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Abstract

The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a
natural generalization of the concept of classical graph distance. For a connected
graph G of order at least 2 and S ⊆ V (G), the Steiner distance dG(S) of the set S of
vertices in G is the minimum size of a connected subgraph whose vertex set contains
or connects S. In this paper, we introduce the concept of the Steiner (revised) Szeged
index (rSzk(G)) Szk(G) of a graph G, which is a natural generalization of the well-
known (revised) Szeged index of chemical use. We determine the Szk(G) for trees
in general. Then we give a formula for computing the Steiner Szeged index of a
graph in terms of orbits of automorphism group action on the edge set of the graph.
Finally, we give sharp upper and lower bounds of (rSzk(G)) Szk(G) of a connected
graph G, and establish some of its properties. Formulas of (rSzk(G)) Szk(G) for
large k are also given in this paper.

1 Introduction

All graphs in this paper are assumed to be undirected, finite and simple. We refer

to [3] for graph theoretical notation and terminology not specified here. Distance is one

of basic concepts in graph theory [4]. If G is a connected graph and u, v ∈ V (G), then

the distance d(u, v) = dG(u, v) between u and v in G is the length of a shortest path of

G connecting u and v. For more details on classical distance, see [10].
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Let e = uv be an edge of a graph G. Let Nu(e|G) be the set of vertices of G which

are closer to u than to v and let Nv(e|G) be set of those vertices which are closer to v

than to u. The set of those vertices which have equal distance from v and u is denoted

by N0(e|G). More formally,

Nu(e|G) = {w ∈ V (G) : dG(w, u) < dG(w, v)},

Nv(e|G) = {w ∈ V (G) : dG(w, v) < dG(w, u)}

and

N0(e|G) = {w ∈ V (G) : dG(w, u) = dG(w, v)}.

Let nu(e) = |Nu(e|G)|, nv(e) = |Nv(e|G)| and n0(e) = |N0(e|G)|. Then the Szeged index

of a graph G, denoted by Sz(G), is defined as

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e),

and the revised Szeged index of a graph G, denoted by rSz(G), is defined as

rSz(G) =
∑

e=uv∈E(G)

(nu(e) + n0(e)/2)(nv(e) + n0(e)/2).

The basic properties of the (revised) Szeged index and bibliography on (rSz(G)) Sz(G)

are presented in [2, 7, 11,19,20].

The Steiner distance of a graph, introduced by Chartrand et al. in [6] in 1989, is a

natural and nice generalization of the concept of the classical graph distance. For a graph

G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or a Steiner tree

connecting S (or simply, an S-tree) is a subgraph T = (V ′, E ′) of G that is a tree with

S ⊆ V ′. Let G be a connected graph of order at least 2 and let S be a nonempty set of

vertices of G. Then the Steiner distance dG(S) in G among the vertices of S (or simply

the distance of S) is the minimum size of a connected subgraph whose vertex set contains

or connects S. Note that if H is a connected subgraph of G such that S ⊆ V (H) and

|E(H)| = d(S), then H is a tree. Clearly, dG(S) = min{|E(T )| , S ⊆ V (T )}, where T

is a subtree of G. Furthermore, if S = {u, v}, then dG(S) = d(u, v) is nothing new, but

the classical distance between u and v in G. Clearly, if |S| = k, then dG(S) ≥ k − 1. For

more details on the Steiner distance, we refer to [1, 5, 6, 10,18].

In [14], Li et al. proposed a generalization of the concept of Wiener index, using

Steiner distance. Thus, the kth Steiner Wiener index SWk(G) of a connected graph G is

defined by

SWk(G) =
∑

S⊆V (G)

|S|=k

d(S) .
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For k = 2, the Steiner Wiener index coincides with the ordinary Wiener index. It is usual

to consider SWk for 2 ≤ k ≤ n − 1, but the above definition implies that SW1(G) = 0

and SWn(G) = n− 1 for a connected graph G of order n. For more details on the Steiner

Wiener index, we refer to [14–17].

Let G be a connected graph and e an edge of G. For a positive integer k, from the

Steiner distance, we define another three sets Nu(e; k), Nv(e; k) and N0(e; k) as follows.

