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Abstract

The well-known Wiener index is defined as the sum of all distances between
pairs of vertices. Motivated from applications in biochemistry the inverse Wiener
problem asks, for any given positive integer, the structure that has its Wiener
index of this value. This problem was completely solved through a series of studies.
When distances are replaced with the Steiner distances, the k-Steiner Wiener index
was introduced recently. Naturally, the inverse Steiner Wiener problem was also
brought forward. In this paper we show that all but finitely many positive integers
are Steiner 3-Wiener indices of some graphs, consequently solving the inverse Steiner
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Wiener problem for k = 3. We then generalize our approach to show, that pending
some initial condition, it is likely that all but finitely many positive integers are
Steiner k-Wiener indices of graphs. This is confirmed for small values of k with the
help of computer. We also comment on potential future work.

1 Introduction
In Chemical Graph Theory one often uses graph invariants to represent the structural

information of a molecular graph, in the hope of predicting the behavior of the corre-

sponding chemical compound. One of the most well-known such graph invariants is the

sum of distances between all pair of vertices in a graph, also known as the Wiener in-

dex [20, 21]. This is formally defined as

W (G) =
∑

u,v∈V (G)

d(u, v),

where d(u, v) is the distance between vertices u and v in G. Motivated from practical

needs, the so-called inverse Wiener problem was proposed:

Question 1.1 For any positive integer x, does there exist a graph G (a tree T ) such that

W (G) = x, (W (T ) = x)?

The problem was solved [3] for general graphs as all but finitely positive integers are

Wiener indices of some graph. For trees the same conclusion was first conjectured [4, 7]

and then shown in [15, 16, 19]. Other related work can also be found in [8, 17].

For a set S ⊂ V (G) of vertices, the Steiner distance d(S) is the minimum size of a

connected subgraph of G whose vertex set contains S. When |S| = 2, d(S) is exactly the

distance between two vertices. Replacing distances with the Steiner distances, a natural

generalization of the Wiener index was introduced in [9], called the Steiner k-Wiener

index and defined as

SWk(G) =
∑

S⊆V (G),|S|=k

d(S).

It appears that SWk(G) was also introduced and studied under the term average

Steiner distance much earlier in [1, 2]. More recently, as a chemical index the Steiner

k-Wiener index received more attention as various related questions are examined [5, 6,

10–14,18]. In particular, some preliminary studies of the inverse Steiner Wiener problem

were conducted in [10]. In this note we first solve the inverse Steiner Wiener problem for

k = 3 by proving the following.
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Theorem 1.1 All but finitely many positive integers are Steiner 3-Wiener indices of

graphs.

The proof of Theorem 1.1 will be presented in Section 2. We then further apply our

approach to general values of k, proving that similar conclusion is likely to hold, provided

that a initial condition can be established. This discussion is presented in Section 3. We

then apply our result to small values of k and solve the inverse Steiner Wiener problem

for k = 4 and 5. We present the corresponding statements with some concluding remarks

in Section 4.

2 The inverse Steiner Wiener problem for k = 3

First we point out that

SW3(Kn) = 2

(
n

3

)
and

SW3(Sn) = 2

(
n− 1

2

)
+ 3

(
n− 1

3

)
= (n− 1) ·

(
n− 1

2

)
= SW3(Kn) +

(
n− 1

3

)
for the complete graph Kn and the star Sn on n vertices. This is because:

• In Kn, d(S) = 2 for every one of the
(
n
3

)
3-vertex subsets of vertices;

• In Sn, depending on whether the center is in a 3-vertex subset S of vertices, we have

d(S) = 2 or 3;

• From Kn to Sn, the
(
n−1
3

)
subsets of 3 vertices that does not include the center has

d(S) increased from 2 to 3.

For instance, Table 1 shows the values of SW3(Kn) and SW3(Sn) for small n’s.

