Steiner (Revised) Szeged Index of Graphs* Modjtaba Ghorbani ${ }^{1}$, Xueliang Li ${ }^{2,3}$, Hamid Reza Maimani ${ }^{1}$, Yaping Mao ${ }^{3}$, Shaghayegh Rahmani ${ }^{1}$, Mina Rajabi-Parsa ${ }^{1}$
 ${ }^{1}$ Department of Mathematics, Faculty of Science
 Shahid Rajaee Teacher Training University
 Tehran, 16785-136, I.R. Iran
 ${ }^{2}$ Center for Combinatorics and LPMC
 Nankai University, Tianjin 300071, China
 ${ }^{3}$ School of Mathematics and Statistics
 Qinghai Normal University, Xining 810008, China

(Received May 31, 2019)

Abstract

The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and $S \subseteq V(G)$, the Steiner distance $d_{G}(S)$ of the set S of vertices in G is the minimum size of a connected subgraph whose vertex set contains or connects S. In this paper, we introduce the concept of the Steiner (revised) Szeged index $\left(r S z_{k}(G)\right) S z_{k}(G)$ of a graph G, which is a natural generalization of the wellknown (revised) Szeged index of chemical use. We determine the $S z_{k}(G)$ for trees in general. Then we give a formula for computing the Steiner Szeged index of a graph in terms of orbits of automorphism group action on the edge set of the graph. Finally, we give sharp upper and lower bounds of $\left(r S z_{k}(G)\right) S z_{k}(G)$ of a connected graph G, and establish some of its properties. Formulas of $\left(r S z_{k}(G)\right) S z_{k}(G)$ for large k are also given in this paper.

1 Introduction

All graphs in this paper are assumed to be undirected, finite and simple. We refer to [3] for graph theoretical notation and terminology not specified here. Distance is one of basic concepts in graph theory [4]. If G is a connected graph and $u, v \in V(G)$, then the distance $d(u, v)=d_{G}(u, v)$ between u and v in G is the length of a shortest path of G connecting u and v. For more details on classical distance, see [10].

[^0]Let $e=u v$ be an edge of a graph G. Let $N_{u}(e \mid G)$ be the set of vertices of G which are closer to u than to v and let $N_{v}(e \mid G)$ be set of those vertices which are closer to v than to u. The set of those vertices which have equal distance from v and u is denoted by $N_{0}(e \mid G)$. More formally,

$$
\begin{aligned}
& N_{u}(e \mid G)=\left\{w \in V(G): d_{G}(w, u)<d_{G}(w, v)\right\} \\
& N_{v}(e \mid G)=\left\{w \in V(G): d_{G}(w, v)<d_{G}(w, u)\right\}
\end{aligned}
$$

and

$$
N_{0}(e \mid G)=\left\{w \in V(G): d_{G}(w, u)=d_{G}(w, v)\right\}
$$

Let $n_{u}(e)=\left|N_{u}(e \mid G)\right|, n_{v}(e)=\left|N_{v}(e \mid G)\right|$ and $n_{0}(e)=\left|N_{0}(e \mid G)\right|$. Then the Szeged index of a graph G, denoted by $S z(G)$, is defined as

$$
S z(G)=\sum_{e=u v \in E(G)} n_{u}(e) n_{v}(e)
$$

and the revised Szeged index of a graph G, denoted by $r S z(G)$, is defined as

$$
r S z(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e)+n_{0}(e) / 2\right)\left(n_{v}(e)+n_{0}(e) / 2\right)
$$

The basic properties of the (revised) Szeged index and bibliography on $(r S z(G)) S z(G)$ are presented in $[2,7,11,19,20]$.

