ISSN 0340 - 6253

The Path and the Star as Extremal Values of Vertex–Degree–Based Topological Indices Among Trees

Roberto Cruz, Juan Rada

Instituto de Matemáticas, Universidad de Antioquia Medellín, Colombia roberto.cruz@udea.edu.co, pablo.rada@udea.edu.co

(Received March 2, 2019)

Abstract

We denote by \mathcal{T}_n the set of trees with n vertices, $P_n \in \mathcal{T}_n$ is the path tree and $S_n \in \mathcal{T}_n$ is the star tree. Let φ be a vertex-degree-based topological index defined over \mathcal{T}_n . For any tree $T \in \mathcal{T}_n$, we find an expression of $\varphi(T)$ in terms of $\varphi(P_n)$ and a function f_{φ} associated to φ , in such a way that the derivatives of f_{φ} over a compact set gives information on when the path P_n is an extremal value of φ over \mathcal{T}_n , for $n \geq 3$. Similarly, we present results which give information on when the star S_n is an extremal value of φ over \mathcal{T}_n , for $n \geq 3$. As an application, we determine extremal trees for exponential vertex-degree-based topological indices.

1 Introduction

The problem of finding extremal graphs over a significant graph family with respect to important topological indices has attracted considerable attention in mathematicalchemistry literature (for motivation and chemical applications of the topological indices see [7, 23, 24, 30, 31]). We are mostly interested in vertex-degree-based (VDB for short) topological indices, which are defined as a sum, over all edges of a graph, of certain numbers that depend on the degrees of the end-vertices of each edge [5, 9, 13, 15, 19, 27]. A formal definition of a VDB topological index is as follows. Let \mathcal{G}_n be the set of graphs with n non-isolated vertices. Consider the set

$$K = \{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \le i \le j \le n - 1\}$$

and for a graph $G \in \mathcal{G}_n$, denote by $m_{i,j}(G)$ the number of edges in G joining vertices of degree i and j. A VDB topological index over \mathcal{G}_n is a function $\varphi : \mathcal{G}_n \longrightarrow \mathbb{R}$ induced by real numbers $\{\varphi_{i,j}\}_{(i,j)\in K}$ defined as

$$\varphi(G) = \sum_{(i,j)\in K} m_{i,j}(G) \varphi_{i,j},\tag{1}$$

for every $G \in \mathcal{G}_n$. We note that the topological indices of the form (1) were referred as bond incident degree indices in [32]. These indices were also considered in [21], and more recently in [2].

The most studied VDB topological indices are the First Zagreb index \mathcal{M}_1 [20], induced by numbers $\varphi_{i,j} = i+j$; the Second Zagreb index \mathcal{M}_2 [20], induced by $\varphi_{i,j} = ij$; the Randić index χ [29] induced by $\varphi_{i,j} = \frac{1}{\sqrt{ij}}$; the Harmonic index \mathcal{H} [35], induced by $\varphi_{i,j} = \frac{2}{i+j}$; the Geometric-Arithmetic index \mathcal{GA} [33], induced by $\varphi_{i,j} = \frac{2\sqrt{ij}}{i+j}$; the Sum-Connectivity index \mathcal{SC} [34], induced by $\varphi_{i,j} = \frac{1}{\sqrt{i+j}}$; the Atom-Bond-Connectivity index \mathcal{ABC} [10], induced by $\varphi_{i,j} = \sqrt{\frac{i+j-2}{ij}}$ and the Augmented Zagreb index \mathcal{AZ} [12], induced by $\varphi_{i,j} = \left(\frac{ij}{i+j-2}\right)^3$.

Let \mathcal{T}_n be the set of all trees with *n* vertices. It is well known that P_n (the path on *n* vertices) and S_n (the star on *n* vertices) are extremal trees with respect to most of the VDB topological indices mentioned above over \mathcal{T}_n , as we can see in Table 1 [3,8,11,12,25,33–35]. The problem of finding the minimal tree with respect to the \mathcal{ABC} index and maximal tree

	\mathcal{M}_1	\mathcal{M}_2	χ	\mathcal{H}	\mathcal{GA}	\mathcal{SC}	ABC	\mathcal{AZ}
min	P_n	P_n	S_n	S_n	S_n	S_n	?	S_n
max	S_n	S_n	P_n	P_n	P_n	P_n	S_n	?

Table 1. Extremal trees for well known VDB topological indices.

with respect to the \mathcal{AZ} index are open and very difficult problems [1, 4, 14, 16-18, 26].

In this paper we give a general method to determine whether the path P_n or the star S_n are extremal trees of a VDB topological index φ over \mathcal{T}_n . Generally speaking, let φ be a vertex-degree-based topological index defined over \mathcal{T}_n . For any tree $T \in \mathcal{T}_n$, we find an expression of $\varphi(T)$ in terms of $\varphi(P_n)$ and a function f_{φ} associated to φ , in such a

-717-

way that the derivatives of f_{φ} over a compact set gives information on when the path P_n is an extremal value of φ over \mathcal{T}_n , for $n \geq 3$. Similarly, we present results which give information on when the star S_n is an extremal value of φ over \mathcal{T}_n , for $n \geq 3$. As an application, we determine extremal trees for exponential vertex-degree-based topological indices. Recall that the exponential of φ is defined as the VDB topological index e^{φ} induced by numbers $\{e^{\varphi_{i,j}}\}_{(i,j)\in K}$ [28]. It was shown in [28] that these topological indices have good discrimination properties. Our results are summarized in Table 2.

