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Abstract

The Graovac-Pisanski index is a topological index that at the same time involves

graph distances and symmetries of a given graph. In this note it is proved that the

values 0, n/2, n, 3n/2, and 2n are the only values of the Graovac-Pisanski index

(alias modified Wiener index) from the interval [0, 2n] or real numbers that are

realizable in the class of all graphs of order n. In the class of trees of order n, only

the values 0, n, and 2n are realizable.

1 Introduction
The celebrated Wiener index [23] of a connected graph G is defined as W (G) =

∑
dG(u, v),

where dG(u, v) is the shortest-path distance in G between the vertices u and v, and the

summation runs over all unordered pairs of vertices of G. For its historical developments

see the papers collected on the occasion of the 50th anniversary of the index [13] and

the survey papers [5, 7, 16]. The wide contemporary interest for the Wiener index can be

easily deduced from the recent studies [2, 3, 6, 11, 15, 21] and references therein.
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In 1991, Graovac and Pisanski introduced a modified version of the Wiener index with
the idea that the new invariant involves, besides the graph distances, also the symmetries

of a given graph. In the seminal paper [12] the invariant was names the modified Wiener

index and renamed in [10] to the Graovac-Pisanski index (GP index for short). It is

defined as follows. If G is a graph, Aut(G) the automorphism group of G, and n(G)

denotes the order of G, then the GP index of G is

Ŵ (G) =
n(G)

2|Aut(G)|
∑

x∈V (G)

∑
α∈Aut(G)

dg(x, α(x)) .

After its introduction, the GP index received almost no attention, but in the last years

the situation is completely different, see [1, 8, 9, 19, 22]. In this note we are interested in
the inverse problem for the GP index. In general, the inverse problem asks, for a given

(chemical) graph invariant TI and a given value k, find (chemical) graphs G for which

TI(G) = k, cf. [14,18,20,24]. In this direction we prove in our main result that the values

0, n/2, n, 3n/2, and 2n are the only values of the GP index from the interval [0, 2n] or

real numbers that are realizable in the class of all graphs of order n. Moreover, we prove

that within the class of trees on n vertices, only the values 0, n, and 2n are realizable.

2 Values of the GP index in [0, 2n]

Let G be a graph. Recall that the action of Aut(G) on V (G) partitions V (G) into orbits.

That is, vertices x and y belong to the same orbit if and only if there exists α ∈ Aut(G)

such that α(x) = y. If X ⊆ V (G), then W (X) is the sum of distances over all unordered

pairs of vertices of X. In the seminar paper [12], the following very useful result was

proved.

Theorem 2.1 If G is a connected graph and V1, . . . , Vk are the orbits of V (G) under the

action of Aut(G), then

Ŵ (G) = n(G)
k∑

i=1

W (Vi)

|Vi|
.

Before our main result we state a lemma. It is possible that it is already present (in

one way or another) in the literature, but we could not find it. To be self-contained, we

hence include its proof.

Lemma 2.2 If G is a connected graph and X ⊆ V (G) is an orbit of cardinality 3, then

X either induces an independent set or a triangle.
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Proof. Let X = {x, y, z}. If X induces an independent set there is nothing to prove.

Hence suppose that X induces at least one edge, say xy ∈ E(G). Assume xz /∈ E(G).

Since x, y, z are in the same orbit, there exists an automorphism ϕ ∈ Aut(G) such that

ϕ(x) = z. Then ϕ(y) ∈ {x, y} and therefore

1 = dG(x, y) = dG(ϕ(x), ϕ(y)) = dG(z, ϕ(y)) .

This means that ϕ(y) = y and yz ∈ E(G). Consider now an automorphism α ∈ Aut(G)

such that α(y) = x. If α(x) = y, then α(z) = z and hence

2 ≤ dG(x, z) = dG(α(x), α(z)) = dG(y, z) = 1 ,

while if α(x) = z, then α(z) = y and hence

2 ≤ dG(x, z) = dG(α(x), α(z)) = dG(z, y) = 1 .

These contradictions prove that xz ∈ E(G), so X induces a triangle.

Let Gn be the class of simple, connected graphs of order n and let Ŵ [Gn] be the set of

all values of the GP index over the graphs from Gn, that is,

Ŵ [Gn] = {Ŵ (G) : G ∈ Gn} .

Then our main result reads as follows.

Theorem 2.3 If n ≥ 6, then Ŵ [Gn] ∩ [0, 2n] = {0, n/2, n, 3n/2, 2n}.

Proof. Let n ≥ 6, let G ∈ Gn, and assume that Ŵ (G) ≤ 2n. Let V1, . . . , Vk be the orbits

of V (G) under the action of Aut(G) and let ni = |Vi|, i ∈ [k]. Clearly, if k = n (that is,

if ni = 1 for every i ∈ [k]), then Ŵ (G) = 0. Hence assume in the rest that k < n. We

may without loss of generality assume that the non-singleton orbits are V1, . . . , Vt, where

t ≤ k. Then

Ŵ (G) = n

k∑
i=1

W (Vi)

ni

= n

t∑
i=1

W (Vi)

ni

.

For i ∈ [t] set Ŵi = W (Vi)/ni, so that Ŵ (G) = n
∑t

i=1 Ŵi. Note that the smallest

possible value of Ŵi is realized if the orbit Vi induces a complete subgraph, in which case

we have Ŵi =
(
ni

2

)
/ni. Consequently,

Ŵi ∈
{
ni(ni − 1)/2

ni

,
(ni(ni − 1)/2) + 1

ni

, . . .

}
, i ∈ [t] . (1)
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If ni ≥ 5, then Ŵi ≥ 2 by (1), and hence Ŵ (G) ≥ 2n. Hence we may assume in the rest

that ni ≤ 4 holds for every i ∈ [t].

