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Abstract

In this paper, we determine all unified extremal graphs for maximum (resp., min-
imum) first general Zagreb index R0

α(G) for α < 0 or α > 1 (resp., 0 < α < 1), max-
imum (resp., minimum) general first multiplicative Zagreb index

α∏
(G) for α < 0

(resp., α > 0), maximum second multiplicative Zagreb index
∏
2
(G), and minimum

first Zagreb coindex M1(G) among the class of trees, unicyclic graphs and bicyclic
graphs with given diameter, respectively.

1 Introduction

In this paper, we only consider simple connected undirected graphs. Throughout the

paper, α always denotes a real number and c is a nonnegative integer. Let G = (V,E)

be a connected graph with n vertices and m edges. If m = n + c − 1, then G is called

a c-cyclic graph. A c-cyclic graph with c = 0, 1, 2 is called a tree, unicyclic graph and

bicyclic graph, respectively. As usual, dG(u) or d(u) for short, denotes the degree of u in

G. A k-vertex is a vertex with degree k. A 1-vertex is called a pendant vertex of G, while

a k-vertex with k ≥ 2 is called a non-pendant vertex. The number of pendant vertices of

G will be referred as p(G) throughout this paper.
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Suppose that V (G) =
{
v1, v2, . . . , vn

}
with d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Let d(vi) = di

for i = 1, 2, . . . , n. The non-increasing sequence π(G) =
(
d1, d2, . . . , dn

)
is called the degree

sequence of G. Denote by Γ(π) the set of all connected graphs with degree sequence π. If

G is a c-cyclic graph with degree sequence π, then
n∑

i=1

di = 2(n+ c− 1). (1)

The distance between u and v, denoted by dist(u, v), is the number of edges in a shortest

path from u to v. Then, the diameter d(G) of graph G is the maximum distance over all

pairs of vertices of G.

In 1972, Gutman and Trinajstić [4] introduced the first Zagreb index, where the first

Zagreb index M1(G) of a graph G equals to the sum of the squares of the degrees of all

vertices of G. This topological index has been widely studied [3]. The first Zagreb coindex

M1(G) of a graph G defined by Došlić [2] is

M1(G) =
∑

uv 6∈E(G)

(
d(u) + d(v)

)
.

As a generalization of the first Zagreb index, the first general Zagreb index Rα(G) was

introduced by Li and Zheng [7] which is defined as

R0
α(G) =

∑
u∈V (G)

(
d(u)

)α
.

In particular, R0
−1(G) is called the inverse degree of G and denoted by ID(G)

(
see [18]

)
;

and R0
2(G) is just the first Zagreb index.

In 2010, Todeschini and Consonni [16] put forward the notations of the first multi-

plicative Zagreb index
1∏
(G) and the second multiplicative Zagreb index

∏
2

(G) of graph

G, where
1∏
(G) =

∏
u∈V (G)

d2(u), and
∏
2

(G) =
∏

u∈V (G)

(
d(u)

)d(u)
.

Very recently, the general first multiplicative Zagreb index
α∏
(G) was defined in [20] as

α∏
(G) =

∏
u∈V (G)

(
d(u)

)α
.

It is not hard to see that
α∏
(G) is a generalization of the first multiplicative Zagreb index.

-700-



To unify the vertex-degree-based topological indices, the vertex-degree-function index

Hf (G) of a graph G was constructed in [20], where

Hf (G) =
∑

v∈V (G)

f
(
d(v)

)
for a function f(x) defined on positive real numbers.

Definition 1.1 For a graph family G, a graph G ∈ G is called a good extremal graph of

G if

(i) R0
α(G) is maximum for α < 0 or α > 1, and R0

α(G) is minimum for 0 < α < 1.

(ii)
α∏
(G) is maximum for α < 0, and

α∏
(G) is minimum for α > 0.

(iii)
∏
2

(G) is maximum and M1(G) is minimum.