Nu(e; k) = {S ′ ⊆ V (G), |S ′| = k − 1 | dG(S ′ ∪ {u}) < dG(S ′ ∪ {v}), u /∈ S ′, v /∈ S ′},

Nv(e; k) = {S ′ ⊆ V (G), |S ′| = k − 1 | dG(S ′ ∪ {v}) < dG(S ′ ∪ {u}), v /∈ S ′, u /∈ S ′},

and

N0(e; k) = {S ′ ⊆ V (G), |S ′| = k − 1 | dG(S ′ ∪ {u}) = dG(S ′ ∪ {v}), u /∈ S ′, v /∈ S ′}.

Let nu(e; k) = |Nu(e; k)|, nv(e; k) = |Nv(e; k)| and n0(e; k) = |N0(e; k)|. Then the kth

Steiner Szeged index of a graph G is defined as

Szk(G) =
∑

e=uv∈E(G)

(nu(e; k) + 1)(nv(e; k) + 1).

Analogously, the kth Steiner revised Szeged index of a graph G is defined as

rSzk(G) =
∑

e=uv∈E(G)

(nu(e; k) + n0(e; k)/2 + 1)(nv(e; k) + n0(e; k)/2 + 1).

Here, one may note that the formula is not the same as the classical Szeged index in

form. If k = 2, then

Nu(e; 2) = {w ∈ V (G) | dG(u,w) < dG(v, w), u 6= w, v 6= w}.

One can see Nu(e; 2) 6= Nu since we require u 6= w. By our definition, the classical Szeged

index Sz(G) can be written as

Sz(G) = Sz2(G) =
∑

e=uv∈E(G)

(nu(e; 2) + 1)(nv(e; 2) + 1),

where Nu(e; 2) = {w ∈ V (G) | dG(u,w) < dG(v, w), u 6= w} and Nv(e; 2) = {w ∈
V (G) | dG(v, w) < dG(u,w), u 6= w}.

So, as one can easily see that the Steiner (revised) Szeged index is a natural general-

ization of the well-known (revised) Szeged index of chemical use.

We proceed as follows. In the next section, we determine the Szk(G) for trees in

general. Then, we give a formula for computing the Steiner Szeged index of a graph in

terms of orbits of automorphism group action on the edge set of the graph. Finally, we

give sharp upper and lower bounds of (rSzk(G)) Szk(G) of a connected graph G, and

establish some of its properties. Formulas of (rSzk(G)) Szk(G) for large k are also given.
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2 Results for trees

At first, we consider trees. The following result is easy to obtain.

Theorem 2.1. For a tree T ,

Szk(T ) =
∑

e=uv∈E(T )

((
nu(e)− 1

k − 1

)
+ 1

)((
nv(e)− 1

k − 1

)
+ 1

)
,

where 2 ≤ k ≤ |V (T )| − 1.

Note that for k = 2, Sz2(T ) =
∑

e=uv∈E(T ) nu(e)nv(e) = Sz(T ), which is exactly the

classical Szeged index.

Proof. Let Tu and Tv be the two components of T − e. For any (k − 1)-subset S

of V (T ) \ {u, v}, if both S ∩ Tu 6= ∅ and S ∩ Tv 6= ∅, then dT (S ∪ u) = dT (S ∪ v). So,

dT (S ∪ u) < dT (S ∪ v) if and only if S is in Tu − u, and dT (S ∪ v) < dT (S ∪ u) if and

only if S is in Tv − v. Since Tu − u and Tv − v have nu(e) − 1 and nv(e) − 1 vertices,

respectively, we are thus done.

Some examples are given as follows.

Example 2.1. For a path Pn = u1u2 · · ·uiui+1 · · ·un on vertices, take an edge e =

uiui+1. Then Pn− e has two subpaths Pi and Pn−i. So we have nui(e) = i and nui+1
(e) =

n− i. Therefore,

Szk(Pn) =
n−1∑
i=1

((
i− 1

k − 1

)
+ 1

)((
n− i− 1

k − 1

)
+ 1

)
.

Since any (k − 1)-subset S of V (T ) \ {u, v} satisfies dT (S ∪ u) = dT (S ∪ v) if and only if

both S ∩ Tu 6= ∅ and S ∩ Tv 6= ∅, then we can deduce that

n0(e; k) =
k−2∑
j=1

(
i− 1

j

)(
n− i− 1

k − j − 1

)
.

From this one can give an explicit formula for the rSzk(Pn).