The Steiner distance of a graph, introduced by Chartrand et al. in [6] in 1989, is a natural and nice generalization of the concept of the classical graph distance. For a graph $G=(V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph $T=\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance $d_{G}(S)$ in G among the vertices of S (or simply the distance of S) is the minimum size of a connected subgraph whose vertex set contains or connects S. Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and $|E(H)|=d(S)$, then H is a tree. Clearly, $d_{G}(S)=\min \{|E(T)|, S \subseteq V(T)\}$, where T is a subtree of G. Furthermore, if $S=\{u, v\}$, then $d_{G}(S)=d(u, v)$ is nothing new, but the classical distance between u and v in G. Clearly, if $|S|=k$, then $d_{G}(S) \geq k-1$. For more details on the Steiner distance, we refer to $[1,5,6,10,18]$.

In [14], Li et al. proposed a generalization of the concept of Wiener index, using Steiner distance. Thus, the k th Steiner Wiener index $S W_{k}(G)$ of a connected graph G is defined by

$$
S W_{k}(G)=\sum_{\substack{S \subset V(G) \\|S|=k}} d(S) .
$$

For $k=2$, the Steiner Wiener index coincides with the ordinary Wiener index. It is usual to consider $S W_{k}$ for $2 \leq k \leq n-1$, but the above definition implies that $S W_{1}(G)=0$ and $S W_{n}(G)=n-1$ for a connected graph G of order n. For more details on the Steiner Wiener index, we refer to [14-17].

Let G be a connected graph and e an edge of G. For a positive integer k, from the Steiner distance, we define another three sets $N_{u}(e ; k), N_{v}(e ; k)$ and $N_{0}(e ; k)$ as follows.

$$
\begin{aligned}
& N_{u}(e ; k)=\left\{S^{\prime} \subseteq V(G),\left|S^{\prime}\right|=k-1 \mid d_{G}\left(S^{\prime} \cup\{u\}\right)<d_{G}\left(S^{\prime} \cup\{v\}\right), u \notin S^{\prime}, v \notin S^{\prime}\right\}, \\
& N_{v}(e ; k)=\left\{S^{\prime} \subseteq V(G),\left|S^{\prime}\right|=k-1 \mid d_{G}\left(S^{\prime} \cup\{v\}\right)<d_{G}\left(S^{\prime} \cup\{u\}\right), v \notin S^{\prime}, u \notin S^{\prime}\right\},
\end{aligned}
$$

and

$$
N_{0}(e ; k)=\left\{S^{\prime} \subseteq V(G),\left|S^{\prime}\right|=k-1 \mid d_{G}\left(S^{\prime} \cup\{u\}\right)=d_{G}\left(S^{\prime} \cup\{v\}\right), u \notin S^{\prime}, v \notin S^{\prime}\right\} .
$$

Let $n_{u}(e ; k)=\left|N_{u}(e ; k)\right|, n_{v}(e ; k)=\left|N_{v}(e ; k)\right|$ and $n_{0}(e ; k)=\left|N_{0}(e ; k)\right|$. Then the $k t h$ Steiner Szeged index of a graph G is defined as

$$
S z_{k}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e ; k)+1\right)\left(n_{v}(e ; k)+1\right) .
$$

Analogously, the kth Steiner revised Szeged index of a graph G is defined as

$$
r S z_{k}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e ; k)+n_{0}(e ; k) / 2+1\right)\left(n_{v}(e ; k)+n_{0}(e ; k) / 2+1\right) .
$$

Here, one may note that the formula is not the same as the classical Szeged index in form. If $k=2$, then

$$
N_{u}(e ; 2)=\left\{w \in V(G) \mid d_{G}(u, w)<d_{G}(v, w), u \neq w, v \neq w\right\} .
$$

One can see $N_{u}(e ; 2) \neq N_{u}$ since we require $u \neq w$. By our definition, the classical Szeged index $S z(G)$ can be written as

$$
S z(G)=S z_{2}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e ; 2)+1\right)\left(n_{v}(e ; 2)+1\right),
$$

where $N_{u}(e ; 2)=\left\{w \in V(G) \mid d_{G}(u, w)<d_{G}(v, w), u \neq w\right\}$ and $N_{v}(e ; 2)=\{w \in$ $\left.V(G) \mid d_{G}(v, w)<d_{G}(u, w), u \neq w\right\}$.

