The Path and the Star as Extremal Values of Vertex-Degree-Based Topological Indices Among Trees

Roberto Cruz, Juan Rada
Instituto de Matemáticas, Universidad de Antioquia
Medellín, Colombia
roberto.cruz@udea.edu.co, pablo.rada@udea.edu.co

(Received March 2, 2019)

Abstract

We denote by \mathcal{T}_{n} the set of trees with n vertices, $P_{n} \in \mathcal{T}_{n}$ is the path tree and $S_{n} \in \mathcal{T}_{n}$ is the star tree. Let φ be a vertex-degree-based topological index defined over \mathcal{T}_{n}. For any tree $T \in \mathcal{T}_{n}$, we find an expression of $\varphi(T)$ in terms of $\varphi\left(P_{n}\right)$ and a function f_{φ} associated to φ, in such a way that the derivatives of f_{φ} over a compact set gives information on when the path P_{n} is an extremal value of φ over \mathcal{T}_{n}, for $n \geq 3$. Similarly, we present results which give information on when the star S_{n} is an extremal value of φ over \mathcal{T}_{n}, for $n \geq 3$. As an application, we determine extremal trees for exponential vertex-degree-based topological indices.

1 Introduction

The problem of finding extremal graphs over a significant graph family with respect to important topological indices has attracted considerable attention in mathematicalchemistry literature (for motivation and chemical applications of the topological indices see $[7,23,24,30,31])$. We are mostly interested in vertex-degree-based (VDB for short) topological indices, which are defined as a sum, over all edges of a graph, of certain numbers that depend on the degrees of the end-vertices of each edge $[5,9,13,15,19,27]$.

A formal definition of a VDB topological index is as follows. Let \mathcal{G}_{n} be the set of graphs with n non-isolated vertices. Consider the set

$$
K=\{(i, j) \in \mathbb{N} \times \mathbb{N}: 1 \leq i \leq j \leq n-1\}
$$

and for a graph $G \in \mathcal{G}_{n}$, denote by $m_{i, j}(G)$ the number of edges in G joining vertices of degree i and j. A VDB topological index over \mathcal{G}_{n} is a function $\varphi: \mathcal{G}_{n} \longrightarrow \mathbb{R}$ induced by real numbers $\left\{\varphi_{i, j}\right\}_{(i, j) \in K}$ defined as

$$
\begin{equation*}
\varphi(G)=\sum_{(i, j) \in K} m_{i, j}(G) \varphi_{i, j} \tag{1}
\end{equation*}
$$

for every $G \in \mathcal{G}_{n}$. We note that the topological indices of the form (1) were referred as bond incident degree indices in [32]. These indices were also considered in [21], and more recently in [2].

The most studied VDB topological indices are the First Zagreb index \mathcal{M}_{1} [20], induced by numbers $\varphi_{i, j}=i+j$; the Second Zagreb index $\mathcal{M}_{2}[20]$, induced by $\varphi_{i, j}=i j$; the Randić index $\chi[29]$ induced by $\varphi_{i, j}=\frac{1}{\sqrt{i j}}$; the Harmonic index \mathcal{H} [35], induced by $\varphi_{i, j}=\frac{2}{i+j}$; the Geometric-Arithmetic index $\mathcal{G \mathcal { A }}$ [33], induced by $\varphi_{i, j}=\frac{2 \sqrt{i j}}{i+j}$; the Sum-Connectivity index $\mathcal{S C}$ [34], induced by $\varphi_{i, j}=\frac{1}{\sqrt{i+j}}$; the Atom-Bond-Connectivity index $\mathcal{A B C}$ [10], induced by $\varphi_{i, j}=\sqrt{\frac{i+j-2}{i j}}$ and the Augmented Zagreb index $\mathcal{A Z}$ [12], induced by $\varphi_{i, j}=\left(\frac{i j}{i+j-2}\right)^{3}$.

Let \mathcal{T}_{n} be the set of all trees with n vertices. It is well known that P_{n} (the path on n vertices) and S_{n} (the star on n vertices) are extremal trees with respect to most of the VDB topological indices mentioned above over \mathcal{T}_{n}, as we can see in Table 1 [3,8,11,12,25,33-35]. The problem of finding the minimal tree with respect to the $\mathcal{A B C}$ index and maximal tree

	\mathcal{M}_{1}	\mathcal{M}_{2}	χ	\mathcal{H}	$\mathcal{G A}$	$\mathcal{S C}$	$\mathcal{A B C}$	$\mathcal{A Z}$
\min	P_{n}	P_{n}	S_{n}	S_{n}	S_{n}	S_{n}	$?$	S_{n}
\max	S_{n}	S_{n}	P_{n}	P_{n}	P_{n}	P_{n}	S_{n}	$?$

Table 1. Extremal trees for well known VDB topological indices.
with respect to the $\mathcal{A Z}$ index are open and very difficult problems [1,4,14,16-18, 26].
In this paper we give a general method to determine whether the path P_{n} or the star S_{n} are extremal trees of a $V D B$ topological index φ over \mathcal{T}_{n}. Generally speaking, let φ be a vertex-degree-based topological index defined over \mathcal{T}_{n}. For any tree $T \in \mathcal{T}_{n}$, we find an expression of $\varphi(T)$ in terms of $\varphi\left(P_{n}\right)$ and a function f_{φ} associated to φ, in such a
way that the derivatives of f_{φ} over a compact set gives information on when the path P_{n} is an extremal value of φ over \mathcal{T}_{n}, for $n \geq 3$. Similarly, we present results which give information on when the star S_{n} is an extremal value of φ over \mathcal{T}_{n}, for $n \geq 3$. As an application, we determine extremal trees for exponential vertex-degree-based topological indices. Recall that the exponential of φ is defined as the VDB topological index e^{φ} induced by numbers $\left\{e^{\varphi_{i, j}}\right\}_{(i, j) \in K}$ [28]. It was shown in [28] that these topological indices have good discrimination properties. Our results are summarized in Table 2.