Extremal ordering problem is an important topic on topological indices. As observed in

some literatures ( [10,19] for instance), many topological indices share the same extremal

graphs. Thus, it is rather interesting for us to determine unified extremal graphs for

as many topological indices as possible in a given graph family [8, 19, 20]. As extremal

ordering problem for some topological indices in the class of c-cyclic graphs with a given

diameter always attract much attention [6, 9, 17, 21], we shall identify all good extremal

graphs in the class of c-cyclic graphs with given diameter for c ∈ {0, 1, 2}. Theorems 2.1,

2.2 and 2.3 are main results in this paper.

2 The main results

w0 ws2+1

u1 u2 us1

w1
w2 ws2

z1 z2 zs3

Bs1,s2,s3

y3 y1

y2

B1

y4

y2

B2

y1

Figure 1. The bicyclic graphs B1, B2 and Bs1,s2,s3

In this section, we shall introduce the main results of this paper, and we need to

introduce more notations. As usual, the cycle and path with n vertices will be referred

as Cn and Pn, respectively. Let G be a connected graph with v ∈ V (G), and let Pk be a
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path on k vertices such that G and Pk are vertex-disjoint. Let G∗ be a graph obtained

from G and Pk by adding one edge between v and one end vertex of Pk. In this way, we

say that G∗ is obtained by attaching the path Pk to vertex v of G.

Hereafter, we suppose that d is the diameter of G. Let x0, xd ∈ V (G) with dist
(
x0, xd

)
= d and Pd+1 = x0x1 . . . xd denote a shortest path from x0 to xd. Define by Tj(n, d) the

tree obtained from Pd+1 by attaching n−d−1 isolated vertices to xj, where 1 ≤ j ≤ d−1.

Theorem 2.1 A tree T with n vertices and diameter d is a good extremal tree if and only

if T ∈
{
T1(n, d), T2(n, d), . . . , Tb d

2
c(n, d)

}
.

If U is a unicyclic graph, then we let Cg = z1z2 . . . zgz1 be the unique cycle of U .

For 1 ≤ j ≤ d − 2, let U1,j(n, d) be the unicyclic graph obtained from C3 by attaching

n − d − 2 isolated vertices together with the path Pj with j vertices to z1, and then

attaching another path Pd−j−1 with d − j − 1 vertices to z2. For 1 ≤ j ≤ d − 3, let

U2,j(n, d) be the unicyclic graph obtained from C4 by attaching n−d− 2 isolated vertices

together with the path Pj with j vertices to z1, and then attaching another path Pd−j−2

with d− j − 2 vertices to z3.

Theorem 2.2 Let U be a unicyclic graph in the class of unicyclic graphs with n vertices

and diameter d. If 4 ≤ d ≤ n− 2, then U is a good extremal unicyclic graph if and only

if U ∈
{
U1,1(n, d), U1,2(n, d), . . . , U1,d−2(n, d), U2,1(n, d), U2,2(n, d), . . . , U2,d−3(n, d)

}
.

Hereafter, denote by B1, B2 and Bs1,s2,s3 the three bicyclic graphs as shown in Fig.

1. Let B1,j(n, d) be the bicyclic graph obtained from B1 by attaching n − d − 2 isolated

vertices together with a path with j vertices to y1 and then attaching another path with

d− j−2 vertices to y3, where 1 ≤ j ≤ d−3. Let B2,j(n, d) be the bicyclic graph obtained

from B1 by attaching n − d − 2 isolated vertices to y2, a path with j vertices to y1 and

then attaching another path with d − j − 2 vertices to y3, where 1 ≤ j ≤ d − 3. Let

B3,j(n, d) be the bicyclic graph obtained from B1 by attaching n− d− 3 isolated vertices

together with a path with j vertices to y2 and then attaching another path with d− j− 1

vertices to y4, where 1 ≤ j ≤ d − 2. Let B4,j(n, d) be the bicyclic graph obtained from

B2 by attaching n− d− 3 isolated vertices together with a path with j vertices to y1 and

then attaching another path with d− j − 2 vertices to y2, where 1 ≤ j ≤ d− 3.
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Theorem 2.3 If 4 ≤ d ≤ n − 3 and B is a good extremal bicyclic graph in the class

of bicyclic graphs with n vertices and diameter d, then either B ∈
{
B1,i(n, d), B2,j(n, d),

where 1 ≤ i ≤ d−3 and 1 ≤ j ≤
⌊
d
2

⌋
−1

}
or B ∈

{
B3,k(n, d), B4,i(n, d), where 1 ≤ i ≤ d−3

and 1 ≤ k ≤ d− 2
}

.