	$e^{\mathcal{M}_1}$	$e^{\mathcal{M}_2}$	e^{χ}	$e^{\mathcal{H}}$	$e^{\mathcal{G}\mathcal{A}}$	$e^{\mathcal{SC}}$	$e^{\mathcal{ABC}}$	$e^{\mathcal{A}\mathcal{Z}}$
min	P_n	P_n	S_n	S_n	S_n	S_n	?	S_n
max	S_n	?	?	P_n	P_n	P_n	S_n	?

 Table 2. Results on extremal trees for exponential of well known VDB topological indices.

Using this technique we failed to find the minimal tree for $e^{\mathcal{ABC}}$ and the maximal tree for $e^{\mathcal{M}_2}$, e^{χ} and $e^{\mathcal{AZ}}$.

2 VDB topological indices with the path as extremal tree

Let $T \in \mathcal{T}_n$, where $n \geq 3$. Since a tree is a connected acyclic graph, then $m_{1,1}(T) = 0$, $m_{i,j}(T) = 0$ for any $1 \leq i \leq j \leq n-1$ such that i+j > n and $\sum_{1 \leq i \leq j \leq n-1} m_{i,j}(T) = n-1$. Consider the subset L of K defined as

$$L = \{(i, j) \in K : i + j \le n, (i, j) \ne (1, 1)\}.$$

If φ is a VDB topological index induced by the numbers $\{\varphi_{i,j}\}_{(i,j)\in K}$ then, for every $T \in \mathcal{T}_n$,

$$\varphi(T) = \sum_{(i,j)\in K} m_{i,j}(T) \varphi_{i,j} = \sum_{(i,j)\in L} m_{i,j}(T) \varphi_{i,j}.$$
(2)

We define the function

$$f(i,j) = \frac{ij}{i+j} (\varphi_{i,j} + 2\varphi_{1,2} - 3\varphi_{2,2})$$

over the set L. Note that

$$f(1,2) = f(2,2) = 2(\varphi_{1,2} - \varphi_{2,2}).$$

Recall that P_n denotes the path with n vertices. It is easy to see that

$$\varphi\left(P_{n}\right) = 2\varphi_{1,2} + \left(n-3\right)\varphi_{2,2}.$$

Theorem 2.1 Let φ be a VDB topological index as in (2) and $T \in \mathcal{T}_n$. Then

$$\varphi(T) = \varphi(P_n) + \sum_{(i,j)\in L} \left[f(i,j) - f(1,2)\right] \frac{i+j}{ij} m_{i,j}.$$

Proof. Since T is a connected acyclic graph, we have

$$\sum_{(i,j)\in L} \left(\frac{1}{i} + \frac{1}{j}\right) m_{i,j} = n, \qquad (3)$$

$$\sum_{(i,j)\in L} m_{i,j} = n-1.$$
 (4)

Hence

$$\frac{3}{2}m_{1,2} + m_{2,2} = n - \sum_{(i,j)\in L^*} \left(\frac{1}{i} + \frac{1}{j}\right) m_{i,j}$$
$$m_{1,2} + m_{2,2} = n - 1 - \sum_{(i,j)\in L^*} m_{i,j}$$

where $L^* = L - \{(1, 2), (2, 2)\}$. It is easy to obtain

$$m_{1,2} = 2 + \sum_{(i,j)\in L^*} 2m_{i,j} - \sum_{(i,j)\in L^*} 2\left(\frac{1}{i} + \frac{1}{j}\right) m_{i,j},$$
(5)

$$m_{2,2} = n - 3 - \sum_{(i,j)\in L^*} 3m_{i,j} + \sum_{(i,j)\in L^*} 2\left(\frac{1}{i} + \frac{1}{j}\right) m_{i,j}.$$
 (6)

Replacing relations (5) and (6) in (2)

$$\begin{split} \varphi\left(T\right) &= \sum_{(i,j)\in L} m_{i,j}\varphi_{i,j} = m_{1,2}\varphi_{1,2} + m_{2,2}\varphi_{2,2} + \sum_{(i,j)\in L^*} m_{i,j}\varphi_{i,j} \\ &= 2\varphi_{1,2} + (n-3)\,\varphi_{2,2} + \sum_{(i,j)\in L^*} \left(\frac{1}{i} + \frac{1}{j}\right) \left(2\varphi_{2,2} - 2\varphi_{1,2}\right) m_{i,j} \\ &+ \sum_{(i,j)\in L^*} m_{i,j} \left(\varphi_{ij} + 2\varphi_{1,2} - 3\varphi_{2,2}\right) \\ &= \varphi\left(P_n\right) + \sum_{(i,j)\in L^*} \left(\frac{1}{i} + \frac{1}{j}\right) m_{i,j} \left[\frac{ij}{i+j} \left(\varphi_{i,j} + 2\varphi_{1,2} - 3\varphi_{2,2}\right) - 2 \left(\varphi_{1,2} - \varphi_{2,2}\right)\right] \\ &= \varphi\left(P_n\right) + \sum_{(i,j)\in L} \left[f\left(i,j\right) - f\left(1,2\right)\right] \frac{i+j}{ij} m_{i,j}. \end{split}$$

Corollary 2.2 Let φ be a VDB topological index as in (2) and define

$$f(i,j) = \frac{ij}{i+j} (\varphi_{i,j} + 2\varphi_{1,2} - 3\varphi_{2,2})$$

for every $(i, j) \in L$.

1. If $f(1,2) = f(2,2) = \max_{(i,j) \in L} f(i,j)$, then for every tree $T \in \mathcal{T}_n$

$$\varphi(T) \le \varphi(P_n).$$

2. If $f(1,2) = f(2,2) = \min_{(i,j) \in L} f(i,j)$, then for every tree $T \in \mathcal{T}_n$

$$\varphi\left(T\right) \geq \varphi\left(P_n\right)$$

Proof. First assume that $f(1,2) = f(2,2) = \max_{(i,j) \in L} f(i,j)$. Let $T \in \mathcal{T}_n$. By Theorem 2.1 and the fact that $f(i,j) \leq f(1,2)$ for all $(i,j) \in L$, we deduce $\varphi(T) \leq \varphi(P_n)$. The second affirmation can be proved similarly.