	$e^{\mathcal{M}_{1}}$	$e^{\mathcal{M}_{2}}$	e^{χ}	$e^{\mathcal{H}}$	$e^{\mathcal{G} \mathcal{A}}$	$e^{\mathcal{S C}}$	$e^{\mathcal{A B C}}$	$e^{\mathcal{A Z}}$
\min	P_{n}	P_{n}	S_{n}	S_{n}	S_{n}	S_{n}	$?$	S_{n}
\max	S_{n}	$?$	$?$	P_{n}	P_{n}	P_{n}	S_{n}	$?$

Table 2. Results on extremal trees for exponential of well known VDB topological indices.

Using this technique we failed to find the minimal tree for $e^{\mathcal{A B C}}$ and the maximal tree for $e^{\mathcal{M}_{2}}, e^{\chi}$ and $e^{\mathcal{A Z}}$.

2 VDB topological indices with the path as extremal tree

Let $T \in \mathcal{T}_{n}$, where $n \geq 3$. Since a tree is a connected acyclic graph, then $m_{1,1}(T)=0$, $m_{i, j}(T)=0$ for any $1 \leq i \leq j \leq n-1$ such that $i+j>n$ and $\sum_{1 \leq i \leq j \leq n-1} m_{i, j}(T)=n-1$. Consider the subset L of K defined as

$$
L=\{(i, j) \in K: i+j \leq n,(i, j) \neq(1,1)\} .
$$

If φ is a VDB topological index induced by the numbers $\left\{\varphi_{i, j}\right\}_{(i, j) \in K}$ then, for every $T \in \mathcal{T}_{n}$,

$$
\begin{equation*}
\varphi(T)=\sum_{(i, j) \in K} m_{i, j}(T) \varphi_{i, j}=\sum_{(i, j) \in L} m_{i, j}(T) \varphi_{i, j} . \tag{2}
\end{equation*}
$$

We define the function

$$
f(i, j)=\frac{i j}{i+j}\left(\varphi_{i, j}+2 \varphi_{1,2}-3 \varphi_{2,2}\right)
$$

over the set L. Note that

$$
f(1,2)=f(2,2)=2\left(\varphi_{1,2}-\varphi_{2,2}\right)
$$

Recall that P_{n} denotes the path with n vertices. It is easy to see that

$$
\varphi\left(P_{n}\right)=2 \varphi_{1,2}+(n-3) \varphi_{2,2}
$$

Theorem 2.1 Let φ be a VDB topological index as in (2) and $T \in \mathcal{T}_{n}$. Then

$$
\varphi(T)=\varphi\left(P_{n}\right)+\sum_{(i, j) \in L}[f(i, j)-f(1,2)] \frac{i+j}{i j} m_{i, j}
$$

Proof. Since T is a connected acyclic graph, we have

$$
\begin{align*}
\sum_{(i, j) \in L}\left(\frac{1}{i}+\frac{1}{j}\right) m_{i, j} & =n, \tag{3}\\
\sum_{(i, j) \in L} m_{i, j} & =n-1 . \tag{4}
\end{align*}
$$

Hence

$$
\begin{aligned}
\frac{3}{2} m_{1,2}+m_{2,2} & =n-\sum_{(i, j) \in L^{*}}\left(\frac{1}{i}+\frac{1}{j}\right) m_{i, j} \\
m_{1,2}+m_{2,2} & =n-1-\sum_{(i, j) \in L^{*}} m_{i, j}
\end{aligned}
$$

where $L^{*}=L-\{(1,2),(2,2)\}$. It is easy to obtain

$$
\begin{align*}
& m_{1,2}=2+\sum_{(i, j) \in L^{*}} 2 m_{i, j}-\sum_{(i, j) \in L^{*}} 2\left(\frac{1}{i}+\frac{1}{j}\right) m_{i, j}, \tag{5}\\
& m_{2,2}=n-3-\sum_{(i, j) \in L^{*}} 3 m_{i, j}+\sum_{(i, j) \in L^{*}} 2\left(\frac{1}{i}+\frac{1}{j}\right) m_{i, j} . \tag{6}
\end{align*}
$$

Replacing relations (5) and (6) in (2)

$$
\begin{aligned}
\varphi(T)= & \sum_{(i, j) \in L} m_{i, j} \varphi_{i, j}=m_{1,2} \varphi_{1,2}+m_{2,2} \varphi_{2,2}+\sum_{(i, j) \in L^{*}} m_{i, j} \varphi_{i, j} \\
= & 2 \varphi_{1,2}+(n-3) \varphi_{2,2}+\sum_{(i, j) \in L^{*}}\left(\frac{1}{i}+\frac{1}{j}\right)\left(2 \varphi_{2,2}-2 \varphi_{1,2}\right) m_{i, j} \\
& +\sum_{(i, j) \in L^{*}} m_{i, j}\left(\varphi_{i j}+2 \varphi_{1,2}-3 \varphi_{2,2}\right) \\
= & \varphi\left(P_{n}\right)+\sum_{(i, j) \in L^{*}}\left(\frac{1}{i}+\frac{1}{j}\right) m_{i, j}\left[\frac{i j}{i+j}\left(\varphi_{i, j}+2 \varphi_{1,2}-3 \varphi_{2,2}\right)-2\left(\varphi_{1,2}-\varphi_{2,2}\right)\right] \\
= & \varphi\left(P_{n}\right)+\sum_{(i, j) \in L}[f(i, j)-f(1,2)] \frac{i+j}{i j} m_{i, j} .
\end{aligned}
$$

Corollary 2.2 Let φ be a VDB topological index as in (2) and define

$$
f(i, j)=\frac{i j}{i+j}\left(\varphi_{i, j}+2 \varphi_{1,2}-3 \varphi_{2,2}\right)
$$

for every $(i, j) \in L$.