3 Some preliminaries

Let s = (s1, s2, ..., sn) and t = (t1, t2, ..., tn) be two non-increasing sequences of real

numbers. We write s E t if and only if
∑n

i=1 si =
∑n

i=1 ti, and
∑j

i=1 si ≤
∑j

i=1 ti for all

j = 1, 2, ..., n. Furthermore, we write s C t if and only if s E t and s 6= t. The ordering

sE t is always referred to as majorization [5, 12, 15].

A strictly convex function is a real valued function g(x) defined on a convex set D

such that

g
(
px+ (1− p)y

)
< pg(x) + (1− p)g(y)

for all 0 < p < 1 and all x, y ∈ D. Among all majorization theorems, the following one

was discovered long time ago, and it is not restricted to graphical invariants.

Theorem 3.1 [15] Let s = (s1, s2, ..., sn) and t = (t1, t2, ..., tn) be two non-increasing

sequences of real numbers. If s C t, then for any strictly convex function g(x), we have∑n
i=1 g(si) <

∑n
i=1 g(ti).

Note that −f(x) is a strictly convex function if and only if f(x) is a strictly concave

function. Thus, the following theorem easily follows from Theorem 3.1.

Theorem 3.2 [14,20] Let π and π′ be two different non-increasing degree sequences with

π C π′, and G and G′ be two graphs with G ∈ Γ(π) and G′ ∈ Γ(π′).

(i) If f(x) is a strictly convex function on x ≥ 1, then Hf (G) < Hf (G
′);

(ii) If f(x) is a strictly concave function on x ≥ 1, then Hf (G) > Hf (G
′).

The following two results can be deduced from Theorems 3.1 and 3.2:

Theorem 3.3 [14, 20] In a given graph family G, if Hf (G) is maximum for any strictly

convex function on x ≥ 1, then R0
α(G) is maximum for α > 1 or α < 0,

α∏
(G) is maximum

for α < 0,
∏
2

(G) is maximum, and M1(G) is minimum.
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Theorem 3.4 [14, 20] In a given graph family G, if Hf (G) is minimum for any strictly

concave function on x ≥ 1, then R0
α(G) is minimum for 0 < α < 1, and

α∏
(G) is minimum

for α > 0.

4 The proof of Theorem 2.1

Let C(n, d, p; c) be the set of c-cyclic graphs with n vertices, p pendant vertices and

diameter d. We will use the symbol p(q) to define q copies of the real number p. In what

follows, denote by

π1 =
(
n− d+ 1, 2(d−2), 1(n−d+1)

)
, π2 =

(
n− d+ 1, 3, 2(d−2), 1(n−d)

)
,

π3 =
(
n− d+ 1, 3(3), 2(d−4), 1(n−d)

)
, and π4 =

(
n− d+ 1, 4, 2(d−1), 1(n−d−1)

)
.

Lemma 4.1 If T ∈ C(n, d, p; 0), then p ≤ n− d+ 1, where the equality holds if and only

if T is obtained from Pd+1 by attaching n − d − 1 isolated vertices to some vertices of

{x1, x2, . . . , xd−1}.

Proof. If T ∈ C(n, d, p; 0), that is, T is a tree with n vertices, p pendant vertices and

diameter d, then since there are at least d − 1 non-pendant vertices on Pd+1, we have

p ≤ n− d+ 1. From this fact, it is straightly to verify this lemma.

Lemma 4.2 Let T ∈ C(n, d, p; 0). If π 6= π1 and d ≥ 2, then π C π1.