So, as one can easily see that the Steiner (revised) Szeged index is a natural generalization of the well-known (revised) Szeged index of chemical use.

We proceed as follows. In the next section, we determine the $S z_{k}(G)$ for trees in general. Then, we give a formula for computing the Steiner Szeged index of a graph in terms of orbits of automorphism group action on the edge set of the graph. Finally, we give sharp upper and lower bounds of $\left(r S z_{k}(G)\right) S z_{k}(G)$ of a connected graph G, and establish some of its properties. Formulas of $\left(r S z_{k}(G)\right) S z_{k}(G)$ for large k are also given.

2 Results for trees

At first, we consider trees. The following result is easy to obtain.
Theorem 2.1. For a tree T,

$$
S z_{k}(T)=\sum_{e=u v \in E(T)}\left(\binom{n_{u}(e)-1}{k-1}+1\right)\left(\binom{n_{v}(e)-1}{k-1}+1\right)
$$

where $2 \leq k \leq|V(T)|-1$.
Note that for $k=2, S z_{2}(T)=\sum_{e=u v \in E(T)} n_{u}(e) n_{v}(e)=S z(T)$, which is exactly the classical Szeged index.

Proof. Let T_{u} and T_{v} be the two components of $T-e$. For any $(k-1)$-subset S of $V(T) \backslash\{u, v\}$, if both $S \cap T_{u} \neq \emptyset$ and $S \cap T_{v} \neq \emptyset$, then $d_{T}(S \cup u)=d_{T}(S \cup v)$. So, $d_{T}(S \cup u)<d_{T}(S \cup v)$ if and only if S is in $T_{u}-u$, and $d_{T}(S \cup v)<d_{T}(S \cup u)$ if and only if S is in $T_{v}-v$. Since $T_{u}-u$ and $T_{v}-v$ have $n_{u}(e)-1$ and $n_{v}(e)-1$ vertices, respectively, we are thus done.

Some examples are given as follows.
Example 2.1. For a path $P_{n}=u_{1} u_{2} \cdots u_{i} u_{i+1} \cdots u_{n}$ on vertices, take an edge $e=$ $u_{i} u_{i+1}$. Then $P_{n}-e$ has two subpaths P_{i} and P_{n-i}. So we have $n_{u_{i}}(e)=i$ and $n_{u_{i+1}}(e)=$ $n-i$. Therefore,

$$
S z_{k}\left(P_{n}\right)=\sum_{i=1}^{n-1}\left(\binom{i-1}{k-1}+1\right)\left(\binom{n-i-1}{k-1}+1\right) .
$$

Since any $(k-1)$-subset S of $V(T) \backslash\{u, v\}$ satisfies $d_{T}(S \cup u)=d_{T}(S \cup v)$ if and only if both $S \cap T_{u} \neq \emptyset$ and $S \cap T_{v} \neq \emptyset$, then we can deduce that

$$
n_{0}(e ; k)=\sum_{j=1}^{k-2}\binom{i-1}{j}\binom{n-i-1}{k-j-1} .
$$

From this one can give an explicit formula for the $r S z_{k}\left(P_{n}\right)$.
Example 2.2. For the star graph S_{n+1} on $n+1$ vertices with a central vertex u and the other pendant vertices $u_{1}, u_{2}, \cdots, u_{n}$, take an edge $e=u u_{i}$. Then $S_{n+1}-e$ has two subgraphs $T_{u_{i}}=P_{1}$ and $T_{u}=S_{n}$. So we have $n_{u_{i}}(e)=1$ and $n_{u}(e)=n$. Therefore,

$$
S z_{k}\left(S_{n+1}\right)=\sum_{i=1}^{n}\left(\binom{n-1}{k-1}+1\right)=n\binom{n-1}{k-1}+n
$$