We will show that, for large enough n, every positive integer between SW3(Sn) and

SW3(Kn) can be represented as the Steiner 3-Wiener index of some graph. Note that by

adding edges to a star we create a graph with diameter 2. More precisely, we have the

following.

Theorem 2.1 For any given n ≥ 6 and any x ∈
[
2
(
n
3

)
, (n− 1)

(
n−1
2

)]
, there exists a

connected graph G with diameter 2 such that SW3(G) = x.
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Table 1. The values of SW3(Sn) and SW3(Kn).

n SW3(Kn) SW3(Sn)
3 2 2
4 8 9
5 20 24
6 40 50
7 70 90
8 112 147
9 168 224
10 240 324
11 330 450
12 440 605

Proof. We will show, by induction on n, that every x ∈ [2
(
n
3

)
, (n−1)

(
n−1
2

)
] is the Steiner

3-Wiener index of some graph created from adding some edges to a star. It is obvious that
such graphs have diameter 2. For example, the graphs in Figure 1 has Steiner 3-Wiener

index value from

SW3(K6) = SW3(G1) = 40

to

SW3(S6) = SW3(G11) = 50.

Thus, by Figure 1, the conclusion holds for n = 6. Suppose now that the conclusion
holds for n = m ≥ 6. That is, for any

x ∈
[
2

(
m

3

)
, (m− 1)

(
m− 1

2

)]
we have SW3(G) = x for some graph of order m with diameter 2. Now, in the case of
n = m+ 1, we are interested in the interval[

2

(
m+ 1

3

)
,m

(
m

2

)]
. (1)

Through simple algebra we have

m

(
m

2

)
−

(
m− 1

3

)
≤ 2

(
m+ 1

3

)
+

(
m− 1

3

)
and hence[

2

(
m+ 1

3

)
,m

(
m

2

)]
⊂

[
2

(
m+ 1

3

)
, 2

(
m+ 1

3

)
+

(
m− 1

3

)]
∪
[
m

(
m

2

)
−

(
m− 1

3

)
,m

(
m

2

)]
.

Consequently, to consider every x in (1) it suffices to consider two cases.
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(a) G1 (b) G2

(c) G3 (d) G4

(e) G5 (f) G6

(g) G7 (h) G8

(i) G9 (j) G10

(k) G11

Figure 1. The Steiner 3-Wiener index of graphs of order n = 6.

Case I . If x ∈
[
2
(
m+1
3

)
, 2
(
m+1
3

)
+
(
m−1
3

)]
, let

x = 2

(
m+ 1

3

)
+ x1

for some 0 ≤ x1 ≤
(
m−1
3

)
. Then we have

x′ = 2

(
m

3

)
+ x1 ∈

[
2

(
m

3

)
, (m− 1)

(
m− 1

2

)]
.

By our induction hypothesis, there is a graph G′ on m vertices with diameter 2 such

that SW3(G
′) = x′. We now consider the graph G of order m+1, obtained from G′

by joining an additional vertex w with all vertices of G′. It is easy to see that G is

also of diameter 2 (Figure 2).

To evaluate SW3(G), we consider d(S) for each 3-vertex subset S in G:
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w
G′

Figure 2. The graph G obtained from G′ (Case I).

– If S does not contain w, then d(S) is the same in G as in G′. And the sum of

all such Steiner distances is exactly SW3(G
′);

– If S does contain w, then d(S) = 2 and there are
(
m
2

)
ways to choose the other

two vertices.

Consequently we have, through simple algebra, that

SW3(G) = SW3(G
′) + 2

(
m

2

)
=

(
2

(
m

3

)
+ x1

)
+ 2

(
m

2

)
= 2

(
m+ 1

3

)
+ x1

= x.

Case II . If x ∈
[
m
(
m
2

)
−

(
m−1
3

)
,m

(
m
2

)]
, let

x = m

(
m

2

)
− x2

for some 0 ≤ x2 ≤
(
m−1
3

)
.