Proof. Let π =
(
d1, d2, . . . , dn−p, 1

(p)
)
, where d1 ≥ d2 ≥ · · · ≥ dn−p ≥ 2. Recall that

π1 =
(
n− d+ 1, 2(d−2), 1(n−d+1)

)
. We assume that π1 =

(
d′1, d

′
2, . . . , d

′
d−1, 1

(n−d+1)
)
, that

is, d′1 = n− d+ 1 and d′i = 2 for 2 ≤ i ≤ d− 1.

Since T is a tree, by Lemma 4.1, we have

d1 = 2(n− 1)− p− d2 − d3 − · · · − dn−p ≤ 2(n− 1)− p− 2 (n− p− 1) = p ≤ n− d+ 1.

If d1 = n − d + 1, then d2 = d3 = · · · = dn−p = 2, and hence π = π1, a contradiction.

Consequently, d1 < n− d+ 1.

For 2 ≤ j ≤ d− 1, since dj ≥ 2 and p ≤ n− d+ 1, by Lemma 4.1, we have
j∑

i=1

di = 2(n− 1)− p− dj+1 − · · · − dn−p

≤ 2(n− 1)− p− 2 (n− p− j) = p+ 2j − 2 ≤ n− d− 1 + 2j =

j∑
i=1

d′i.
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For d ≤ j ≤ n, since d′d = 1 ≤ dd, we have
∑j

i=1 di ≤ 2(n− 1)− (n− j) = n+ j − 2 =∑j
i=1 d

′
i. Combining the above arguments, we have π C π1.

For simplification, let T(n, d) be the set of trees with n vertices, diameter d and degree

sequence π1, and U(n, d) be the set of unicyclic graphs with n vertices, diameter d and

degree sequence π2. Define B1(n, d)
(
resp., B2(n, d)

)
as the set of bicyclic graphs with n

vertices, diameter d and degree sequence π3

(
resp., π4

)
.

Lemma 4.3 If d ≥ 2, then T(n, d) =
{
T1(n, d), T2(n, d), . . . , Tb d

2
c(n, d)

}
.

Proof. From the definition of Ti(n, d), where 1 ≤ i ≤ d− 1,{
T1(n, d), T2(n, d), . . . , Tb d

2
c(n, d)

}
⊆ T(n, d),

and so it suffices to show that T(n, d) ⊆
{
T1(n, d), T2(n, d), . . . , Tb d

2
c(n, d)

}
.

Suppose that T ∈ T(n, d). By Lemma 4.1, T is obtained from Pd+1 by attaching

n−d−1 isolated vertices to some vertices of
{
x1, x2, . . . , xd

}
. Since d1 = n−d+1 by the

definition of π1, then all these n− d− 1 isolated vertices are adjacent to the same vertex

xi, where 1 ≤ i ≤ d − 1. Since Ti(n, d) = Td−i(n, d), we can conclude that T = Tj(n, d)

for some j ∈
{
1, 2, . . . , bd

2
c
}
.

Now it is ready to present the following proof of Theorem 2.1.

Proof of Theorem 2.1. In view of Theorems 3.3 and 3.4, it suffices to show that T

has the maximum (resp., minimum) Hf (T ) if f(x) is a strictly convex (resp., concave)

function on x ≥ 1. We suppose that the degree sequence of T is π. By Lemma 4.2, πCπ1

unless π = π1. Combining this with Lemma 4.3, the result follows from Theorem 3.2.

5 The Proof of Theorem 2.2

Denote by R(G) the reduced graph obtained from G by recursively deleting pendant

vertices of the resultant graph until no pendant vertices remain. Let H be a subgraph of

G and let NH be the set of non-pendant vertices of H in G. Recall that Pd+1 = x0x1 . . . xd

is a shortest path from x0 to xd. It is not hard to see that

d− 1 ≤ |NPd+1
| ≤ d+ 1. (2)

Lemma 5.1 If u and v are two vertices of V
(
Pd+1

)
∩ V

(
R(G)

)
, then all the vertices of

V
(
Pd+1

)
between u and v belong to V

(
R(G)

)
.