Since any $(k-1)$-subset S of $V\left(S_{n+1}\right) \backslash\left\{u, u_{i}\right\}$ satisfies $d_{T}(S \cup u)=d_{T}\left(S \cup u_{i}\right)$ if and only if both $S \cap T_{u} \neq \emptyset$ and $S \cap T_{u_{i}} \neq \emptyset$, then we have $n_{0}(e ; k)=0$ for any $e=u u_{i}$ because $T_{u_{i}}-u_{i}=\emptyset$, and hence there is no such an S. Therefore, we have

$$
r S z_{k}\left(S_{n+1}\right)=S z_{k}\left(S_{n+1}\right)=n\binom{n-1}{k-1}+n .
$$

This will be re-obtained next section by using symmetry on graphs.
Remark 2.1. For $k=2$, the Steiner Szeged index $S z_{2}$ of a tree is equal to the Szeged index $S z$, and the Steiner Wiener index $S W_{2}$ is equal to the Wiener index W, and hence the Steiner Szeged index $S z_{2}$ of a tree is equal to the Steiner Wiener index $S W_{2}$ of a tree since $S z=W$ for a tree. However, for $k \geq 3$, one can see from Examples 2.1 and 2.2 that the Steiner Szeged index $S z_{k}$ of a tree is not equal to the Steiner Wiener index $S W_{k}$ of a tree.
Conjecture 2.1. For any two trees T and $T^{\prime}, S z_{k}(T) \leq S z_{k}\left(T^{\prime}\right)$ if and only if $S z(T) \leq$ $S z\left(T^{\prime}\right)$?

3 Results for graphs with symmetry

Let G be a group and Ω be a non-empty set. An action of G on Ω, denoted by $(G \mid \Omega)$, induces a group homomorphism φ from G into the symmetric group S_{Ω} on Ω, where $\varphi(g)^{\alpha}=g^{\alpha},(\alpha \in \Omega)$. The orbit of an element $\alpha \in \Omega$ is denoted by α^{G} and it is defined as the set of all $\alpha^{g}, g \in G$.

A bijection σ on the vertex set of a graph Γ is named an graph automorphism if it preserves the edge set of Γ. In other words, σ is a graph automorphism of Γ if $e=u v$ is an edge of Γ if and only if $\sigma(e)=\sigma(u) \sigma(v)$ is an edge of Γ. Let $\operatorname{Aut}(\Gamma)$ be the set of all graph automorphisms of Γ. Then $\operatorname{Aut}(\Gamma)$ under the composition of mappings forms a group. A graph Γ is called vertex-transitive if $\operatorname{Aut}(\Gamma)$ acting on $V(G)$ has one orbit. We can similarly define an edge-transitive graph just by considering $\operatorname{Aut}(\Gamma)$ acting on $E(G)$.

By a minimal tree for a sequence of vertices $\left(v_{1}, \cdots, v_{n}\right)$, we mean a tree containing the vertices $\left(v_{1}, \cdots, v_{n}\right)$ which has the minimum number of edges.
Theorem 3.1. Let E_{1}, \cdots, E_{r} be the orbits of a graph Γ under the action of $\operatorname{Aut}(\Gamma)$ on the edge set $E(\Gamma)$ of Γ. Suppose $e=u v$ and $f=x y$ are two arbitrary edges of E_{i} $(1 \leq i \leq r)$. Then $\left\{n_{u}(e ; k), n_{v}(e ; k)\right\}=\left\{n_{x}(f ; k), n_{y}(f ; k)\right\}$.