1. If $f(1,2)=f(2,2)=\max _{(i, j) \in L} f(i, j)$, then for every tree $T \in \mathcal{T}_{n}$

$$
\varphi(T) \leq \varphi\left(P_{n}\right)
$$

2. If $f(1,2)=f(2,2)=\min _{(i, j) \in L} f(i, j)$, then for every tree $T \in \mathcal{T}_{n}$

$$
\varphi(T) \geq \varphi\left(P_{n}\right)
$$

Proof. First assume that $f(1,2)=f(2,2)=\max _{(i, j) \in L} f(i, j)$. Let $T \in \mathcal{T}_{n}$. By Theorem 2.1 and the fact that $f(i, j) \leq f(1,2)$ for all $(i, j) \in L$, we deduce $\varphi(T) \leq$ $\varphi\left(P_{n}\right)$. The second affirmation can be proved similarly.

In order to find $\max _{(i, j) \in L} f(i, j)$ or $\min _{(i, j) \in L} f(i, j)$ for a given φ, we consider the extension of L to the compact set

$$
\widehat{L}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: 1 \leq x \leq y \leq n-1, x+y \leq n, y \geq 2\}
$$

If $\varphi: \widehat{L} \longrightarrow \mathbb{R}$ is a continuous and differentiable function then $f_{\varphi}: \widehat{L} \longrightarrow \mathbb{R}$ defined as

Figure 1. Compact set \widehat{L}.

$$
f_{\varphi}(x, y)=\frac{x y}{x+y}[\varphi(x, y)+2 \varphi(1,2)-3 \varphi(2,2)]
$$

is also continuous and differentiable function over \widehat{L}. Clearly,

$$
\left\{\begin{array}{ll}
\frac{\partial}{\partial y} f_{\varphi}(x, y) \leq 0 & \forall(x, y) \in \widehat{L} \\
\frac{d}{d x} f_{\varphi}(x, x) \leq 0 & \forall x \in\left[2, \frac{n}{2}\right]
\end{array}\right\} \Longrightarrow \max _{(i, j) \in L} f_{\varphi}(i, j)=f_{\varphi}(1,2)
$$

and

$$
\left\{\begin{array}{cc}
\frac{\partial}{\partial y} f_{\varphi}(x, y) \geq 0 & \forall(x, y) \in \widehat{L} \\
\frac{d}{d x} f_{\varphi}(x, x) \geq 0 & \forall x \in\left[2, \frac{n}{2}\right]
\end{array}\right\} \Longrightarrow \min _{(i, j) \in L} f_{\varphi}(i, j)=f_{\varphi}(1,2)
$$

Theorem 2.3 The path P_{n} is the maximal tree over \mathcal{T}_{n} with respect to the following exponential VDB topological indices:

1. The exponential of the Harmonic index $e^{\mathcal{H}}$;
2. The exponential of Geometric-Arithmetic index $e^{\mathcal{G} \mathcal{A}}$;
3. The exponential of the Sum-Connectivity index $e^{\mathcal{S C}}$.

Proof. 1. The exponential of the Harmonic index is induced by the numbers $\varphi_{i, j}=$ $e^{\frac{2}{i+j}}$, and the associated function $f_{e^{\mathcal{H}}}(x, y)$ is defined over \widehat{L} as

$$
f_{e^{\mathcal{H}}}(x, y)=\frac{x y}{x+y}\left[e^{\frac{2}{x+y}}+2 e^{\frac{2}{3}}-3 e^{\frac{1}{2}}\right] .
$$

The derivative

$$
\begin{aligned}
\frac{\partial}{\partial y} f_{e^{\mathcal{H}}}(x, y) & =\frac{x^{2}}{(x+y)^{2}}\left(e^{\frac{2}{x+y}}+2 e^{\frac{2}{3}}-3 e^{\frac{1}{2}}-\frac{y(x+y)}{x} \frac{2}{(x+y)^{2}} e^{\frac{2}{x+y}}\right) \\
& \leq \frac{x^{2}}{(x+y)^{2}}\left[\left(1-\frac{2}{x+y}\right) e^{\frac{2}{x+y}}+2 e^{\frac{2}{3}}-3 e^{\frac{1}{2}}\right] \\
& \leq \frac{x^{2}}{(x+y)^{2}}\left[\left(1-\frac{2}{3}\right) e^{\frac{2}{3}}+2 e^{\frac{2}{3}}-3 e^{\frac{1}{2}}\right]<0
\end{aligned}
$$

for all (x, y) in \widehat{L}, since $x \leq y$ and $x+y \geq 3$ in \widehat{L}. On the other hand

$$
\frac{d}{d x} f_{e^{\mathcal{H}}}(x, x)=\frac{1}{2}\left(e^{\frac{1}{x}}+2 e^{\frac{2}{3}}-3 e^{\frac{1}{2}}-x \frac{1}{x^{2}} e^{\frac{1}{x}}\right)=\frac{1}{2}\left[e^{\frac{1}{x}}\left(1-\frac{1}{x}\right)+2 e^{\frac{2}{3}}-3 e^{\frac{1}{2}}\right]<0
$$

for all $x \in\left[2, \frac{n}{2}\right]$. It follows that $f_{e^{\mathcal{H}}}(1,2)=f_{e^{\mathcal{H}}}(2,2)=\max _{(i, j) \in L} f_{e^{\mathcal{H}}}(i, j)$ and we are done by Corollary 2.2.
2. The exponential of Geometric-Arithmetic index is induced by the numbers $\varphi_{i, j}=$ $e^{\frac{2 \sqrt{3}}{i+j}}$ and the associated function $f_{e_{\mathcal{A}}}(x, y)$ is defined over \widehat{L} as

$$
f_{e \mathfrak{G A}}(x, y)=\frac{x y}{x+y}\left[e^{\frac{2 \sqrt{x y}}{x+y}}+2 e^{\frac{2 \sqrt{2}}{3}}-3 e\right] .
$$