-705-



Proof. Let u0 and v0 be two vertices of V
(
Pd+1

)
∩ V

(
R(G)

)
with maximum distance,

that is, dist
(
u0, v0

)
= max

{
dist(u, v) : {u, v} ⊆ V

(
R(G)

)
∩V

(
Pd+1

)}
. It suffices to show

that all the vertices of V
(
Pd+1

)
between u0 and v0 belong to V

(
R(G)

)
. Suppose not, and

let y be a vertex of V
(
Pd+1

)
between u0 and v0 and y 6∈ V

(
R(G)

)
. Then, there is a path

Pu0v0 in R(G) ⊆ G−y connecting u0 and v0. Let x be the last vertex before y in Pd+1 such

that x ∈ Pu0v0 , and let z be the first vertex after y in Pd+1 such that z ∈ Pu0v0 . In this

case, there is another path Pxz connecting x and z such that V
(
Pxz

)
∩V

(
Pu0v0

)
= {x, z}

and y ∈ Pxz, which means that x, y, z are in the same cycle of G, and thus y ∈ V
(
R(G)

)
,

a contradiction.

Corollary 5.2 For any cycle Cg, at least
⌈
g
2

⌉
− 1 vertices of Cg are not on Pd+1.

Proof. As g >
⌈
g
2

⌉
, the result holds for |V (Cg) ∩ V (Pd+1)| ≤ 1. Thus, we may suppose

that |V (Cg) ∩ V (Pd+1)| ≥ 2. In this case, the distance of any two different vertices in Cg

is at most
⌊
g
2

⌋
, so at most

⌊
g
2

⌋
+1 vertices of Cg are contained in V

(
Pd+1

)
by Lemma 5.1.

Consequently, at least g −
( ⌊

g
2

⌋
+ 1

)
=

⌈
g
2

⌉
− 1 vertices of Cg are not on Pd+1.

Lemma 5.3 If G ∈ C(n, d, p; c) and c ≥ 1, then p ≤ n − d, where the equality implies

that x0 and xd are two pendant vertices of G, and either g ∈ {3, 4} and R(G) = Cg with

|V
(
Pd+1

)
∩ V (Cg)| = g − 1 or R(G) = B1 with V

(
Pd+1

)
∩ V (B1) =

{
y1, y2, y3

}
.

Proof. Let Cg be an induced subgraph of G, as c ≥ 1. By Corollary 5.2, there are at

least
⌈
g
2

⌉
− 1 vertices of Cg that are not on Pd+1. Combining this with g ≥ 3 and (2), it

follows that

p ≤ n−|NPd+1
|−

(⌈g
2

⌉
− 1

)
≤ n−

(
d− 1

)
−
(⌈g

2

⌉
− 1

)
= n− d+2−

⌈g
2

⌉
≤ n− d, (3)

as required.

We now suppose that p = n− d, that is, the equality holds in (3). In this case, Pd+1

contains exactly d − 1 non-pendant vertices by (3), and so x0 and xd are two pendant

vertices of G. Since Pd+1 contains exactly d− 1 non-pendant vertices in G and since Pd+1

cannot contain all vertices of Cg by Corollary 5.2, we conclude that R(G) contains exactly

one vertex, say w0, not on Pd+1, and we may suppose that u1u2 . . . u|V (R(G))|−1 are the

sub-path of Pd+1 in R(G).

As Pd+1 is a shortest path from x0 to xd, we have NG(u1)∩
{
u2, u3, . . . , u|V (R(G))|−1

}
={

u2

}
and NG

(
u|V (R(G))|−1

)
∩
{
u1, u2, . . . , u|V (R(G))|−2

}
=

{
u|V (R(G))|−2

}
. Combining this
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with
{
u1, u|V (R(G))|−1

}
⊆ V

(
R(G)

)
, it follows that w0u1 ∈ E(G) and w0u|V (R(G))|−1 ∈

E(G). Now, since Pd+1 is a shortest path from x0 to xd and since u1w0u|V (R(G))|−1 is a

path of length two from u1 to u|V (R(G))|−1, we have |V (R(G))| ∈ {3, 4}, as w0 6∈ V
(
Pd+1

)
.