Proof. Since e and f are in the same obit, there is an automorphism $\varphi \in \operatorname{Aut}(\Gamma)$ such that $\varphi(u)=x$ and $\varphi(v)=y$. For every minimal tree T containing the vertices $\left(u, u_{1}, \cdots, u_{k-1}\right), \varphi(T)$ is a minimal tree that contains $\left(x, \varphi\left(u_{1}\right), \cdots, \varphi\left(u_{k-1}\right)\right)$. This means that if $\left\{u_{1}, \cdots, u_{k-1}\right\} \in N_{u}(e ; k)$, then $\left\{\varphi\left(u_{1}\right), \cdots, \varphi\left(u_{k-1}\right)\right\} \in N_{\varphi(u)}(f ; k)$. Thus $n_{u}(e ; k)=\left|N_{u}(e ; k)\right|=\left|N_{\varphi(u)}(f ; k)\right|=n_{x}(e ; k)$. By a similar argument, one can see that $n_{v}(e ; k)=\left|N_{v}(e ; k)\right|=\left|N_{\varphi(v)}(f ; k)\right|=n_{y}(e ; k)$. This means that $\left\{n_{u}(e ; k), n_{v}(e ; k)\right\}=$ $\left\{n_{x}(f ; k), n_{y}(f ; k)\right\}$.

The following corollary is immediate.

Corollary 3.2. Let E_{1}, \cdots, E_{r} be the orbits of a graph Γ under the action of $\operatorname{Aut}(\Gamma)$ on the edge set $E(\Gamma)$ of Γ and $u_{i} v_{i}=e_{i} \in E_{i}$. Then

$$
S z_{k}(\Gamma)=\sum_{i=1}^{r}\left|E_{i}\right|\left(n_{u_{i}}\left(e_{i} ; k\right)+1\right)\left(n_{v_{i}}\left(e_{i} ; k\right)+1\right),
$$

and

$$
r S z_{k}(\Gamma)=\sum_{i=1}^{r}\left|E_{i}\right|\left(n_{u_{i}}\left(e_{i} ; k\right)+n_{0}\left(e_{i} ; k\right) / 2+1\right)\left(n_{v_{i}}\left(e_{i} ; k\right)+n_{0}\left(e_{i} ; k\right) / 2+1\right) .
$$

Example 3.1. Suppose K_{n} is the complete graph on n vertices. It is not difficult to see that for any $u v=e \in E\left(K_{n}\right)$, we have $n_{u}(e ; k)=n_{v}(e ; k)=0$ and $n_{0}(e ; k)=\binom{n-2}{k-1}$. Then

$$
S z_{k}\left(K_{n}\right)=\sum_{e=u v \in E\left(K_{n}\right)}\left(n_{u}(e ; k)+1\right)\left(n_{v}(e: k)+1\right)=\left|E\left(K_{n}\right)\right|=n(n-1) / 2,
$$

and

$$
\begin{aligned}
r S z_{k}\left(K_{n}\right) & =\sum_{e=u v \in E\left(K_{n}\right)}\left(n_{u}(e ; k)+n_{0}(e ; k) / 2+1\right)\left(n_{v}(e ; k)+n_{0}(e ; k) / 2+1\right) \\
& =\left|E\left(K_{n}\right)\right|\binom{n-2}{k-1}^{2}
\end{aligned}
$$

Example 3.2. Suppose $K_{1, n}$ is the star graph on $n+1$ vertices. Let $V\left(K_{1, n}\right)=$ $\left\{u, u_{1}, \cdots, u_{n}\right\}$ and $E\left(K_{1, n}\right)=\left\{\left\{u, u_{1}\right\}, \cdots,\left\{u, u_{n}\right\}\right\}$. Again $K_{1, n}$ is edge-transitive and for any edge $u u_{i}=e_{i} \in E\left(K_{1, n}\right)$, we have $n_{u}(e ; k)=\binom{n-1}{k-1}, n_{u_{i}}(e ; k)=0$ and $n_{0}(e ; k)=$ 0 . Then

$$
r S z_{k}\left(K_{1, n}\right)=S z_{k}\left(K_{1, n}\right)=\sum_{e \in E\left(K_{n}\right)}\left(\binom{n-1}{k-1}+1\right)=n\binom{n-1}{k-1}+n
$$

See Example 2.2, we get the same result.
For complete multipartite graphs, we can get the exact value for the k th Steiner Szeged index.