In order to find $\max_{(i,j)\in L} f(i,j)$ or $\min_{(i,j)\in L} f(i,j)$ for a given φ , we consider the extension of L to the compact set

$$\widehat{L} = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : 1 \le x \le y \le n - 1, \ x + y \le n, \ y \ge 2 \right\}.$$

If $\varphi: \widehat{L} \longrightarrow \mathbb{R}$ is a continuous and differentiable function then $f_{\varphi}: \widehat{L} \longrightarrow \mathbb{R}$ defined as

Figure 1. Compact set \hat{L} .

$$f_{\varphi}\left(x,y\right) = \frac{xy}{x+y} \left[\varphi\left(x,y\right) + 2\varphi\left(1,2\right) - 3\varphi\left(2,2\right)\right],$$

is also continuous and differentiable function over \widehat{L} . Clearly,

$$\left\{ \begin{array}{l} \frac{\partial}{\partial y} f_{\varphi}\left(x,y\right) \leq 0 \quad \forall \left(x,y\right) \in \widehat{L} \\ \\ \frac{d}{dx} f_{\varphi}\left(x,x\right) \leq 0 \quad \forall x \in \left[2,\frac{n}{2}\right] \end{array} \right\} \Longrightarrow \max_{(i,j) \in L} f_{\varphi}(i,j) = f_{\varphi}(1,2)$$

and

$$\left\{ \begin{array}{l} \frac{\partial}{\partial y} f_{\varphi}\left(x,y\right) \geq 0 \quad \forall \left(x,y\right) \in \widehat{L} \\ \\ \frac{d}{dx} f_{\varphi}\left(x,x\right) \geq 0 \quad \forall x \in \left[2,\frac{n}{2}\right] \end{array} \right\} \Longrightarrow \min_{(i,j) \in L} f_{\varphi}(i,j) = f_{\varphi}(1,2)$$

Theorem 2.3 The path P_n is the maximal tree over \mathcal{T}_n with respect to the following exponential VDB topological indices:

- 1. The exponential of the Harmonic index $e^{\mathcal{H}}$;
- 2. The exponential of Geometric-Arithmetic index $e^{\mathcal{GA}}$;
- 3. The exponential of the Sum-Connectivity index e^{SC} .

Proof. 1. The exponential of the Harmonic index is induced by the numbers $\varphi_{i,j} = e^{\frac{2}{i+j}}$, and the associated function $f_{e^{\mathcal{H}}}(x,y)$ is defined over \hat{L} as

$$f_{_{e^{\mathcal{H}}}}\left(x,y\right) = \frac{xy}{x+y} \left[e^{\frac{2}{x+y}} + 2e^{\frac{2}{3}} - 3e^{\frac{1}{2}}\right].$$

The derivative

$$\begin{split} \frac{\partial}{\partial y} f_{\epsilon^{\mathcal{H}}}(x,y) &= \frac{x^2}{(x+y)^2} \left(e^{\frac{2}{x+y}} + 2e^{\frac{2}{3}} - 3e^{\frac{1}{2}} - \frac{y(x+y)}{x} \frac{2}{(x+y)^2} e^{\frac{2}{x+y}} \right) \\ &\leq \frac{x^2}{(x+y)^2} \left[\left(1 - \frac{2}{x+y} \right) e^{\frac{2}{x+y}} + 2e^{\frac{2}{3}} - 3e^{\frac{1}{2}} \right] \\ &\leq \frac{x^2}{(x+y)^2} \left[\left(1 - \frac{2}{3} \right) e^{\frac{2}{3}} + 2e^{\frac{2}{3}} - 3e^{\frac{1}{2}} \right] < 0 \end{split}$$

for all (x, y) in \widehat{L} , since $x \leq y$ and $x + y \geq 3$ in \widehat{L} . On the other hand

$$\frac{d}{dx}f_{_{e^{\mathcal{H}}}}(x,x) = \frac{1}{2}\left(e^{\frac{1}{x}} + 2e^{\frac{2}{3}} - 3e^{\frac{1}{2}} - x\frac{1}{x^2}e^{\frac{1}{x}}\right) = \frac{1}{2}\left[e^{\frac{1}{x}}\left(1 - \frac{1}{x}\right) + 2e^{\frac{2}{3}} - 3e^{\frac{1}{2}}\right] < 0$$

for all $x \in [2, \frac{n}{2}]$. It follows that $f_{e^{\mathcal{H}}}(1, 2) = f_{e^{\mathcal{H}}}(2, 2) = \max_{(i,j)\in L} f_{e^{\mathcal{H}}}(i, j)$ and we are done by Corollary 2.2.

2. The exponential of Geometric-Arithmetic index is induced by the numbers $\varphi_{i,j} = e^{\frac{2\sqrt{ij}}{i+j}}$ and the associated function $f_{_{\mathcal{C}\mathcal{A}}}(x,y)$ is defined over \widehat{L} as

$$f_{_{e^{\mathcal{G}\mathcal{A}}}}\left(x,y\right)=\frac{xy}{x+y}\left[e^{\frac{2\sqrt{xy}}{x+y}}+2e^{\frac{2\sqrt{2}}{3}}-3e\right].$$