If |V (R(G))| = 3, then R(G) = C3 and |V
(
Pd+1

)
∩V (C3)| = 2. Otherwise, |V (R(G))|

= 4.

If u2w0 ∈ E(G), then R(G) = B1 and we may suppose that V
(
Pd+1

)
∩ V (B1) ={

y1, y2, y3
}
and w0 = y4. If u2w0 6∈ E(G), then R(G) = C4 and |V

(
Pd+1

)
∩ V (C4)| = 3.

Lemma 5.4 Suppose that 1 ≤ c ≤ 2 and 2c ≤ d ≤ n − 2. (i) Let G ∈ C(n, d, n − d; c)

with degree sequence π. If π 6= π′ =
(
n− d+ 1, 3(2c−1), 2(d−2c), 1(n−d)

)
, then π C π′. (ii) If

G ∈ C(n, d, p; 1) and π 6= π2, then π C π2.

Proof. We first prove (i). Since p = n− d by G ∈ C(n, d, n− d; c), the degree sequence

of G is equal to π =
(
d1, d2, . . . , dd, 1

(n−d)
)
, where d1 ≥ d2 ≥ · · · ≥ dj ≥ 3 > dj+1 = · · · =

dd = 2. By Lemma 5.3, x0 and xd are two pendant vertices of G and j ≥ 2c. Note that

π 6= π′, we have

π E
(
n− d+ 2c− j + 1, 3(j−1), 2(d−j), 1(n−d)

)
C π′,

and so (i) holds.

To prove (ii), if p = n− d, then (ii) follows from (i). If p ≤ n− d− 1 and c = 1, then

π E
(
p+ 2, 2(n−p−1), 1(p)

)
E

(
n− d+ 1, 2(d), 1(n−d−1)

)
C π2,

completing the proof of (ii).

Lemma 5.5 If 4 ≤ d ≤ n− 2, then

U(n, d) =
{
U1,1(n, d), U1,2(n, d), . . . , U1,d−2(n, d), U2,1(n, d), U2,2(n, d), . . . , U2,d−3(n, d)

}
.

Proof. It is not hard to see that
{
U1,1(n, d), U1,2(n, d), . . . , U1,d−2(n, d), U2,1(n, d),

U2,2(n, d), . . . , U2,d−3(n, d)
}

⊆ U(n, d). It suffices to show that U(n, d) ⊆
{
U1,1(n, d),

U1,2(n, d), . . . , U1,d−2(n, d), U2,1(n, d), U2,2(n, d), . . . , U2,d−3(n, d)
}
. Let U ∈ U(n, d).

By Lemma 5.3, x0 and xd are two pendant vertices of U , so |NPd+1
| = d− 1. Besides,

g ∈ {3, 4} and |V
(
Pd+1

)
∩ V (Cg)| = g − 1. Let z1z2 . . . zg−1 be the sub-path of Pd+1 in
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Cg. Since Pd+1 is a shortest path from x0 to xd, d(z1) ≥ 3 and d(zg−1) ≥ 3. Since d3 = 2

by the definition of π2, we may suppose that d(z1) = n− d+ 1 and d(zg−1) = 3.

In the case of g = 3, z1z2 is the sub-path of Pd+1 in C3, d(z1) = n−d+1 and d(z2) = 3.

Since x0 and xd are two pendant vertices of U , U is obtained from C3 by attaching one

path with j vertices together with n−d−2 isolated vertices to z1, one path with d− j−1

vertices to z2, where 1 ≤ j ≤ d− 2. Thus, U = U1,j(n, d) for some j, where 1 ≤ j ≤ d− 2.

The case of g = 4 can be proceeded similarly and thus will be omitted here.