Theorem 3.3. Let $\Gamma=K_{a_{1}, a_{2}, \ldots, a_{m}}$ be a complete multipartite graph and let k be an integer such that $k \leq a_{i}(1 \leq i \leq m)$. Then

$$
S z_{k}(\Gamma)=\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} a_{i} a_{j}\left(\binom{a_{i}-1}{k-1}+1\right)\left(\binom{a_{j}-1}{k-1}+1\right),
$$

and

$$
r S z_{k}(\Gamma)=\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} a_{i} a_{j}\left(\binom{a_{i}-1}{k-1}+n_{0}(e ; k) / 2+1\right)\left(\binom{a_{j}-1}{k-1}+n_{0}(e ; k) / 2+1\right),
$$

where $B=V(\Gamma)-\left(A_{i} \cup A_{j}\right)$ and

$$
n_{0}(e ; k)=\binom{|B|}{k-1}+\sum_{p=1}^{a_{i}-2} \sum_{q=1}^{k-1-p}\binom{a_{i}-2}{p}\binom{a_{j}-1}{q}\binom{|B|}{k-1-(p+q)} .
$$

Proof. For $\Gamma=K_{a_{1}, a_{2}, \ldots, a_{m}}$, let $A_{t}(1 \leq t \leq m)$ be the multi-partition of Γ such that $A_{t}=\left\{a_{t 1}, a_{t 2}, \ldots, a_{t a_{t}}\right\}$. Consider two different parts A_{i} and A_{j}, where $1 \leq i, j \leq m$ and $a_{i} \leq a_{j}$. First, let $k \leq a_{i}$ and consider the edge $e=u v$ such that $u \in A_{i}$ and $v \in A_{j}$. Suppose that $W \subseteq V(\Gamma)$, where $|W|=k-1$. Let $W \subseteq A_{i}$ such that $u \notin W$ and without loss of generality, we can suppose $W=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i(k-1)}\right\}$. Then the tree induced by the edges $\left\{v a_{i 1}, v a_{i 2}, \ldots, v a_{i(k-1)}, v u\right\}$ is the Steiner tree containing u and the tree induced by the edges $\left\{v a_{i 1}, v a_{i 2}, \ldots, v a_{i(k-1)}\right\}$ is the Steiner tree containing v. So, $d_{S}(v)<d_{S}(u)$. Similarly, if $W \subseteq A_{j}$, then $d_{S}(u)<d_{S}(v)$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k-1}\right\} \subseteq V(\Gamma)$ such that $W \cap\left(A_{i} \cup A_{j}\right)=\phi$. So, the tree induced by the edges $\left\{u w_{1}, u w_{2}, \ldots, u w_{(k-1)}\right\}$ is the Steiner tree containing u and the tree induced by the edges $\left\{v w_{1}, v w_{2}, \ldots, v w_{(k-1)}\right\}$ is the Steiner tree containing v. This means that $d_{S}(v)=d_{S}(u)$. Also, if $\left|W \cap A_{i}\right|=p,\left|W \cap A_{j}\right|=q$ and $\left|W \cap\left(V(\Gamma)-\left(A_{i} \cup A_{j}\right)\right)\right|=l$, where $W=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i p}, a_{j 1}, a_{j 2}, \ldots, a_{j q}, w_{1}, w_{2}, \ldots, w_{l}\right\}$ $(p+q+l=k-1)$, then $\left\{u a_{j 1}, \ldots, u a_{j q}, u w_{1}, \ldots, u w_{l}, w_{1} a_{i 1}, \ldots, w_{1} a_{i p}\right\}$ is the Steiner trees containing u and $\left\{v a_{i 1}, \ldots, v a_{i p}, v w_{1}, \ldots, v w_{l}, w_{1} a_{j 1}, \ldots, w_{1} a_{j q}\right\}$ is the Steiner trees containing v. This implies that $d_{S}(v)=d_{S}(u)$. By the above discussion we have that $n_{v}(e ; k)=\binom{a_{i}-1}{k-1}$ and $n_{u}(e ; k)=\binom{a_{j}-1}{k-1}$. So,