The derivative

$$
\begin{aligned}
\frac{\partial}{\partial y} f_{e \mathcal{G A}}(x, y) & =\frac{x^{2}}{(x+y)^{2}}\left(e^{\frac{2 \sqrt{x y}}{x+y}}+2 e^{\frac{2 \sqrt{2}}{3}}-3 e+\frac{\sqrt{x y}(x-y)}{x(x+y)} e^{\frac{2 \sqrt{x y}}{x+y}}\right) \\
& \leq \frac{x^{2}}{(x+y)^{2}}\left(e^{\frac{2 \sqrt{x y}}{x+y}}+2 e^{\frac{2 \sqrt{2}}{3}}-3 e\right) \\
& \leq \frac{x^{2}}{(x+y)^{2}}\left(e+2 e^{\frac{2 \sqrt{2}}{3}}-3 e\right)<0
\end{aligned}
$$

for all (x, y) in \widehat{L}, since $x \leq y$ and $\frac{2 \sqrt{x y}}{x+y} \leq 1$ in \widehat{L}. On the other hand

$$
\frac{d}{d x} f_{e G \mathcal{A}}(x, x)=\frac{1}{2}\left(e+2 e^{\frac{2 \sqrt{2}}{3}}-3 e\right)<0
$$

for all $x \in\left[2, \frac{n}{2}\right]$. Then $f_{e \mathcal{G A}}(1,2)=f_{e \mathcal{G A}}(2,2)=\max _{(i, j) \in L} f_{e \mathcal{G A}}(i, j)$ and by Corollary 2.2 , the maximal tree with respect to the exponential of Geometric-Arithmetic index is the path P_{n}.
3. The exponential of the Sum Connectivity index is induced by the numbers $\varphi_{i, j}=$ $e^{\frac{1}{\sqrt{2+3}}}$, then

$$
f_{e s c}(x, y)=\frac{x y}{x+y}\left[e^{\frac{1}{\sqrt{x+y}}}+2 e^{\frac{1}{\sqrt{3}}}-3 e^{\frac{1}{2}}\right] .
$$

The derivative

$$
\begin{aligned}
\frac{\partial}{\partial y} f_{e} s c(x, y) & =\frac{x^{2}}{(x+y)^{2}}\left[\left(1-\frac{y}{2 x \sqrt{x+y}}\right) e^{\frac{1}{\sqrt{x+y}}}+2 e^{\frac{1}{\sqrt{3}}}-3 e^{\frac{1}{2}}\right] \\
& \leq \frac{x^{2}}{(x+y)^{2}}\left[\left(1-\frac{1}{2 \sqrt{x+y}}\right) e^{\frac{1}{\sqrt{x+y}}}+2 e^{\frac{1}{\sqrt{3}}}-3 e^{\frac{1}{2}}\right] \\
& \leq \frac{x^{2}}{(x+y)^{2}}\left[\left(1-\frac{1}{2 \sqrt{3}}\right) e^{\frac{1}{\sqrt{3}}}+2 e^{\frac{1}{\sqrt{3}}}-3 e^{\frac{1}{2}}\right]<0
\end{aligned}
$$

for all (x, y) in \widehat{L}, since $x \leq y$ and $x+y \geq 3$ in \widehat{L}. On the other hand,

$$
\begin{aligned}
\frac{d}{d x} f_{e s \mathcal{C}}(x, x) & =\frac{1}{2}\left(e^{\frac{1}{\sqrt{2 x}}}+2 e^{\frac{1}{\sqrt{3}}}-3 e^{\frac{1}{2}}-\frac{x}{(2 x)^{\frac{3}{2}}} e^{\frac{1}{\sqrt{2 x}}}\right) \\
& =\frac{1}{2}\left(\frac{1}{2 \sqrt{2 x}} e^{\frac{1}{2 x}}++2 e^{\frac{1}{\sqrt{3}}}-3 e^{\frac{1}{2}}\right)<0
\end{aligned}
$$

for all $x \geq 2$. It follows that $f_{e s \mathcal{C}}(1,2)=f_{e s \mathcal{C}}(2,2)=\max _{(i, j) \in L} f_{e s \mathcal{C}}(i, j)$ and we are done by Corollary 2.2.

Theorem 2.4 The path P_{n} is the minimal tree over \mathcal{T}_{n} with respect to the exponential of the First Zagreb index $e^{\mathcal{M}_{1}}$.

Proof. For the exponential of the First Zagreb index $\varphi_{i, j}=e^{i+j}$ and the associated function $f_{e^{\mathcal{M}_{1}}}(x, y)$ is defined over \widehat{L} as

$$
f_{e^{\mathcal{M}_{1}}}(x, y)=\frac{x y}{x+y}\left[e^{x+y}+2 e^{3}-3 e^{4}\right] .
$$

The derivative

$$
\begin{aligned}
\frac{\partial}{\partial y} f_{e^{\mathcal{M}_{1}}}(x, y) & =\frac{x^{2}}{(x+y)^{2}}\left(e^{x+y}+2 e^{3}-3 e^{4}+\frac{y(x+y)}{x} e^{x+y}\right) \\
& \geq \frac{x^{2}}{(x+y)^{2}}\left[e^{x+2}\left(3+\frac{4}{x}\right)+2 e^{3}-3 e^{4}\right]>0
\end{aligned}
$$

for all $(x, y) \in \widehat{L}$ since $y \geq 2$. Moreover,

$$
\frac{d}{d x} f_{e^{\mathcal{M}_{1}}}(x, x)=\frac{1}{2}\left[(1+2 x) e^{2 x}+2 e^{3}-3 e^{4}\right]>0,
$$

for $x \geq 2$. Hence the minimum of $f_{e^{\mathcal{M}_{1}}}$ over L is $f_{e^{\mathcal{M}_{1}}}(2,2)=f_{e^{\mathcal{M}_{1}}}(1,2)$. By Corollary 2.2, the minimal tree with respect to the exponential of the First Zagreb index is the path P_{n}.

We will next show that the path P_{n} is the minimal tree over \mathcal{T}_{n} with respect to the exponential of the Second Zagreb index $e^{\mathcal{M}_{2}}$. Unfortunately, the minimum value of $f_{e^{\mathcal{M}_{2}}}$ over \widehat{L} is $f_{e^{\mathcal{M}_{2}}}(1,3)$, so we cannot apply Corollary 2.2. However, we can adapt the technique used by [22] in the study of the general Randić index. We will denote by $d_{T}(u)$ the degree of the vertex u of T.