Proof of Theorem 2.2. In view of Theorems 3.3 and 3.4, it suffices to show that U

has the maximum (resp., minimum) Hf (U) if f(x) is a strictly convex (resp., concave)

function on x ≥ 1. Let π be the degree sequence of U . If π 6= π2, then π C π2 by Lemma

5.4. Combining this with Lemma 5.5, the result follows from Theorem 3.2.

6 The proof of Theorem 2.3

In what follows, if c ≥ 2, then let B be a bicycle subgraph of R(G), and suppose that

Cs and Ct are two cycles of B such that |V (Cs) ∩ V (Ct)| = r. Furthermore, we always

suppose that V (Cs) ∩ V (Ct) = {w0, w1, . . . , wr−1} when r ≥ 1, and we define

dist
(
u′
0, v

′
0

)
= max

{
dist(u, v) : {u, v} ⊆ V (B) ∩ V

(
Pd+1

)}
when |V (B) ∩ V

(
Pd+1

)
| ≥ 2.

Lemma 6.1 Let G ∈ C(n, d, n− d− 1; c) with degree sequence (d1, d2, . . . , dn). If c ≥ 2,

then either d2 ≥ 4 or d3 ≥ 3. Furthermore, (i) If r ≥ 2 and |{w0, wr−1} ∩
{
u′
0, v

′
0

}
| = 2,

then d2 ≥ 4 and x0 and xd are two pendant vertices of G; (ii) If either r ≥ 2 with

|{w0, wr−1} ∩
{
u′
0, v

′
0

}
| ≤ 1 or r ≤ 1, then d3 ≥ 3.

Proof. Since G ∈ C(n, d, n− d− 1; c), G contains exactly d+ 1 non-pendant vertices. If

|V (B) ∩ V
(
Pd+1

)
| ≤ 1, note that |NPd+1

| ≥ d− 1 by (2), then

|NG| ≥ |NPd+1
|+ |V (B)| − 1 ≥ d− 1 + 3 = d+ 2,

a contradiction. Therefore, |V (B)∩V
(
Pd+1

)
| ≥ 2. Next, we consider three cases according

to the value of r.

Case 1. r ≥ 2.
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In this case, we may suppose that B ∼= Bs1,s2,s3 , where min
{
s1, s3

}
≥ s2 ≥ 0 and

min
{
s1, s3

}
≥ 1 (see Fig. 1). By the definition of r and the choices of u′

0 and v′0, we

have r = s2 + 2, either
{
u′
0, v

′
0

}
⊆ V (Cs1+s2+2), or

{
u′
0, v

′
0

}
⊆ V (Cs2+s3+2) or

{
u′
0, v

′
0

}
⊆

V (Cs1+s3+2).

Recall that B contains at least one vertex that is not on Pd+1 by Corollary 5.2, and G

contains exactly d+1 non-pendant vertices. Thus, |NPd+1
| ≤ d, and so d−1 ≤ |NPd+1

| ≤ d

by (2).

We first suppose that |NPd+1
| = d − 1. Since Pd+1 contains exactly d − 1 non-

pendant vertices of G and so x0 and xd are two pendant vertices of G, verifying that

min
{
d(u′

0), d(v
′
0)
}
≥ 3. If

{
u′
0, v

′
0

}
=

{
w0, ws2+1

}
, then d1 ≥ d2 ≥ min

{
d(u′

0), d(v
′
0)
}
≥

4. Otherwise, |{w0, ws2+1} ∩ {u′
0, v

′
0}| ≤ 1, then d1 ≥ d2 ≥ d3 ≥ 3, as required.

We secondly assume that |NPd+1
| = d. That is, Pd+1 contains exactly d non-pendant

vertices of G. We claim that
{
u′
0, v

′
0

}
⊆ V (Cs1+s3+2). Otherwise, by the symmetry of s1

and s3, we suppose that
{
u′
0, v

′
0

}
⊆ V (Cs1+s2+2). Then Cs1+s2+2 contains at least

⌈
s1+s2

2

⌉
vertices that are not on Pd+1 by Corollary 5.2. Since G contains exactly d+1 non-pendant

vertices and since each vertex of B is a non-pendant vertex, by (2) and min
{
s1, s3

}
≥ 1,

we have

d = |NPd+1
| ≤ d+ 1−

⌈
s1 + s2

2

⌉
− s3 ≤ d+ 1−

⌈
s1 + s2

2

⌉
− 1 ≤ d− 1,

a contradiction. This completes our claim.