$$
S z_{k}(\Gamma)=\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} a_{i} a_{j}\left(\binom{a_{i}-1}{k-1}+1\right)\left(\binom{a_{j}-1}{k-1}+1\right) .
$$

Assume that $B=V(\Gamma)-\left(A_{i} \cup A_{j}\right)$. Then $n_{0}(e ; k)=X+Y$, where

$$
X=\binom{|B|}{k-1} \text { and } Y=\sum_{p=1}^{a_{i}-2} \sum_{q=1}^{k-1-p}\binom{a_{i}-2}{p}\binom{a_{j}-1}{q}\binom{|B|}{k-1-(p+q)} .
$$

This completes the proof.

4 Formulas for large k

For trees, we have the following formula for $k=n-1$.
Theorem 4.1. Let T be a tree of order n with p pendent edges. Then

$$
S z_{n-1}(T)=n+p-1
$$

and

$$
r S z_{n-1}(T)=2 p+\frac{9}{4}(n-p-1)
$$

Proof. Let $e=u v$ be an edge of T. If e is not a leaf, then $\left|N_{u}(e ; n-1)\right|=\mid N_{v}(e ; n-$ $1) \mid=0$. Suppose e is a leaf and u is a pendent vertex. Then v is a cut vertex. Then $\left|N_{v}(e ; n-1)\right|=1$ and $\left|N_{u}(e ; n-1)\right|=0$, and hence

$$
S z_{n-1}(T)=(n-1-p)+2 p=n+p-1
$$

and

$$
r S z_{n-1}(T)=2 p+\frac{9}{4}(n-p-1)
$$

Remark 4.1. Notice that the derivative function $\left(r S z_{n-1}\right)^{\prime}(T)$ is less than zero thus the function $r S z_{n-1}(T)=2 p+\frac{9}{4}(n-p-1)$ is strictly increasing. Let \mathcal{T}_{n} be all of trees with n vertices. Among all elements of \mathcal{T}_{n}, the star graph S_{n} and the path graph P_{n} has the minimum and the maximum value of $r S z_{n-1}$, respectively.

The following observation is immediate for $k=n-1$.
Theorem 4.2. Let G be a connected graph of order n and size m with p pendent edges. Then

$$
S z_{n-1}(G)=p+m
$$

and

$$
r S z_{n-1}(G)=2 p+\frac{9}{4}(m-p)
$$

Proof. Let $e=u v$ be an edge of T. If e is not a pendent edge, then $\left|N_{u}(e ; n-1)\right|=$ $\left|N_{v}(e ; n-1)\right|=0$. Suppose e is a pendent edge and u is a pendent vertex. Then v is a cut vertex. Then $\left|N_{v}(e ; n-1)\right|=1$ and $\left|N_{u}(e ; n-1)\right|=0$, and hence

$$
S z_{n-1}(T)=(m-p)+2 p=p+m
$$

and

$$
r S z_{n-1}(G)=2 p+\frac{9}{4}(m-p)
$$

5 Upper and lower bounds

For general graphs, we have the following upper and lower bounds.
Theorem 5.1. Let n, k be two integers with $2 \leq k \leq n-1$, and let G be a graph of order n and size m.
(1) If G is $(n-k)$-connected, then

$$
S z_{k}(G)=m
$$

(2) If G is not $(n-k)$-connected, then

$$
m \leq S z_{k}(G) \leq m\left(\left[\frac{1}{2}\binom{n-2}{k-1}\right\rceil+1\right)\left(\left\lfloor\frac{1}{2}\binom{n-2}{k-1}\right\rfloor+1\right) .
$$