Lemma 2.5 Consider the trees T and T^{\prime} with $n \geq 5$ vertices, as in Figure 2. If $p \geq 3$ then $e^{\mathcal{M}_{2}}(T) \geq e^{\mathcal{M}_{2}}\left(T^{\prime}\right)$.

T

T^{\prime}

Figure 2. Trees used in the proof of Lemma 2.5.

Proof. Set $q=d_{T}(u)$. Then

$$
\begin{aligned}
\Delta & =e^{\mathcal{M}_{2}}(T)-e^{\mathcal{M}_{2}}\left(T^{\prime}\right) \\
& =\left(e^{p q}+(p-1) e^{p}\right)-\left(e^{2 q}+(p-2) e^{4}+e^{2}\right) \\
& =\left(e^{p q}-e^{2 q}\right)+(p-2)\left(e^{p}-e^{4}\right)+\left(e^{p}-e^{2}\right) .
\end{aligned}
$$

If $p \geq 4$ then each of the summands above is non-negative, being the first and last strictly positive. Hence $\Delta>0$.

Assume now that $p=3$. Then

$$
\Delta=e^{3 q}-e^{2 q}+2 e^{3}-e^{4}-e^{2}
$$

Note that $q \geq 2$ since $n \geq 5$. It is easy to see that

$$
e^{3 q}-e^{2 q} \geq 2 e^{3}-e^{4}-e^{2}
$$

for all $q \geq 2$. Consequently, $\Delta>0$.
Lemma 2.6 Assume that T is a tree with minimum $e^{\mathcal{M}_{2}}$ and $n \geq 5$ vertices. If v is a vertex of T adjacent to a leaf u of T, then $d_{T}(v)=2$.

Proof. Assume that $d_{T}(v)=d$ and let P be the largest path of T that contains v. Let s be an end-vertex of P and r a vertex in P adjacent to s. By Lemma 2.5, $d_{T}(r)=2$. Let T^{\prime} be the tree obtained from T by deleting the leaf u and adding an edge incident to s (see Figure 3). We consider two cases:

T

T^{\prime}

Figure 3. Trees used in the proof of Lemma 2.6.

1. $d_{T}(v)=d \geq 4$. If q_{1}, \ldots, q_{d-1} are the degrees of the adjacent vertices to v different from u, then

$$
\Delta=e^{\mathcal{M}_{2}}(T)-e^{\mathcal{M}_{2}}\left(T^{\prime}\right)=\sum_{i=1}^{d-1}\left(e^{d q_{i}}-e^{(d-1) q_{i}}\right)+e^{d}-e^{4}>0
$$

This contradicts the minimality of T.
2. $d_{T}(v)=3$. Let v_{1} and v_{2} be the adjacent vertices to v (different from u), such that $d_{T}\left(v_{1}\right)=p$ and $d_{T}\left(v_{1}\right)=q$. It follows from Lemma 2.5 that $p \geq 2$ and $q \geq 2$. Then

$$
\Delta(p, q)=e^{\mathcal{M}_{2}}(T)-e^{\mathcal{M}_{2}}\left(T^{\prime}\right)=e^{3 p}-e^{2 p}+e^{3 q}-e^{2 q}+e^{3}-e^{4}
$$

The derivatives of $\Delta(p, q)$ are

$$
\begin{aligned}
\frac{\partial}{\partial p} \Delta(p, q) & =3 e^{3 p}-2 e^{2 p}>0 \\
\frac{\partial}{\partial q} \Delta(p, q) & =3 e^{3 q}-2 e^{2 q}>0
\end{aligned}
$$

Hence $\Delta(p, q) \geq \Delta(2,2)>0$, which contradicts the fact that T is minimal.

Theorem 2.7 The path $P_{n}(n \geq 5)$ is the minimal tree over \mathcal{T}_{n} with respect to the exponential of the Second Zagreb index $e^{\mathcal{M}_{2}}$.

Proof. Let T_{0} be a tree with minimal $e^{\mathcal{M}_{2}}$-value over \mathcal{T}_{n}. By Lemma 2.6, $m_{1, j}\left(T_{0}\right)=0$ for all $j \geq 3$. It follows from Theorem 2.1 that

$$
\begin{align*}
e^{\mathcal{M}_{2}}\left(T_{0}\right) & =e^{\mathcal{M}_{2}}\left(P_{n}\right)+\sum_{(i, j) \in L}\left[f_{e^{\mathcal{M}_{2}}}(i, j)-f_{e^{\mathcal{M}_{2}}}(1,2)\right] \frac{i+j}{i j} m_{i, j}\left(T_{0}\right) \\
& =e^{\mathcal{M}_{2}}\left(P_{n}\right)+\sum_{(i, j) \in M}\left[f_{e^{\mathcal{M}_{2}}}(i, j)-f_{e^{\mathcal{M}_{2}}}(1,2)\right] \frac{i+j}{i j} m_{i, j}\left(T_{0}\right), \tag{7}
\end{align*}
$$

where

$$
M=\{(i, j) \in L: i \geq 2\}
$$

Let

$$
\widehat{M}=\{(x, y) \in \widehat{L}: x \geq 2\}
$$

We will show that $\min _{(i, j) \in \widehat{M}} f_{e^{\mathcal{M}_{2}}}(i, j)=f_{e^{\mathcal{M}_{2}}}(2,2)$. Note that

$$
f_{e^{\mathcal{M}_{2}}}(x, y)=\frac{x y}{x+y}\left(e^{x y}+2 e^{2}-3 e^{4}\right) .
$$

