.

Consider now the family based on the graph H. In similar way as in the case for graph

G, since µ = x+1
30

, the values of x must equal to 29 (mod 30) so that µ has integer values.

The values of xn, for odd integer n satisfy this condition with initial value x0 + y0
√
15 =

11 + 3
√
15. The first five values of xn and yn are presented in Table 3 for which µ has

integer values.

Table 3. First five solutions of recurrence relation (9) for which µ has integer values.

n xn yn µ
1 83 233 3
3 5519 1425 184
5 342089 88327 11403
7 21203999 43103395 706800
9 1314305849 339352311 43810195

Since s+ r = 3µ+ y+1
2
, there are at least

⌊
6µ+y+1

4

⌋
+ 1 non-isomorphic graphs having

property (1) for given µ.

4 On PW (L(G)) and the first Zagreb index

In this short section we give a connection between the peripheral Wiener index of line

graphs of small diameter and the first Zagreb index. The latter index of a graph G is

defined as

M1(G) =
∑

v∈V (G)

deg(v)2 ,

and is one of the oldest and most thoroughly studied topological indices. It was introduced

in 1972 by Gutman and Trinajstić [14], surveyed 30 years after in [8], while 45 years after

-136-



the bounds for the Zagreb indices were surveyed in [3]. The first Zagreb index keeps going

to be in the focus of researchers, cf. [1, 2, 26]. The connection reads as follows.

Theorem 4.1. If G is a graph with diam(L(G)) = 2, then

PW (L(G)) =

(
m(G) + 1

2

)
+

(
p(L(G))

2

)
− 1

2
M1(G) .

Proof. Clearly, n(L(G)) = m(G), while the number of edges of L(G) can be expressed as

follows:

m(L(G)) =
∑

v∈V (G)

(
deg(v)

2

)
=

1

2

∑
v∈V (G)

deg(v)2 − 1

2

∑
v∈V (G)

deg(v)

=
1

2
M1(G)−m(G) .

Since diam(L(G)) = 2, the following relation follows from [24, Theorem 2]:

PW (L(G)) =

(
n(L(G))

2

)
+

(
p(L(G))

2

)
−m(L(G)) .

Consequently,

PW (L(G)) =

(
m(G)

2

)
+

(
p(L(G))

2

)
−

(
1

2
M1(G)−m(G)

)
=

(
m(G) + 1

2

)
+

(
p(L(G))

2

)
− 1

2
M1(G) .

For regular graphs Theorem 4.1 simplifies as follows. The computation is straightfor-

ward and hence omitted.

Corollary 4.2. If G is an r-regular graph with diam(L(G)) = 2, then

PW (L(G)) =
n(G)r(n(G)r − 4r + 2)

8
+

(
p(L(G))

2

)
.

5 Peripheral Wiener index and cut method

In this section we relate the peripheral Wiener index with the cut method. More precisely,

we demonstrate that the very general approach from [18] applies to the peripheral Wiener

index which in turn implies that some earlier stated results appear as very special cases.
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Let G be a graph and let P = {V1, . . . , Vk} be a partition of V (G). Let fP : V (G) →

[k] = {1, . . . , k} be the index function of P defined with fP(v) = i, where v ∈ Vi. The

partition distance WP(G) of G with respect to P is defined as:

WP(G) =
∑
{u,v}

fP (u)=fP (v)

dG(u, v) .

That is, in WP(G) only the distance between those pairs of vertices are counted which lie

in the same part of the partition P .

Now, let G be a graph with the periphery P (G) and let V (G)− P (G) = {v1, . . . , vk}.

Let us call the partition T = {P (G), {v1}, . . . , {vk}} of V (G) the peripheral partition.

Thus, if T is the peripheral partition of V (G), then we have:

PW (G) = WT (G) .

One of the main theorems from [18] then, for the case of the peripheral Wiener index,

reduces to the following result.

Theorem 5.1. Let G be a connected graph and {F1, . . . , Fr} the Θ∗-partition of E(G).

Then

PW (G) =
r∑

i=1

W (G/Fi, wi) ,

where wi(C) = |C ∩ P (G)| for any C ∈ V (G/Fi).

We do not formally define here the concepts used in Theorem 5.1, the reader can find

them in [18] or in [17], where a survey on the cut method is given. The method itself has

a long history, see [31] (references therein) for a recent nice development.

Let us conclude with a remark that the following result from [24, Theorem 5] is a very

special case of Theorem 5.1. If T is a tree and e ∈ E(T ), then let p1(e) and p2(e) be the

number of peripheral vertices of T lying on the two sides of e, respectively. Then:

Proposition 5.2. If T is a tree, then

PW (T ) =
∑

e∈E(T )

p1(e) · p2(e) .

6 Concluding remarks

In this paper we were in particular interested in graphs G for which PW (G) = PW (L(G))

holds. A more general (and also interesting) question is to find, or, ideally, characterize
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the graphs G for which

PW (G) = PW (Lk(G))

holds, where k is a fixed, positive integer. The related problem for the Wiener idenx was

formulated in [9]. See also [22], where the equation W (L3(T )) = W (T ) is solved for trees,

and references therein.

At the end of Section 2 we have observed that the graphs Hp.q are bicyclic graphs

for which (1) holds. It would be of interest to consider the problem of the existence of

bicyclic graphs G for which PW (G) = PW (Lk(G)) holds for some fixed integer k ≥ 2.
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