The derivative

$$\begin{split} \frac{\partial}{\partial y} f_{e^{\mathcal{G}\mathcal{A}}}\left(x,y\right) &= \frac{x^2}{(x+y)^2} \left(e^{\frac{2\sqrt{2y}}{x+y}} + 2e^{\frac{2\sqrt{2}}{3}} - 3e + \frac{\sqrt{xy}\left(x-y\right)}{x\left(x+y\right)}e^{\frac{2\sqrt{2y}}{x+y}}\right) \\ &\leq \frac{x^2}{(x+y)^2} \left(e^{\frac{2\sqrt{2y}}{x+y}} + 2e^{\frac{2\sqrt{2}}{3}} - 3e\right) \\ &\leq \frac{x^2}{(x+y)^2} \left(e + 2e^{\frac{2\sqrt{2}}{3}} - 3e\right) < 0 \end{split}$$

for all (x, y) in \widehat{L} , since $x \leq y$ and $\frac{2\sqrt{xy}}{x+y} \leq 1$ in \widehat{L} . On the other hand

$$\frac{d}{dx}f_{_{e^{\mathcal{G}\mathcal{A}}}}\left(x,x\right)=\frac{1}{2}\left(e+2e^{\frac{2\sqrt{2}}{3}}-3e\right)<0,$$

for all $x \in [2, \frac{n}{2}]$. Then $f_{e^{\mathcal{G}\mathcal{A}}}(1, 2) = f_{e^{\mathcal{G}\mathcal{A}}}(2, 2) = \max_{(i,j)\in L} f_{e^{\mathcal{G}\mathcal{A}}}(i, j)$ and by Corollary 2.2, the maximal tree with respect to the exponential of Geometric-Arithmetic index is the path P_n .

3. The exponential of the Sum Connectivity index is induced by the numbers $\varphi_{i,j} = e^{\frac{1}{\sqrt{i+j}}}$, then

$$f_{_{eSC}}\left(x,y\right) = \frac{xy}{x+y} \left[e^{\frac{1}{\sqrt{x+y}}} + 2e^{\frac{1}{\sqrt{3}}} - 3e^{\frac{1}{2}} \right]$$

The derivative

$$\begin{aligned} \frac{\partial}{\partial y} f_{e^{SC}}(x,y) &= \frac{x^2}{(x+y)^2} \left[\left(1 - \frac{y}{2x\sqrt{x+y}} \right) e^{\frac{1}{\sqrt{x+y}}} + 2e^{\frac{1}{\sqrt{3}}} - 3e^{\frac{1}{2}} \right] \\ &\leq \frac{x^2}{(x+y)^2} \left[\left(1 - \frac{1}{2\sqrt{x+y}} \right) e^{\frac{1}{\sqrt{x+y}}} + 2e^{\frac{1}{\sqrt{3}}} - 3e^{\frac{1}{2}} \right] \\ &\leq \frac{x^2}{(x+y)^2} \left[\left(1 - \frac{1}{2\sqrt{3}} \right) e^{\frac{1}{\sqrt{3}}} + 2e^{\frac{1}{\sqrt{3}}} - 3e^{\frac{1}{2}} \right] < 0 \end{aligned}$$

for all (x, y) in \widehat{L} , since $x \leq y$ and $x + y \geq 3$ in \widehat{L} . On the other hand,

$$\begin{split} \frac{d}{dx} f_{e^{\mathcal{SC}}}\left(x,x\right) &= \frac{1}{2} \left(e^{\frac{1}{\sqrt{2x}}} + 2e^{\frac{1}{\sqrt{3}}} - 3e^{\frac{1}{2}} - \frac{x}{\left(2x\right)^{\frac{3}{2}}} e^{\frac{1}{\sqrt{2x}}} \right) \\ &= \frac{1}{2} \left(\frac{1}{2\sqrt{2x}} e^{\frac{1}{2x}} + +2e^{\frac{1}{\sqrt{3}}} - 3e^{\frac{1}{2}} \right) < 0 \end{split}$$

for all $x \ge 2$. It follows that $f_{eSC}(1,2) = f_{eSC}(2,2) = \max_{(i,j)\in L} f_{eSC}(i,j)$ and we are done by Corollary 2.2.

Theorem 2.4 The path P_n is the minimal tree over \mathcal{T}_n with respect to the exponential of the First Zagreb index $e^{\mathcal{M}_1}$.

Proof. For the exponential of the First Zagreb index $\varphi_{i,j} = e^{i+j}$ and the associated function $f_{\mathcal{M}_1}(x, y)$ is defined over \hat{L} as

$$f_{_{e^{\mathcal{M}_{1}}}}\left(x,y\right)=\frac{xy}{x+y}\left[e^{x+y}+2e^{3}-3e^{4}\right].$$

The derivative

$$\begin{split} \frac{\partial}{\partial y} f_{e^{\mathcal{M}_{1}}}\left(x,y\right) &=& \frac{x^{2}}{(x+y)^{2}} \left(e^{x+y} + 2e^{3} - 3e^{4} + \frac{y(x+y)}{x}e^{x+y}\right) \\ &\geq& \frac{x^{2}}{(x+y)^{2}} \left[e^{x+2}\left(3 + \frac{4}{x}\right) + 2e^{3} - 3e^{4}\right] > 0 \end{split}$$

for all $(x, y) \in \widehat{L}$ since $y \ge 2$. Moreover,

$$\frac{d}{dx}f_{_{e^{\mathcal{M}_{1}}}}\left(x,x\right)=\frac{1}{2}\left[\left(1+2x\right)e^{2x}+2e^{3}-3e^{4}\right]>0,$$

for $x \ge 2$. Hence the minimum of $f_{e^{\mathcal{M}_1}}$ over L is $f_{e^{\mathcal{M}_1}}(2,2) = f_{e^{\mathcal{M}_1}}(1,2)$. By Corollary 2.2, the minimal tree with respect to the exponential of the First Zagreb index is the path P_n .