Suppose that Vi = {x, y}. If dG(x, y) ≥ 5, then Ŵi > 2 and consequently Ŵ (G) > 2n.

Hence, if |Vi| = 2, then Ŵi ∈ {1/2, 1, 3/2, 2}. Consider next an orbit Vi of cardinality

3. From Lemma 2.2 we know that Vi either induces an independent set or a triangle. In

the first case Ŵi ≥ 6/3 and in the second case Ŵi = 1. We conclude that if |Vi| = 3,

then Ŵi ∈ {1, 2}. Consider next an orbit of cardinality 4, say Vi = {x, y, z, w}. From (1)

we get that Ŵi ∈ {6/4, 7/4, 2}. We claim that actually Ŵi ∈ {3/2, 2}. Suppose on the

contrary that Ŵi = 7/4. Then among the
(
4
2

)
= 6 distances between the pairs of vertices

of Vi, distance 1 appears five times and distance 2 once, that is, Vi induces the complete

graph on four vertices minus an edge. Assume without loss of generality that xy /∈ E(G)

and consider ϕ ∈ Aut(G) such that ϕ(x) = w. Then ϕ(y) ∈ {x, y, z} and hence

2 = dG(x, y) = dG(ϕ(x), ϕ(y)) = dG(w,ϕ(y)) = 1 ,

a contradiction. Thus, if |Vi| = 4, then Ŵi ∈ {3/2, 2}.

We have thus proved that if |Vi| = 2, then Ŵi ∈ {1/2, 1, 3/2, 2}; if |Vi| = 3, then

Ŵi ∈ {1, 2}; and if |Vi| = 4, then Ŵi ∈ {3/2, 2}. From this it readily follows that

Ŵ [Gn] ∩ [0, 2n] ⊆ {0, n/2, n, 3n/2, 2n}.

It remains to show that {0, n/2, n, 3n/2, 2n} ⊆ Ŵ [Gn] ∩ [0, 2n] holds for every n ≥ 6.

For this sake denote the vertices of the path Pn on n vertices with v1, . . . , vn (with natural

edges vivi+1, i ∈ [k − 1]), and for every n ≥ 6 define the following graphs.

• Xn is the graph obtained from Pn−1 by adding a new vertex x and the edges xv1

and xv2.

• Yn is the graph obtained from Pn−1 by adding a new vertex y and the edge yv2.

• Zn is the graph obtained from Pn−2 by adding new vertices z1 and z2 and edges

v1z1, z1z2, and z2v3.

• Wn is the graph obtained from Pn−2 by adding new vertices w1 and w2 and edges

w1v2 and w2v2.

Clearly, n(Xn) = n(Yn) = n(Zn) = n(Wn) = n. It is also straightforward to check that

Ŵ (Xn) = n/2, Ŵ (Yn) = n, Ŵ (Zn) = 3n/2, and Ŵ (Wn) = 2n.
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In [17], for a fixed positive integer n, all trees on n vertices are determined that have

the maximum value of the GP index. We now complement this classification with the

following result which further reduces the variety of the possible values of the GP index

for trees. Let Tn denote the class trees of order n, and let Ŵ [Tn] be the set of all values

of the GP index over all trees from Tn. For the proof of our result on trees, the following

definitions will be useful. If G is a connected graph, then the eccentricity of a vertex

v ∈ V (G) is the maximum distance dG(v, x) between v and the vertices x ∈ V (G). The

center C(G) of G is the set of all vertices of minimum eccentricity.

Theorem 2.4 If n ≥ 6, then Ŵ [Tn] ∩ [0, 2n] = {0, n, 2n}.

Proof. Let n ≥ 6 and let T ∈ Tn. It is well-known that for every tree we have |C(T )| ∈

{1, 2}.

Suppose first that C(T ) = {x}. Since automorphisms preserve distances, C(T ) forms

one of the orbits of V (T ) under the action of Aut(T ). If all the other orbits are also

singletons, then Ŵ (T ) = 0. Assume next that X is an orbit with |X| = 2, say X = {u, v}.

Then, since dT (u, v) is even, W (X)/2 ∈ N. Consider next an orbit X of cardinality

|X| = k ≥ 3. Since the vertices from X are pairwise at even distances, we have W (X)/k ≥

2
(
k
2

)
/2 = k − 1 ≥ 2. It now readily follows that if Ŵ (T ) ≤ 2n, then Ŵ (T ) ∈ {0, n, 2n}.

Suppose second that C(T ) = {x, y}. If C(T ) forms an orbit of V (T ) under the action

of Aut(T ), then W (C(T ))/2 = 1/2. In that case, since n ≥ 6, an automorphism that

transposes the vertices x and y yields an orbit Y containing a neighbor of x (different from

y) and a neighbor of y (different from x). For this orbit we then have W (Y )/|Y | ≥ 3/2

and hence Ŵ (T ) ≥ 2n. On the other hand, if x and y are not in the same orbit and T in

not asymmetric, then as above we see that for each such orbit Z of cardinality at least 2,

we have W (Z)/|Z| ∈ {1, 2} ∪ (2,∞). Hence we can again conclude that if Ŵ (T ) ≤ 2n,

then Ŵ (T ) ∈ {0, n, 2n}.

To complete the proof note that the families of trees Yn and Zn from the proof of

Theorem 2.3 yield that {0, n, 2n} ⊆ Ŵ [Tn] ∩ [0, 2n] holds for every n ≥ 6.

We note that if n is odd, then Theorem 2.3 can be deduced by combining Theorem 2.3

with the main result of [4].
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