Example 2.2. For the star graph Sn+1 on n+ 1 vertices with a central vertex u and

the other pendant vertices u1, u2, · · · , un, take an edge e = uui. Then Sn+1 − e has two

subgraphs Tui = P1 and Tu = Sn. So we have nui(e) = 1 and nu(e) = n. Therefore,

Szk(Sn+1) =
n∑
i=1

((
n− 1

k − 1

)
+ 1

)
= n

(
n− 1

k − 1

)
+ n.

Since any (k−1)-subset S of V (Sn+1)\{u, ui} satisfies dT (S ∪u) = dT (S ∪ui) if and only

if both S ∩ Tu 6= ∅ and S ∩ Tui 6= ∅, then we have n0(e; k) = 0 for any e = uui because

Tui − ui = ∅, and hence there is no such an S. Therefore, we have

rSzk(Sn+1) = Szk(Sn+1) = n

(
n− 1

k − 1

)
+ n.
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This will be re-obtained next section by using symmetry on graphs.

Remark 2.1. For k = 2, the Steiner Szeged index Sz2 of a tree is equal to the Szeged

index Sz, and the Steiner Wiener index SW2 is equal to the Wiener index W , and hence

the Steiner Szeged index Sz2 of a tree is equal to the Steiner Wiener index SW2 of a tree

since Sz = W for a tree. However, for k ≥ 3, one can see from Examples 2.1 and 2.2 that

the Steiner Szeged index Szk of a tree is not equal to the Steiner Wiener index SWk of a

tree.

Conjecture 2.1. For any two trees T and T ′, Szk(T ) ≤ Szk(T
′) if and only if Sz(T ) ≤

Sz(T ′) ?

3 Results for graphs with symmetry

Let G be a group and Ω be a non-empty set. An action of G on Ω, denoted by (G|Ω),

induces a group homomorphism ϕ from G into the symmetric group SΩ on Ω, where

ϕ(g)α = gα, (α ∈ Ω). The orbit of an element α ∈ Ω is denoted by αG and it is defined

as the set of all αg, g ∈ G.

A bijection σ on the vertex set of a graph Γ is named an graph automorphism if it

preserves the edge set of Γ. In other words, σ is a graph automorphism of Γ if e = uv

is an edge of Γ if and only if σ(e) = σ(u)σ(v) is an edge of Γ. Let Aut(Γ) be the set of

all graph automorphisms of Γ. Then Aut(Γ) under the composition of mappings forms a

group. A graph Γ is called vertex-transitive if Aut(Γ) acting on V (G) has one orbit. We

can similarly define an edge-transitive graph just by considering Aut(Γ) acting on E(G).

By a minimal tree for a sequence of vertices (v1, · · · , vn), we mean a tree containing

the vertices (v1, · · · , vn) which has the minimum number of edges.

Theorem 3.1. Let E1, · · · , Er be the orbits of a graph Γ under the action of Aut(Γ)

on the edge set E(Γ) of Γ. Suppose e = uv and f = xy are two arbitrary edges of Ei

(1 ≤ i ≤ r). Then {nu(e; k), nv(e; k)} = {nx(f ; k), ny(f ; k)}.

Proof. Since e and f are in the same obit, there is an automorphism ϕ ∈ Aut(Γ)

such that ϕ(u) = x and ϕ(v) = y. For every minimal tree T containing the vertices

(u, u1, · · · , uk−1), ϕ(T ) is a minimal tree that contains (x, ϕ(u1), · · · , ϕ(uk−1)). This

means that if {u1, · · · , uk−1} ∈ Nu(e; k), then {ϕ(u1), · · · , ϕ(uk−1)} ∈ Nϕ(u)(f ; k). Thus

nu(e; k) = |Nu(e; k)| = |Nϕ(u)(f ; k)| = nx(e; k). By a similar argument, one can see that

nv(e; k) = |Nv(e; k)| = |Nϕ(v)(f ; k)| = ny(e; k). This means that {nu(e; k), nv(e; k)} =

{nx(f ; k), ny(f ; k)}.
The following corollary is immediate.
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Corollary 3.2. Let E1, · · · , Er be the orbits of a graph Γ under the action of Aut(Γ) on

the edge set E(Γ) of Γ and uivi = ei ∈ Ei. Then

Szk(Γ) =
r∑
i=1

|Ei|(nui(ei; k) + 1)(nvi(ei; k) + 1),

and

rSzk(Γ) =
r∑
i=1

|Ei|(nui(ei; k) + n0(ei; k)/2 + 1)(nvi(ei; k) + n0(ei; k)/2 + 1).