Then we have

x′ = (m− 1)

(
m− 1

2

)
− x2 ∈

[
2

(
m

3

)
, (m− 1)

(
m− 1

2

)]
.

By our inductive hypothesis, there is a graph G′ on m vertices with diameter 2 such

that SW3(G
′) = x′.

Recall that G′ can be viewed as a star with additional edges between the leaves, let

the center of the star (i.e. the vertex adjacent to all other vertices in G′) be v. We

now consider the graph G of order m+1, obtained from G′ by joining an additional

vertex w with v. It is easy to see that G is also of diameter 2 (Figure 3).

To evaluate SW3(G), we consider d(S) for each 3-vertex subset S in G:
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w

v
G′

Figure 3. The graph G obtained from G′ (Case II).

– If S does not contain w, then d(S) is the same in G as in G′. And the sum of

all such Steiner distances is exactly SW3(G
′);

– If S contains w but not v, then d(S) = 3 and there are
(
m−1
2

)
ways to choose

the other two vertices;

– If S contains both w and v, then d(S) = 2 and there are
(
m−1
1

)
ways to choose

the third vertex;

Consequently we have, through simple algebra, that

SW3(G) = SW3(G
′) + 3

(
m− 1

2

)
+ 2

(
m− 1

1

)
=

(
(m− 1)

(
m− 1

2

)
− x2

)
+ 3

(
m− 1

2

)
+ 2

(
m− 1

1

)
= m

(
m

2

)
− x2

= x.

The conclusion then follows from the fact that all x in (1) is considered in at least one

of the above cases.

Theorem 2.1 claims that the interval

In :=

[
2

(
n

3

)
, (n− 1)

(
n− 1

2

)]
is “representable” by the Steiner 3-Wiener index for n ≥ 6. Note that

(n− 1)

(
n− 1

2

)
≥

(
n+ 1

3

)
when n is sufficiently large. Hence all but finitely many positive integers are in In for some

n, implying Theorem 1.1. With the help of computer one can easily check the values not
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included in ∪In and find that the following positive integers are not the Steiner 3-Wiener

index of any graph:

1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 29, 31, 32,

33, 34, 35, 36, 37, 38, 39, 57, 59, 60, 63, 65, 66, 67, 68, 69.

As a consequence we have the following stronger version of Theorem 1.1.

Theorem 2.2 Except for the 34 numbers listed above, every positive integer is the Steiner

3-Wiener index of some simple connected graph.

3 The inverse Steiner Wiener problem for general k

In this section we show how the argument from the previous section can be used to study

the inverse Steiner Wiener problem for general k. Given k ≥ 4, similar to before, it is

easy to obtain

SWk(Kn) = (k − 1)

(
n

k

)
and

SWk(Sn) = (n− 1)

(
n− 1

k − 1

)
= SWk(Kn) +

(
n− 1

k

)
.

Again we wish to show that every integer in the interval
[
(k − 1)

(
n
k

)
, (n− 1)

(
n−1
k−1

)]
is the

Steiner k-Wiener index of some connected simple graph. For the purpose of all related

discussion we define the statement Pn,k as

For every integer x in
[
(k − 1)

(
n
k

)
, (n− 1)

(
n−1
k−1

)]
there is a connected simple graph G

of order n with diameter 2 such that SWk(G) = x.

The theorem below states that if Pn,k is true for some n ≥ 2k then the inverse Steiner

Wiener problem is solved for that particular k.

Theorem 3.1 For any given k ≥ 4, if Pn,k holds for some n ≥ 2k, then all but finitely

many positive integers are Steiner k-Wiener indices of simple connected graphs.

Proof. First suppose that Pm,k holds for some m ≥ 2k. We will prove, by induction on

n, that Pn,k holds for any n ≥ m.