Proof. (1) Let $u v$ be an edge of G. Since G is $(n-k)$-connected, it follows that for any $S \subseteq V(G)$ and $\left|S^{\prime}\right|=k-1, d_{G}(S \cup\{u\})=d_{G}(S \cup\{v\})=k$, and hence $\left|N_{u}(e ; k)\right|=\left|N_{v}(e ; k)\right|=0$. So $S z_{k}(G)=m$.
(2) From the definition, we have

$$
S z_{k}(G)=\sum_{u v \in E(G)}\left(n_{u}(e ; k)+1\right)\left(n_{v}(e ; k)+1\right) \geq \sum_{e=u v \in E(G)} 1=e(G)=m .
$$

and

$$
\begin{aligned}
S z_{k}(G) & =\sum_{u v \in E(G)}\left(n_{u}(e ; k)+1\right)\left(n_{v}(e ; k)+1\right) \\
& \leq \sum_{u v \in E(G)}\left(\left[\frac{1}{2}\binom{n-2}{k-1}\right\rceil+1\right)\left(\left\lfloor\frac{1}{2}\binom{n-2}{k-1}\right\rfloor+1\right) \\
& =m\left(\left\lceil\frac{1}{2}\binom{n-2}{k-1}\right\rceil+1\right)\left(\left\lfloor\frac{1}{2}\binom{n-2}{k-1}\right\rfloor+1\right) .
\end{aligned}
$$

References

[1] P. Ali, P. Dankelmann, S. Mukwembi, Upper bounds on the Steiner diameter of a graph, Discr. Appl. Math. 160 (2012) 1845-1850.
[2] M. Aouchiche, P. Hansen, On a conjecture about the Szeged index, Eur. J. Comb. 31 (2010) 1662-1666.
[3] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[4] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
[5] J. Cáceres, A. Márquez, M. L. Puertas, Steiner distance and convexity in graphs, Eur. J. Comb. 29 (2008) 726-736.
[6] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, Časopis Pest. Mat. 114 (1989) 399-410.
[7] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, Eur. J. Comb. 36 (2014) 237-246.
[8] K. Ch. Das, I. Gutman, Estimating the Szeged index, Appl. Math. Lett. 22 (2009) 1680-1684.
[9] R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, Czech. Math. J. 26 (1976) 283-296.
[10] W. Goddard, O. R. Oellermann, Distance in graphs, in: M. Dehmer (Ed.), Structural Analysis of Complex Networks, Birkhäuser, Dordrecht, 2011, pp. 49-72.
[11] I. Gutman, A. A. Dobrynin, The Szeged index - A success story, Graph Theory Notes New York 34 (1998) 37-44.
[12] I. Gutman, B. Furtula, X. Li, Multicenter Wiener indices and their applications, J. Serb. Chem. Soc. 80 (2015) 1009-1017.
[13] I. Gutman, K. Xu, M. Liu, A congruence relation for Wiener and Szeged indices, Filomat 29 (2015) 1081-1083.
[14] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016) 455-465.
[15] X. Li, Y. Mao, I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory 38 (2018) 83-95.
[16] Y. Mao, Z. Wang, I. Gutman, Steiner Wiener index of graph products, Trans. Comb. 5 (2016) 39-50.
[17] Y. Mao, Z. Wang, I. Gutman, H. Li, Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, Discr. Appl. Math. 219 (2017) 167-175.
[18] O. R. Oellermann, S. Tian, Steiner centers in graphs, J. Graph Theory 14 (1990) 585-597.
[19] T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discr. Appl. Math. 158 (2010) 1936-1944.
[20] R. Xing, B. Zhou, On the revised Szeged index, Discr. Appl. Math. 159 (2011) 69-78.

[^0]: *Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790. X. Li is the corresponding author.