We will next show that the path P_n is the minimal tree over \mathcal{T}_n with respect to the exponential of the Second Zagreb index $e^{\mathcal{M}_2}$. Unfortunately, the minimum value of $f_{e^{\mathcal{M}_2}}$ over \hat{L} is $f_{e^{\mathcal{M}_2}}(1,3)$, so we cannot apply Corollary 2.2. However, we can adapt the technique used by [22] in the study of the general Randić index. We will denote by $d_T(u)$ the degree of the vertex u of T.

Lemma 2.5 Consider the trees T and T' with $n \ge 5$ vertices, as in Figure 2. If $p \ge 3$ then $e^{\mathcal{M}_2}(T) \ge e^{\mathcal{M}_2}(T')$.

Figure 2. Trees used in the proof of Lemma 2.5.

Proof. Set $q = d_T(u)$. Then

$$\begin{aligned} \Delta &= e^{\mathcal{M}_2} \left(T \right) - e^{\mathcal{M}_2} \left(T' \right) \\ &= \left(e^{pq} + \left(p - 1 \right) e^p \right) - \left(e^{2q} + \left(p - 2 \right) e^4 + e^2 \right) \\ &= \left(e^{pq} - e^{2q} \right) + \left(p - 2 \right) \left(e^p - e^4 \right) + \left(e^p - e^2 \right) \end{aligned}$$

If $p \ge 4$ then each of the summands above is non-negative, being the first and last strictly positive. Hence $\Delta > 0$.

Assume now that p = 3. Then

$$\Delta = e^{3q} - e^{2q} + 2e^3 - e^4 - e^2.$$

Note that $q \ge 2$ since $n \ge 5$. It is easy to see that

$$e^{3q} - e^{2q} > 2e^3 - e^4 - e^2.$$

for all $q \geq 2$. Consequently, $\Delta > 0$.

Lemma 2.6 Assume that T is a tree with minimum e^{M_2} and $n \ge 5$ vertices. If v is a vertex of T adjacent to a leaf u of T, then $d_T(v) = 2$.

Proof. Assume that $d_T(v) = d$ and let P be the largest path of T that contains v. Let s be an end-vertex of P and r a vertex in P adjacent to s. By Lemma 2.5, $d_T(r) = 2$. Let T' be the tree obtained from T by deleting the leaf u and adding an edge incident to s (see Figure 3). We consider two cases:

Figure 3. Trees used in the proof of Lemma 2.6.

1. $d_T(v) = d \ge 4$. If q_1, \ldots, q_{d-1} are the degrees of the adjacent vertices to v different from u, then

$$\Delta = e^{\mathcal{M}_2}(T) - e^{\mathcal{M}_2}(T') = \sum_{i=1}^{d-1} \left(e^{dq_i} - e^{(d-1)q_i} \right) + e^d - e^4 > 0.$$

This contradicts the minimality of T.

2. $d_T(v) = 3$. Let v_1 and v_2 be the adjacent vertices to v (different from u), such that $d_T(v_1) = p$ and $d_T(v_1) = q$. It follows from Lemma 2.5 that $p \ge 2$ and $q \ge 2$. Then

$$\Delta(p,q) = e^{\mathcal{M}_2}(T) - e^{\mathcal{M}_2}(T') = e^{3p} - e^{2p} + e^{3q} - e^{2q} + e^3 - e^4.$$

The derivatives of $\Delta(p,q)$ are

$$\begin{split} &\frac{\partial}{\partial p}\Delta\left(p,q\right) \ = \ 3e^{3p}-2e^{2p}>0, \\ &\frac{\partial}{\partial q}\Delta\left(p,q\right) \ = \ 3e^{3q}-2e^{2q}>0, \end{split}$$

Hence $\Delta(p,q) \geq \Delta(2,2) > 0$, which contradicts the fact that T is minimal.

Theorem 2.7 The path P_n $(n \ge 5)$ is the minimal tree over \mathcal{T}_n with respect to the exponential of the Second Zagreb index $e^{\mathcal{M}_2}$.

Proof. Let T_0 be a tree with minimal $e^{\mathcal{M}_2}$ -value over \mathcal{T}_n . By Lemma 2.6, $m_{1,j}(T_0) = 0$ for all $j \geq 3$. It follows from Theorem 2.1 that

$$e^{\mathcal{M}_{2}}(T_{0}) = e^{\mathcal{M}_{2}}(P_{n}) + \sum_{(i,j)\in L} \left[f_{e^{\mathcal{M}_{2}}}(i,j) - f_{e^{\mathcal{M}_{2}}}(1,2) \right] \frac{i+j}{ij} m_{i,j}(T_{0})$$

$$= e^{\mathcal{M}_{2}}(P_{n}) + \sum_{(i,j)\in M} \left[f_{e^{\mathcal{M}_{2}}}(i,j) - f_{e^{\mathcal{M}_{2}}}(1,2) \right] \frac{i+j}{ij} m_{i,j}(T_{0}), \quad (7)$$

where

$$M = \{(i, j) \in L : i \ge 2\}.$$

Let

$$\widehat{M} = \left\{ (x, y) \in \widehat{L} : x \ge 2 \right\}.$$

We will show that $\min_{(i,j)\in\widehat{M}} f_{\mathcal{M}_2}(i,j) = f_{\mathcal{M}_2}(2,2)$. Note that

$$f_{e^{\mathcal{M}_2}}(x,y) = \frac{xy}{x+y} \left(e^{xy} + 2e^2 - 3e^4 \right).$$