Assume Pn,k, to consider Pn+1,k we first point out the fact that[
(k − 1)

(
n+ 1

k

)
, n

(
n

k − 1

)]
⊂ I1 ∪ I2,
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where

I1 =

[
(k − 1)

(
n+ 1

k

)
, (k − 1)

(
n+ 1

k

)
+

(
n− 1

k

)]
and

I2 =

[
n

(
n

k − 1

)
−

(
n− 1

k

)
, n

(
n

k − 1

)]
.

For that we needed

(k − 1)

(
n+ 1

k

)
+

(
n− 1

k

)
≥ n

(
n

k − 1

)
−

(
n− 1

k

)
,

which simplifies to 2
(
n−1
k

)
≥

(
n
k

)
and is true when n ≥ m ≥ 2k. As in the proof of

Theorem 2.1, we proceed by considering two cases:

1. For any x ∈ I1, let x = (k − 1)
(
n+1
k

)
+ x1 for some 0 ≤ x1 ≤

(
n−1
k

)
. Then

x′ = (k − 1)

(
n

k

)
+ x1 ∈

[
(k − 1)

(
n

k

)
, (n− 1)

(
n− 1

k − 1

)]
and hence we have SWk(G

′) = x′ for some G′ of order n with diameter 2. Let G be

obtained from G′ by joining an additional vertex with every vertex in G′. Then we

have

SWk(G) = SWk(G
′) + (k − 1)

(
n

k − 1

)
= (k − 1)

(
n

k

)
+ (k − 1)

(
n

k − 1

)
+ x1

= (k − 1)

(
n+ 1

k

)
+ x1 = x.

2. For any x ∈
[
n
(

n
k−1

)
−

(
n−1
k

)
, n

(
n

k−1

)]
, let x = n

(
n

k−1

)
− x2 for some 0 ≤ x2 ≤

(
n−1
k

)
.

Then

x′ = (n− 1)

(
n− 1

k − 1

)
− x2 ∈

[
(k − 1)

(
n

k

)
, (n− 1)

(
n− 1

k − 1

)]
and hence we have SWk(G

′) = x′ for some G′ of order n with diameter 2. Let G be

obtained from G′ by joining an additional vertex with the one vertex of G′ adjacent

with every other vertex in G′. Then we have

SWk(G) = SWk(G
′) + k

(
n− 1

k − 1

)
+ (k − 1)

(
n− 1

k − 2

)
= (n− 1)

(
n− 1

k − 1

)
− x2 + k

(
n− 1

k − 1

)
+ (k − 1)

(
n− 1

k − 2

)
= n

(
n

k − 1

)
− x2 = x.
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Consequently we have shown Pn+1,k and by induction, Pn,k for all n ≥ m.

We now claim that[
(k − 1)

(
n

k

)
, (n− 1)

(
n− 1

k − 1

)]
∩
[
(k − 1)

(
n+ 1

k

)
, n

(
n

k − 1

)]
6= ∅

when n is large. Indeed,
(n− 1)

(
n−1
k−1

)
(k − 1)

(
n+1
k

) → k

k − 1

as n → ∞, for any fixed k.

Hence every large enough positive integer falls into
[
(k − 1)

(
n
k

)
, (n− 1)

(
n−1
k−1

)]
for some

n. The conclusion follows.

4 Concluding remarks

In this note we considered the inverse problem for the Steiner k-Wiener index. In the case

of k = 3 we provided a definite answer for general graphs. Our proof can also be used to

reconstruct the specific structure that has the corresponding Steiner 3-Wiener index. It

would also be interesting to consider this problem, for k = 3 for trees, as many chemical

compound has acyclic molecular structures.

For general k, we showed that our approach can show that every large enough positive

integer is the Steiner k-Wiener index of some graph, provided that some general initial

statement P2k,k can be established. Through computer search we can easily verify this for

small values such as k = 4 and 5. Consequently we have

All large enough positive integer is the Steiner k-Wiener index of some graph, for k=3,

4, and 5.

Naturally, it would be interesting to try to extend these to larger k’s, and to find fast

algorithms to check the statement P2k,k.
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