The derivative

$$
\begin{aligned}
\frac{\partial}{\partial y} f_{e^{\mathcal{M}_{2}}}(x, y) & =\frac{x^{2}}{(x+y)^{2}}\left(e^{x y}+2 e^{2}-3 e^{4}+y(x+y) e^{x y}\right) \\
& \geq \frac{x^{2}}{(x+x)^{2}}\left[e^{x^{2}}\left(1+2 x^{2}\right)+2 e^{2}-3 e^{4}\right]>0
\end{aligned}
$$

for all $(x, y) \in \widehat{M}$. On the other hand

$$
\frac{\partial}{\partial x} f_{e^{\mathcal{M}_{2}}}(x, x)=\frac{1}{2}\left[\left(1+2 x^{2}\right) e^{x^{2}}+2 e^{2}-3 e^{4}\right]>0
$$

for all $x \geq 2$. Consequently, the minimum of $f_{e^{\mathcal{M}_{2}}}$ over \widehat{M} is $f_{e^{\mathcal{M}_{2}}}(2,2)=f_{e^{\mathcal{M}_{2}}}(1,2)$.
Finally, if $T \in \mathcal{T}_{n}$ then by (7) we deduce

$$
e^{\mathcal{M}_{2}}(T) \geq e^{\mathcal{M}_{2}}\left(T_{0}\right) \geq e^{\mathcal{M}_{2}}\left(P_{n}\right)
$$

Remark 2.8 Using Corollary 2.2 we can also obtain the known results given in Table 1 about the path as a maximal tree over \mathcal{T}_{n}, for the Randić, Harmonic, Geometric-Arithmetic and Sum-Connectivity indices.

3 VDB topological indices with the star as extremal tree

Our concern in this section is when does the star S_{n} attain the minimal value of a VDB topological index φ over \mathcal{T}_{n}. If φ is a VDB topological index induced by the numbers $\left\{\varphi_{i, j}\right\}_{(i, j) \in K}$ then, as we mentioned in the previous section, for every $T \in \mathcal{T}_{n}$

$$
\varphi(T)=\sum_{(i, j) \in L} m_{i, j}(T) \varphi_{i, j},
$$

where

$$
L=\{(i, j) \in K: i+j \leq n,(i, j) \neq(1,1)\} .
$$

Consider the function

$$
g(i, j)=\varphi_{i, j}
$$

defined over the set L.
It is easy to see that

$$
\varphi\left(S_{n}\right)=(n-1) \varphi_{1, n-1} .
$$

Theorem 3.1 Let φ be a VDB topological index as in (2) and T a tree with n vertices. Then

$$
\begin{equation*}
\varphi(T)=\varphi\left(S_{n}\right)+\sum_{(i, j) \in L}[g(i, j)-g(1, n-1)] m_{i, j} \tag{8}
\end{equation*}
$$

Proof. Using relation (4), we have

$$
\begin{equation*}
m_{1, n-1}=n-1-\sum_{(i, j) \in L^{1}} m_{i, j} \tag{9}
\end{equation*}
$$

where $L^{1}=L-\{(1, n-1)\}$. Replacing (9) in (2)

$$
\begin{aligned}
\varphi(T) & =m_{1, n-1} \varphi_{1, n-1}+\sum_{(i, j) \in L^{1}} m_{i, j} \varphi_{i, j} \\
& =(n-1) \varphi_{1, n-1}+\sum_{(i, j) \in L^{1}} m_{i, j}\left(\varphi_{i, j}-\varphi_{1, n-1}\right) \\
& =\varphi\left(S_{n}\right)+\sum_{(i, j) \in L}[g(i, j)-g(1, n-1)] m_{i, j} .
\end{aligned}
$$

Corollary 3.2 Let φ be a VDB topological index as in (2) and define

$$
g(i, j)=\varphi_{i, j}
$$

for every $(i, j) \in L$.

1. If $g(1, n-1)=\max _{(i, j) \in L} g(i, j)$, then for every tree $T \in \mathcal{T}_{n}$

$$
\varphi(T) \leq \varphi\left(S_{n}\right)
$$

2. If $g(1, n-1)=\min _{(i, j) \in L} g(i, j)$, then for every tree $T \in \mathcal{T}_{n}$

$$
\varphi(T) \geq \varphi\left(S_{n}\right)
$$

Proof. Let $T \in \mathcal{T}_{n}$. If $g(1, n-1)=\max _{(i, j) \in L} g(i, j)$, then by relation (8) and the fact that $g(i, j) \leq g(1, n-1)$ for all $(i, j) \in L$, it follows that $\varphi(T) \leq \varphi\left(S_{n}\right)$.

The second affirmation can be proved similarly.
We next use Corollary 3.2 to find extremal values of the exponentials of VDB topological indices over \mathcal{T}_{n}. In [6] we obtained that S_{n} is the minimal graph over \mathcal{G}_{n}, the set of graphs with n non-isolated vertices, for $e^{\mathcal{H}}, e^{\chi}$ and $e^{\mathcal{A} \mathcal{Z}}$. In particular, S_{n} is the minimal tree over \mathcal{T}_{n} for $e^{\mathcal{H}}, e^{\chi}$ and $e^{\mathcal{A Z}}$.

As in the previous section, we extend the function g to the compact set

$$
\widehat{L}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: 1 \leq x \leq y \leq n-1, x+y \leq n, y \geq 2\}
$$

Assume that

$$
g_{\varphi}(x, y)=\varphi(x, y)
$$

is a continuous and differentiable function over \widehat{L}. Clearly (see Figure 1),

$$
\left\{\begin{array}{cc}
\frac{\partial}{\partial x} g_{\varphi}(x, y) \leq 0 & \forall(x, y) \in \widehat{L} \\
\frac{d}{d y} g_{\varphi}(1, y) \geq 0 & \forall y \in[2, n-1]
\end{array}\right\} \Longrightarrow \max _{(i, j) \in L} g_{\varphi}(i, j)=g_{\varphi}(1, n-1)
$$

and

$$
\left\{\begin{array}{cc}
\frac{\partial}{\partial x} g_{\varphi}(x, y) \geq 0 & \forall(x, y) \in \widehat{L} \\
\frac{d}{d y} g_{\varphi}(1, y) \leq 0 & \forall y \in[2, n-1]
\end{array}\right\} \Longrightarrow \min _{(i, j) \in L} g_{\varphi}(i, j)=g_{\varphi}(1, n-1)
$$