The derivative

$$\begin{aligned} \frac{\partial}{\partial y} f_{e^{\mathcal{M}_2}}(x,y) &= \frac{x^2}{(x+y)^2} \left(e^{xy} + 2e^2 - 3e^4 + y(x+y)e^{xy} \right) \\ &\geq \frac{x^2}{(x+x)^2} \left[e^{x^2} \left(1 + 2x^2 \right) + 2e^2 - 3e^4 \right] > 0 \end{aligned}$$

for all $(x, y) \in \widehat{M}$. On the other hand

$$\frac{\partial}{\partial x}f_{_{e^{\mathcal{M}_{2}}}}\left(x,x\right)=\frac{1}{2}\left[\left(1+2x^{2}\right)e^{x^{2}}+2e^{2}-3e^{4}\right]>0,$$

for all $x \geq 2$. Consequently, the minimum of $f_{e^{\mathcal{M}_2}}$ over \widehat{M} is $f_{e^{\mathcal{M}_2}}(2,2) = f_{e^{\mathcal{M}_2}}(1,2)$. Finally, if $T \in \mathcal{T}_n$ then by (7) we deduce

$$e^{\mathcal{M}_2}(T) \ge e^{\mathcal{M}_2}(T_0) \ge e^{\mathcal{M}_2}(P_n).$$

Remark 2.8 Using Corollary 2.2 we can also obtain the known results given in Table 1 about the path as a maximal tree over \mathcal{T}_n , for the Randić, Harmonic, Geometric-Arithmetic and Sum-Connectivity indices.

3 VDB topological indices with the star as extremal tree

Our concern in this section is when does the star S_n attain the minimal value of a VDB topological index φ over \mathcal{T}_n . If φ is a VDB topological index induced by the numbers $\{\varphi_{i,j}\}_{(i,j)\in K}$ then, as we mentioned in the previous section, for every $T \in \mathcal{T}_n$

$$\varphi(T) = \sum_{(i,j)\in L} m_{i,j}(T)\varphi_{i,j},$$

where

$$L = \{(i, j) \in K : i + j \le n, (i, j) \ne (1, 1)\}.$$

Consider the function

$$g(i,j) = \varphi_{i,j},$$

defined over the set L.

It is easy to see that

$$\varphi\left(S_{n}\right) = \left(n-1\right)\varphi_{1,n-1}.$$

Theorem 3.1 Let φ be a VDB topological index as in (2) and T a tree with n vertices. Then

$$\varphi(T) = \varphi(S_n) + \sum_{(i,j)\in L} \left[g(i,j) - g(1,n-1)\right] m_{i,j}$$
(8)

Proof. Using relation (4), we have

$$m_{1,n-1} = n - 1 - \sum_{(i,j) \in L^1} m_{i,j},$$
(9)

where $L^1 = L - \{(1, n - 1)\}$. Replacing (9) in (2)

$$\begin{aligned} \varphi\left(T\right) &= m_{1,n-1}\varphi_{1,n-1} + \sum_{(i,j)\in L^1} m_{i,j}\varphi_{i,j} \\ &= (n-1)\,\varphi_{1,n-1} + \sum_{(i,j)\in L^1} m_{i,j}\,(\varphi_{i,j} - \varphi_{1,n-1}) \\ &= \varphi\left(S_n\right) + \sum_{(i,j)\in L} \left[g\left(i,j\right) - g\left(1,n-1\right)\right]m_{i,j}. \end{aligned}$$

Corollary 3.2 Let φ be a VDB topological index as in (2) and define

$$g(i,j) = \varphi_{i,j}$$

for every $(i, j) \in L$.

1. If $g(1, n-1) = \max_{(i,j) \in L} g(i, j)$, then for every tree $T \in \mathcal{T}_n$

 $\varphi\left(T\right) \leq \varphi\left(S_n\right).$

2. If $g(1, n-1) = \min_{(i,j) \in L} g(i, j)$, then for every tree $T \in \mathcal{T}_n$

$$\varphi(T) \ge \varphi(S_n)$$
.

Proof. Let $T \in \mathcal{T}_n$. If $g(1, n - 1) = \max_{(i,j) \in L} g(i, j)$, then by relation (8) and the fact that $g(i, j) \leq g(1, n - 1)$ for all $(i, j) \in L$, it follows that $\varphi(T) \leq \varphi(S_n)$.

The second affirmation can be proved similarly.

We next use Corollary 3.2 to find extremal values of the exponentials of VDB topological indices over \mathcal{T}_n . In [6] we obtained that S_n is the minimal graph over \mathcal{G}_n , the set of graphs with *n* non-isolated vertices, for $e^{\mathcal{H}}, e^{\chi}$ and $e^{\mathcal{AZ}}$. In particular, S_n is the minimal tree over \mathcal{T}_n for $e^{\mathcal{H}}, e^{\chi}$ and $e^{\mathcal{AZ}}$.

As in the previous section, we extend the function g to the compact set

$$\widehat{L} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 1 \le x \le y \le n - 1, \ x + y \le n, \ y \ge 2\}.$$

Assume that

$$g_{\varphi}\left(x,y\right) = \varphi\left(x,y\right)$$

is a continuous and differentiable function over \widehat{L} . Clearly (see Figure 1),

$$\left\{ \begin{array}{l} \frac{\partial}{\partial x} g_{\varphi}\left(x,y\right) \leq 0 \quad \forall \left(x,y\right) \in \widehat{L} \\ \\ \frac{d}{dy} g_{\varphi}\left(1,y\right) \geq 0 \quad \forall y \in [2,n-1] \end{array} \right\} \Longrightarrow \max_{(i,j) \in L} g_{\varphi}(i,j) = g_{\varphi}(1,n-1),$$

and

$$\frac{\partial}{\partial x}g_{\varphi}(x,y) \ge 0 \quad \forall (x,y) \in \widehat{L}$$
$$\stackrel{d}{=} \lim_{dy} g_{\varphi}(1,y) \le 0 \quad \forall y \in [2,n-1] \end{cases} \Longrightarrow \min_{(i,j) \in L} g_{\varphi}(i,j) = g_{\varphi}(1,n-1).$$