Example 3.1. Suppose Kn is the complete graph on n vertices. It is not difficult to

see that for any uv = e ∈ E(Kn), we have nu(e; k) = nv(e; k) = 0 and n0(e; k) =

(
n− 2

k − 1

)
.

Then

Szk(Kn) =
∑

e=uv∈E(Kn)

(nu(e; k) + 1)(nv(e : k) + 1) = |E(Kn)| = n(n− 1)/2,

and

rSzk(Kn) =
∑

e=uv∈E(Kn)

(nu(e; k) + n0(e; k)/2 + 1)(nv(e; k) + n0(e; k)/2 + 1)

= |E(Kn)|
(
n− 2

k − 1

)2

.

Example 3.2. Suppose K1,n is the star graph on n + 1 vertices. Let V (K1,n) =

{u, u1, · · · , un} and E(K1,n) = {{u, u1}, · · · , {u, un}}. Again K1,n is edge-transitive and

for any edge uui = ei ∈ E(K1,n), we have nu(e; k) =

(
n− 1

k − 1

)
, nui(e; k) = 0 and n0(e; k) =

0. Then

rSzk(K1,n) = Szk(K1,n) =
∑

e∈E(Kn)

((
n− 1

k − 1

)
+ 1

)
= n

(
n− 1

k − 1

)
+ n.

See Example 2.2, we get the same result.

For complete multipartite graphs, we can get the exact value for the kth Steiner Szeged

index.

Theorem 3.3. Let Γ = Ka1,a2,...,am be a complete multipartite graph and let k be an integer

such that k ≤ ai (1 ≤ i ≤ m). Then

Szk(Γ) =
m−1∑
i=1

m∑
j=i+1

aiaj

((
ai − 1

k − 1

)
+ 1

)((
aj − 1

k − 1

)
+ 1

)
,
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and

rSzk(Γ) =
m−1∑
i=1

m∑
j=i+1

aiaj

((
ai − 1

k − 1

)
+ n0(e; k)/2 + 1

)((
aj − 1

k − 1

)
+ n0(e; k)/2 + 1

)
,

where B = V (Γ)− (Ai ∪ Aj) and

n0(e; k) =

(
|B|
k − 1

)
+

ai−2∑
p=1

k−1−p∑
q=1

(
ai − 2

p

)(
aj − 1

q

)(
|B|

k − 1− (p+ q)

)
.

Proof. For Γ = Ka1,a2,...,am , let At (1 ≤ t ≤ m) be the multi-partition of Γ such that

At = {at1, at2, . . . , atat}. Consider two different parts Ai and Aj, where 1 ≤ i, j ≤ m and

ai ≤ aj. First, let k ≤ ai and consider the edge e = uv such that u ∈ Ai and v ∈ Aj.
Suppose that W ⊆ V (Γ), where |W | = k − 1. Let W ⊆ Ai such that u /∈ W and without

loss of generality, we can suppose W = {ai1, ai2, . . . , ai(k−1)}. Then the tree induced by

the edges {vai1, vai2, . . . , vai(k−1), vu} is the Steiner tree containing u and the tree induced

by the edges {vai1, vai2, . . . , vai(k−1)} is the Steiner tree containing v. So, dS(v) < dS(u).

Similarly, if W ⊆ Aj, then dS(u) < dS(v). Let W = {w1, w2, . . . , wk−1} ⊆ V (Γ) such that

W∩(Ai∪Aj) = φ. So, the tree induced by the edges {uw1, uw2, . . . , uw(k−1)} is the Steiner

tree containing u and the tree induced by the edges {vw1, vw2, . . . , vw(k−1)} is the Steiner

tree containing v. This means that dS(v) = dS(u). Also, if |W ∩Ai| = p, |W ∩Aj| = q and

|W∩(V (Γ)− (Ai ∪ Aj)) | = l, whereW = {ai1, ai2, . . . , aip, aj1, aj2, . . . , ajq, w1, w2, . . . , wl}
(p + q + l = k − 1), then {uaj1, . . . , uajq, uw1, . . . , uwl, w1ai1, . . . , w1aip} is the Steiner

trees containing u and {vai1, . . . , vaip, vw1, . . . , vwl, w1aj1, . . . , w1ajq} is the Steiner trees

containing v. This implies that dS(v) = dS(u). By the above discussion we have that

nv(e; k) =
(
ai−1
k−1

)
and nu(e; k) =

(
aj−1
k−1

)
. So,

Szk(Γ) =
m−1∑
i=1

m∑
j=i+1

aiaj

((
ai − 1

k − 1

)
+ 1

)((
aj − 1

k − 1

)
+ 1

)
.