Also,

$$
\left\{\begin{aligned}
\frac{\partial}{\partial y} g_{\varphi}(x, y) \geq 0 & \forall(x, y) \in \widehat{L} \\
\frac{d}{d x} g_{\varphi}(x, n-x) \leq 0 & \forall x \in\left[1, \frac{n}{2}\right]
\end{aligned}\right\} \Longrightarrow \max _{(i, j) \in L} g_{\varphi}(i, j)=g_{\varphi}(1, n-1),
$$

and

$$
\left\{\begin{array}{rr}
\frac{\partial}{\partial y} g_{\varphi}(x, y) \leq 0 & \forall(x, y) \in \widehat{L} \\
\frac{d}{d x} g_{\varphi}(x, n-x) \geq 0 & \forall x \in\left[1, \frac{n}{2}\right]
\end{array}\right\} \Longrightarrow \min _{(i, j) \in L} g_{\varphi}(i, j)=g_{\varphi}(1, n-1)
$$

Theorem 3.3 The star S_{n} is the minimal tree over \mathcal{T}_{n} with respect to the exponential $e^{\mathcal{G A}}$ and the exponential $e^{\mathcal{S C}}$.

Proof. 1. We associate to $e^{\mathcal{G} \mathcal{A}}$ the function

$$
g_{e G \mathcal{A}}(x, y)=e^{\frac{2 \sqrt{x y}}{x+y}}
$$

defined over \widehat{L}. The derivative

$$
\frac{\partial}{\partial x} g_{e G \mathcal{A}}(x, y)=\frac{(y-x) \sqrt{x y}}{x(x+y)^{2}} e^{\frac{2 \sqrt{x y}}{x+y}} \geq 0
$$

for all $(x, y) \in \widehat{L}$. On the other hand

$$
\frac{d}{d y} g_{e \mathfrak{G A}}(1, y)=-\frac{y-1}{\sqrt{y}(y+1)^{2}} e^{\frac{2 \sqrt{x y}}{x+y}}<0
$$

for all $y \in[2, n-1]$. Consequently, $g_{e \mathcal{G A}}(1, n-1)=\min _{(i, j) \in L} g_{e \mathfrak{G A}}(i, j)$. The result follows by Corollary 3.2.
2. We associate to $e^{\mathcal{S C}}$ the function

$$
g_{e} s \mathcal{C}(x, y)=e^{\frac{1}{\sqrt{x+y}}}
$$

defined over \widehat{L}. The derivative

$$
\frac{\partial}{\partial y} g_{e s c}(x, y)=-\frac{1}{2(x+y)^{\frac{3}{2}}} e^{\frac{1}{\sqrt{x+y}}}<0
$$

for all $(x, y) \in \widehat{L}$. On the other hand

$$
\frac{d}{d x} g_{e s \mathcal{C}}(x, n-x)=0
$$

for all $x \in\left[1, \frac{n}{2}\right]$. It follows that $g_{e s c}(1, n-1)=\min _{(i, j) \in L} g_{e s c}(i, j)$. The result follows by Corollary 3.2.

Theorem 3.4 The star S_{n} is the maximal tree over \mathcal{T}_{n} with respect to $e^{\mathcal{A B C}}$.
Proof. We associate to $e^{\mathcal{A B C}}$ the function

$$
g_{e A B C}(x, y)=e^{\sqrt{\frac{x+y-2}{x y}}}
$$

for all $(x, y) \in \widehat{L}$. The derivative

$$
\frac{\partial}{\partial x} g_{e A B C}(x, y)=\frac{\sqrt{x y}}{2 x^{2} y} \frac{2-y}{\sqrt{(x+y-2)}} e^{\sqrt{\frac{x+y-2}{x y}}} \leq 0
$$

for all $(x, y) \in \widehat{L}$. On the other hand

$$
\frac{d}{d y} g_{e A B C}(1, y)=\frac{1}{2 y \sqrt{y(y-1)}} e^{\sqrt{\frac{y-1}{y}}}>0
$$

for all $y \in[2, n-1]$. It follows that $g_{e A \mathcal{B C}}(1, n-1)=\max _{(i, j) \in L} g_{e A \mathcal{A C}}(i, j)$. The result follows by Corollary 3.2.

Now we will show that S_{n} is the maximal tree with respect to $e^{\mathcal{M}_{1}}$ over \mathcal{T}_{n}. However, we cannot apply Corollary 3.2 since

$$
g_{e^{\mathcal{M}_{1}}}(1, n-1) \neq \max _{(i, j) \in L} g_{e^{\mathcal{M}_{1}}}(i, j),
$$

where

$$
g_{e^{\mathcal{M}_{1}}}(x, y)=e^{x+y}
$$

for all $(x, y) \in \widehat{L}$. Instead we use the operations introduced in [8]. We denote by $N_{T}(u)$ the set of neighbors of u in the tree T.

Theorem 3.5 The star S_{n} is the maximal tree over \mathcal{T}_{n} with respect to the exponential $e^{\mathcal{M}_{1}}$.

Proof. Let $T \in \mathcal{T}_{n}$ different from the star. Then T has at least one edge $u v$ such that $d_{T}(v)=i \geq 2$ and $N_{T}(u)-\{v\}=\left\{w_{1}, \ldots, w_{j}\right\}$ are leaves, with $j \geq 1$. Let $T^{\prime}=T-\left\{u w_{1}, \ldots, u w_{j}\right\}+\left\{v w_{1}, \ldots, v w_{j}\right\}$ (see Figure 4) and denote by $\left\{q_{1}, \ldots, q_{i-1}\right\}$ the degrees of the vertices adjacent to v in T different from u. Then

T

T^{\prime}

Figure 4. Trees used in the proof of Theorem 3.5.

$$
\begin{aligned}
e^{\mathcal{M}_{1}}\left(T^{\prime}\right)-e^{\mathcal{M}_{1}}(T) & =\sum_{l=1}^{i-1}\left[e^{q_{l}+i+j}-e^{q_{l}+i}\right]+(j+1) e^{i+j+1}-e^{i+j+1}-j e^{j+2} \\
& >j\left(e^{i+j+1}-e^{j+2}\right) \geq 0
\end{aligned}
$$

If $T^{\prime}=S_{n}$ we are done, otherwise we repeat the operation until we reach the star S_{n}.