Also,

$$\begin{cases} \frac{\partial}{\partial y} g_{\varphi}(x,y) \ge 0 \quad \forall (x,y) \in \widehat{L} \\ \\ \frac{d}{dx} g_{\varphi}(x,n-x) \le 0 \quad \forall x \in \left[1,\frac{n}{2}\right] \end{cases} \Longrightarrow \max_{(i,j) \in L} g_{\varphi}(i,j) = g_{\varphi}(1,n-1),$$

and

$$\left\{\begin{array}{cc}\frac{\partial}{\partial y}g_{\varphi}\left(x,y\right) \leq 0 \quad \forall \left(x,y\right) \in \widehat{L}\\ \left(\frac{d}{dx}g_{\varphi}\left(x,n-x\right) \geq 0 \quad \forall x \in \left[1,\frac{n}{2}\right]\end{array}\right\} \Longrightarrow \min_{(i,j) \in L} g_{\varphi}(i,j) = g_{\varphi}(1,n-1).$$

Theorem 3.3 The star S_n is the minimal tree over \mathcal{T}_n with respect to the exponential $e^{\mathcal{G}\mathcal{A}}$ and the exponential $e^{\mathcal{S}\mathcal{C}}$.

Proof. 1. We associate to $e^{\mathcal{GA}}$ the function

$$g_{_{e^{\mathcal{G}\mathcal{A}}}}\left(x,y\right) =e^{\frac{2\sqrt{xy}}{x+y}},$$

defined over \widehat{L} . The derivative

$$\frac{\partial}{\partial x}g_{e^{\mathcal{G}\mathcal{A}}}\left(x,y\right) = \frac{\left(y-x\right)\sqrt{xy}}{x\left(x+y\right)^{2}}e^{\frac{2\sqrt{xy}}{x+y}} \ge 0,$$

for all $(x, y) \in \widehat{L}$. On the other hand

$$\frac{d}{dy}g_{_{e^{\mathcal{G}\mathcal{A}}}}\left(1,y\right) = -\frac{y-1}{\sqrt{y}\left(y+1\right)^{2}}e^{\frac{2\sqrt{x}y}{x+y}} < 0$$

for all $y \in [2, n-1]$. Consequently, $g_{{}_{e_{\mathcal{G}}\mathcal{A}}}(1, n-1) = \min_{(i,j)\in L} g_{{}_{e_{\mathcal{G}}\mathcal{A}}}(i, j)$. The result follows by Corollary 3.2.

2. We associate to $e^{\mathcal{SC}}$ the function

$$g_{_{e^{\mathcal{SC}}}}(x,y)=e^{\frac{1}{\sqrt{x+y}}},$$

defined over \widehat{L} . The derivative

$$\frac{\partial}{\partial y}g_{_{e^{\mathcal{SC}}}}(x,y)=-\frac{1}{2\left(x+y\right)^{\frac{3}{2}}}e^{\frac{1}{\sqrt{x+y}}}<0$$

for all $(x, y) \in \widehat{L}$. On the other hand

$$\frac{d}{dx}g_{_{eSC}}(x,n-x)=0$$

for all $x \in [1, \frac{n}{2}]$. It follows that $g_{eSC}(1, n-1) = \min_{(i,j) \in L} g_{eSC}(i, j)$. The result follows by Corollary 3.2.

Theorem 3.4 The star S_n is the maximal tree over \mathcal{T}_n with respect to $e^{\mathcal{ABC}}$.

Proof. We associate to $e^{\mathcal{ABC}}$ the function

$$g_{_{e^{\mathcal{ABC}}}}(x,y)=e^{\sqrt{\frac{x+y-2}{xy}}},$$

for all $(x, y) \in \widehat{L}$. The derivative

$$\frac{\partial}{\partial x}g_{_{e^{\mathcal{ABC}}}}(x,y)=\frac{\sqrt{xy}}{2x^2y}\frac{2-y}{\sqrt{(x+y-2)}}e^{\sqrt{\frac{x+y-2}{xy}}}\leq 0$$

for all $(x, y) \in \widehat{L}$. On the other hand

$$\frac{d}{dy}g_{_{e^{\mathcal{A}\mathcal{B}\mathcal{C}}}}(1,y)=\frac{1}{2y\sqrt{y\left(y-1\right)}}e^{\sqrt{\frac{y-1}{y}}}>0$$

for all $y \in [2, n-1]$. It follows that $g_{_{eABC}}(1, n-1) = \max_{(i,j)\in L} g_{_{eABC}}(i, j)$. The result follows by Corollary 3.2.

Now we will show that S_n is the maximal tree with respect to $e^{\mathcal{M}_1}$ over \mathcal{T}_n . However, we cannot apply Corollary 3.2 since

$$g_{_{e^{\mathcal{M}_{1}}}}(1,n-1)\neq \max_{(i,j)\in L}g_{_{e^{\mathcal{M}_{1}}}}(i,j),$$

where

$$g_{\mathcal{A}_1}(x,y) = e^{x+y}$$

for all $(x, y) \in \hat{L}$. Instead we use the operations introduced in [8]. We denote by $N_T(u)$ the set of neighbors of u in the tree T.

Theorem 3.5 The star S_n is the maximal tree over \mathcal{T}_n with respect to the exponential $e^{\mathcal{M}_1}$.