Assume that B = V (Γ)− (Ai ∪ Aj). Then n0(e; k) = X + Y , where

X =

(
|B|
k − 1

)
and Y =

ai−2∑
p=1

k−1−p∑
q=1

(
ai − 2

p

)(
aj − 1

q

)(
|B|

k − 1− (p+ q)

)
.

This completes the proof.
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4 Formulas for large k

For trees, we have the following formula for k = n− 1.

Theorem 4.1. Let T be a tree of order n with p pendent edges. Then

Szn−1(T ) = n+ p− 1

and

rSzn−1(T ) = 2p+
9

4
(n− p− 1).

Proof. Let e = uv be an edge of T . If e is not a leaf, then |Nu(e;n− 1)| = |Nv(e;n−
1)| = 0. Suppose e is a leaf and u is a pendent vertex. Then v is a cut vertex. Then

|Nv(e;n− 1)| = 1 and |Nu(e;n− 1)| = 0, and hence

Szn−1(T ) = (n− 1− p) + 2p = n+ p− 1

and

rSzn−1(T ) = 2p+
9

4
(n− p− 1).

Remark 4.1. Notice that the derivative function (rSzn−1)
′
(T ) is less than zero thus

the function rSzn−1(T ) = 2p + 9
4
(n − p − 1) is strictly increasing. Let Tn be all of trees

with n vertices. Among all elements of Tn, the star graph Sn and the path graph Pn has

the minimum and the maximum value of rSzn−1, respectively.

The following observation is immediate for k = n− 1.

Theorem 4.2. Let G be a connected graph of order n and size m with p pendent edges.

Then

Szn−1(G) = p+m.

and

rSzn−1(G) = 2p+
9

4
(m− p).

Proof. Let e = uv be an edge of T . If e is not a pendent edge, then |Nu(e;n− 1)| =
|Nv(e;n − 1)| = 0. Suppose e is a pendent edge and u is a pendent vertex. Then v is a

cut vertex. Then |Nv(e;n− 1)| = 1 and |Nu(e;n− 1)| = 0, and hence

Szn−1(T ) = (m− p) + 2p = p+m.

and

rSzn−1(G) = 2p+
9

4
(m− p).
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5 Upper and lower bounds

For general graphs, we have the following upper and lower bounds.

Theorem 5.1. Let n, k be two integers with 2 ≤ k ≤ n− 1, and let G be a graph of order

n and size m.

(1) If G is (n− k)-connected, then

Szk(G) = m.

(2) If G is not (n− k)-connected, then

m ≤ Szk(G) ≤ m

(⌈
1

2

(
n− 2

k − 1

)⌉
+ 1

)(⌊
1

2

(
n− 2

k − 1

)⌋
+ 1

)
.

Proof. (1) Let uv be an edge of G. Since G is (n − k)-connected, it follows that

for any S ⊆ V (G) and |S ′| = k − 1, dG(S ∪ {u}) = dG(S ∪ {v}) = k, and hence

|Nu(e; k)| = |Nv(e; k)| = 0. So Szk(G) = m.

(2) From the definition, we have

Szk(G) =
∑

uv∈E(G)

(nu(e; k) + 1)(nv(e; k) + 1) ≥
∑

e=uv∈E(G)

1 = e(G) = m.

and

Szk(G) =
∑

uv∈E(G)

(nu(e; k) + 1)(nv(e; k) + 1)

≤
∑

uv∈E(G)

(⌈
1

2

(
n− 2

k − 1

)⌉
+ 1

)(⌊
1

2

(
n− 2

k − 1

)⌋
+ 1

)

= m

(⌈
1

2

(
n− 2

k − 1

)⌉
+ 1

)(⌊
1

2

(
n− 2

k − 1

)⌋
+ 1

)
.
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