Remark 3.6 Using Corollary 3.2 we can also obtain the known results given in Table 1 about the star as an extremal tree over \mathcal{T}_{n}, for the Harmonic, Augmented Zagreb, Geometric-Arithmetic, Sum-Connectivity and Atom-Bond-Connectivity indices.

4 Open problems

As we mentioned in the Introduction, the problem of finding the minimal tree with respect to the $\mathcal{A B C}$ index and the maximal tree with respect to the $\mathcal{A Z}$ index are open and very difficult problems. Apparently the same occurs with the minimal of $e^{\mathcal{A B C}}$ and the maximal of $e^{\mathcal{A Z}}$. However, it is easy to see that the path P_{n} is not the minimal tree with respect to $e^{\mathcal{A B C}}$ neither the maximal tree with respect to $e^{\mathcal{A Z}}$. In fact, for each $k \geq 3$, let us denote
by $T_{k, 2}$ the Kragujevac tree [14] with a central vertex of degree k and k branches of type B_{2} (see Figure 5). Note that $T_{k, 2}$ has $n=1+5 k$ vertices.

Figure 5. Kragujevac tree with k branches of type B_{2}.

Then

$$
\begin{aligned}
e^{\mathcal{A B C}}\left(T_{k, 2}\right)-e^{\mathcal{A B C}}\left(P_{5 k+1}\right) & =k e^{\sqrt{\frac{k+1}{3 k}}}+2 k e^{\sqrt{\frac{1}{2}}}+2 k e^{\sqrt{\frac{1}{2}}}-\left[2 e^{\sqrt{\frac{1}{2}}}+(5 k-2) e^{\sqrt{\frac{1}{2}}}\right] \\
& =k\left(e^{\sqrt{\frac{1}{3}+\frac{1}{3 k}}}-e^{\sqrt{\frac{1}{2}}}\right)<0 . \\
e^{\mathcal{A Z}}\left(T_{k, 2}\right)-e^{\mathcal{A Z}}\left(P_{5 k+1}\right) & =k e^{\left(\frac{3 k}{k+1}\right)^{3}}+2 k e^{8}+2 k e^{8}-\left[2 e^{8}+(5 k-2) e^{8}\right] \\
& =k\left(e^{\left(\frac{3 k}{k+1}\right)^{3}}-e^{8}\right)>0 .
\end{aligned}
$$

On the other hand, we still have no answer to the problem of finding the maximal value of the exponentials $e^{\mathcal{M}_{2}}$ and e^{χ} over \mathcal{T}_{n}.

References

[1] A. Ali, A. A. Bhatti, A note on augmented Zagreb index of cacti with fixed number of vertices and cycles, Kuwait J. Sci. 43 (2016) 11-17.
[2] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Appl. Math. Comput. 238 (2018) 32-40.
[3] G. Caporossi, I. Gutman, P. Hansen, L. Pavlović, Graphs with maximum connectivity index, Comput. Biol. Chem., 27 (2003) 85-90.
[4] X. Cheng, G. Hao, Extremal graphs with respect to generalized $A B C$ index, Discr. Appl. Math. 243 (2018) 115-124.
[5] R. Cruz, T. Pérez, J. Rada, Extremal values of vertex-degree-based topological indices over graphs, J. Appl. Math. Comput. 48 (2015) 395-406.
[6] R. Cruz, J. Rada, Extremal graphs of exponential vertex-degree-based topological indices over graphs, submitted.
[7] J. Devillers, A. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR , Gordon \& Breach, Amsterdam, 1999.
[8] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597-616.
[9] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[10] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849855.
[11] B. Furtula, A. Graovac, D. Vukičević, Atom-bond connectivity index of trees, Discr. Appl. Math. 157 (2009) 2828-2835.
[12] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370-380.
[13] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973-8978.
[14] B. Furtula, I. Gutman, M. Ivanović, D. Vukičević, Computer search for trees with minimal $A B C$ index, Appl. Math. Comput. 219 (2012) 767-772.
[15] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[16] I. Gutman, B. Furtula, Trees with smallest atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 68 (2012) 131-136.
[17] I. Gutman, B. Furtula, M. B. Ahmadi, S. A. Hosseini, P. Salehi Nowbandegani, M. Zarrinderakht, The $A B C$ conundrum, Filomat 27 (2015) 1075-1083.
[18] I. Gutman, B. Furtula, M. Ivanović, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem. 67 (2012) 467-482.
[19] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805-810.
[20] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[21] B. Hollas, The covariance of topological indices that depend on the degree of a vertex, MATCH Commun. Math. Comput. Chem. 54 (2005) 177-187.
[22] Y. Hu, X. Li, Y. Yu, Trees with maximum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 129-146.
[23] L. Kier and L. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[24] L. Kier and L. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
[25] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[26] W. Lin, A. Ali, L. Huang, Z. Wu, J. Chen, On trees with maximal augmented Zagreb index, IEEE Access 6 (2018) 69335-69341.
[27] J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603-616.
[28] J. Rada, Exponential vertex-degree-based topological indices and discrimination, MATCH Commun. Math. Comput. Chem. 82 (2019) 29-41.
[29] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[30] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[31] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, WileyVCH, Weinheim, 2009.
[32] D. Vukičević, J. Đurđević, Bond additive modeling 10. Upper and lower bounds of bond incident degree indices of catacondensed fluoranthenes, Chem. Phys. Lett. 515 (2011) 186-189.
[33] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 13691376.
[34] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.
[35] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.