Proof. Let $T \in \mathcal{T}_n$ different from the star. Then T has at least one edge uv such that $d_T(v) = i \ge 2$ and $N_T(u) - \{v\} = \{w_1, \ldots, w_j\}$ are leaves, with $j \ge 1$. Let $T' = T - \{uw_1, \ldots, uw_j\} + \{vw_1, \ldots, vw_j\}$ (see Figure 4) and denote by $\{q_1, \ldots, q_{i-1}\}$ the degrees of the vertices adjacent to v in T different from u. Then

Figure 4. Trees used in the proof of Theorem 3.5.

$$e^{\mathcal{M}_{1}}(T') - e^{\mathcal{M}_{1}}(T) = \sum_{l=1}^{i-1} \left[e^{q_{l}+i+j} - e^{q_{l}+i} \right] + (j+1) e^{i+j+1} - e^{i+j+1} - je^{j+2}$$

> $j \left(e^{i+j+1} - e^{j+2} \right) \ge 0.$

If $T' = S_n$ we are done, otherwise we repeat the operation until we reach the star S_n .

Remark 3.6 Using Corollary 3.2 we can also obtain the known results given in Table 1 about the star as an extremal tree over \mathcal{T}_n , for the Harmonic, Augmented Zagreb, Geometric-Arithmetic, Sum-Connectivity and Atom-Bond-Connectivity indices.

4 Open problems

As we mentioned in the Introduction, the problem of finding the minimal tree with respect to the \mathcal{ABC} index and the maximal tree with respect to the \mathcal{AZ} index are open and very difficult problems. Apparently the same occurs with the minimal of $e^{\mathcal{ABC}}$ and the maximal of $e^{\mathcal{AZ}}$. However, it is easy to see that the path P_n is not the minimal tree with respect to $e^{\mathcal{ABC}}$ neither the maximal tree with respect to $e^{\mathcal{AZ}}$. In fact, for each $k \geq 3$, let us denote

-730-

by $T_{k,2}$ the Kragujevac tree [14] with a central vertex of degree k and k branches of type B_2 (see Figure 5). Note that $T_{k,2}$ has n = 1 + 5k vertices.

Figure 5. Kragujevac tree with k branches of type B_2 .

Then

$$\begin{split} e^{\mathcal{ABC}}\left(T_{k,2}\right) - e^{\mathcal{ABC}}\left(P_{5k+1}\right) &= ke^{\sqrt{\frac{k+1}{3k}}} + 2ke^{\sqrt{\frac{1}{2}}} + 2ke^{\sqrt{\frac{1}{2}}} - \left[2e^{\sqrt{\frac{1}{2}}} + (5k-2)e^{\sqrt{\frac{1}{2}}}\right] \\ &= k\left(e^{\sqrt{\frac{1}{3}+\frac{1}{3k}}} - e^{\sqrt{\frac{1}{2}}}\right) < 0. \\ e^{\mathcal{AZ}}\left(T_{k,2}\right) - e^{\mathcal{AZ}}\left(P_{5k+1}\right) &= ke^{\left(\frac{3k}{k+1}\right)^3} + 2ke^8 + 2ke^8 - \left[2e^8 + (5k-2)e^8\right] \\ &= k\left(e^{\left(\frac{3k}{k+1}\right)^3} - e^8\right) > 0. \end{split}$$

On the other hand, we still have no answer to the problem of finding the maximal value of the exponentials $e^{\mathcal{M}_2}$ and e^{χ} over \mathcal{T}_n .

References

- A. Ali, A. A. Bhatti, A note on augmented Zagreb index of cacti with fixed number of vertices and cycles, *Kuwait J. Sci.* 43 (2016) 11–17.
- [2] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Appl. Math. Comput. 238 (2018) 32–40.
- [3] G. Caporossi, I. Gutman, P. Hansen, L. Pavlović, Graphs with maximum connectivity index, *Comput. Biol. Chem.*, 27 (2003) 85–90.
- [4] X. Cheng, G. Hao, Extremal graphs with respect to generalized ABC index, Discr. Appl. Math. 243 (2018) 115–124.
- [5] R. Cruz, T. Pérez, J. Rada, Extremal values of vertex-degree-based topological indices over graphs, J. Appl. Math. Comput. 48 (2015) 395–406.

- [6] R. Cruz, J. Rada, Extremal graphs of exponential vertex-degree-based topological indices over graphs, submitted.
- [7] J. Devillers, A. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, Amsterdam, 1999.
- [8] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597–616.
- [9] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertexdegree-based molecular structure descriptors, *MATCH Commun. Math. Comput. Chem.* 66 (2011) 613–626.
- [10] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem.* **37A** (1998) 849– 855.
- [11] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, *Discr. Appl. Math.* **157** (2009) 2828–2835.
- [12] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370–380.
- [13] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, *Appl. Math. Comput.* **219** (2013) 8973–8978.
- [14] B. Furtula, I. Gutman, M. Ivanović, D. Vukičević, Computer search for trees with minimal ABC index, Appl. Math. Comput. 219 (2012) 767–772.
- [15] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351–361.
- [16] I. Gutman, B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012) 131–136.
- [17] I. Gutman, B. Furtula, M. B. Ahmadi, S. A. Hosseini, P. Salehi Nowbandegani, M. Zarrinderakht, The ABC conundrum, Filomat 27 (2015) 1075–1083.
- [18] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012) 467–482.
- [19] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertexdegree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805–810.
- [20] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535–538.

- [21] B. Hollas, The covariance of topological indices that depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem. 54 (2005) 177–187.
- [22] Y. Hu, X. Li, Y. Yu, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 129–146.
- [23] L. Kier and L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [24] L. Kier and L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
- [25] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195–208.
- [26] W. Lin, A. Ali, L. Huang, Z. Wu, J. Chen, On trees with maximal augmented Zagreb index, *IEEE Access* 6 (2018) 69335–69341.
- [27] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603–616.
- [28] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29–41.
- [29] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [30] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [31] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
- [32] D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, *Chem. Phys. Lett.* 515 (2011) 186–189.
- [33] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369– 1376.
- [34] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561–566.
- [35] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270.