Since
{
u′
0, v

′
0

}
⊆ V (Cs1+s3+2), Cs1+s3+2 contains at least

⌈
s1+s3

2

⌉
vertices that are not

on Pd+1 by Corollary 5.2. Combining this with |NPd+1
| = d and min

{
s1, s3

}
≥ 1, we have

d = |NPd+1
| ≤ d+ 1−

⌈
s1 + s3

2

⌉
− s2 ≤ d+ 1−

⌈
s1 + s3

2

⌉
≤ d,

and so s1 = s3 = 1 and s2 = 0, that is, B ∼= B1 with y2 = w1.

If |{u′
0, v

′
0}∩{w0, w1}| = 0, then

{
u′
0, v

′
0

}
= {y1, y3} (see Fig. 1). Note that |NPd+1

| = d,

then either d(y1) ≥ 3 or d(y3) ≥ 3, and hence d1 ≥ d2 ≥ d3 ≥ 3, as desired. Otherwise,

|{u′
0, v

′
0} ∩ {w0, w1}| ≥ 1. We may suppose that u′

0 = w0 = y4. In this case, v′0 ∈

{y1, y2, y3}, and hence |NG| ≥ |NPd+1
|+ |{y1, y2, y3} \ {v′0}| = d+ 2, a contradiction.

Case 2. r = 1.
In this case, V (Cs)∩V (Ct) = {w0} and at least

⌈
s
2

⌉
+
⌈
t
2

⌉
−2 vertices are not on Pd+1

by Corollary 5.2. Combining this with (2), it follows that

d− 1 ≤ |NPd+1
| ≤ d+ 1−

(⌈s
2

⌉
+

⌈
t

2

⌉
− 2

)
≤ d− 1, (4)
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and hence |NPd+1
| = d−1. Thus, x0 and xd are two pendant vertices of G. If w0 6∈

{
u′
0, v

′
0

}
,

then d1 ≥ d2 ≥ d3 ≥ 3, as desired. Otherwise, u′
0 and v′0 lie on the same cycle of B.

Without loss of generality, we suppose that
{
u′
0, v

′
0

}
⊂ V (Ct). By Corollary 5.2 and

|NPd+1
| = d− 1 by (4), |NG| ≥ |NPd+1

|+ s− 1 +
⌈
t
2

⌉
− 1 ≥ d+ 2, a contradiction.

Case 3. r = 0.

Since B is connected, there must be a path, say Pk = u1u2 · · ·uk, connecting Cs and

Ct, where u1 ∈ V (Cs), uk ∈ V (Ct) and k ≥ 2. Thus, d(u1) ≥ 3 and d(uk) ≥ 3.

By Corollary 5.2, at least
⌈
s
2

⌉
+

⌈
t
2

⌉
− 2 vertices are not on V

(
Pd+1

)
. Similarly

with (4), we have |NPd+1
| = d − 1 and hence x0 and xd are also two pendant vertices

of G. If |
{
u′
0, v

′
0

}
∩ {u1, uk}| ≤ 1, then d1 ≥ d2 ≥ d3 ≥ 3, as desired. Otherwise,

|
{
u′
0, v

′
0

}
∩{u1, uk}| = 2. Since |NPd+1

| = d−1, and so |NG| ≥ |NPd+1
|+s−1+t−1 ≥ d+3,

a contradiction.

Lemma 6.2 Let B ∈ C(n, d, p; 2). If π 6∈ {π3, π4} and 4 ≤ d ≤ n − 3, then π C π3 or

π C π4.

Proof. Let π =
(
d1, d2, . . . , dn−p, 1

(p)
)
, where d1 ≥ d2 ≥ · · · ≥ dk ≥ 4 > dk+1 = · · · =

dj = 3 > dj+1 = · · · = dn−p = 2. By Lemma 5.3, we have p ≤ n − d. If p = n − d, then

π C π3 by Lemma 5.4. Thus, we may assume that p ≤ n− d− 1 in the following, and we

will prove that π C π4.

Case 1. p = n− d− 1. By Lemma 6.1, k ≥ 2 or j ≥ 3.

If k ≥ 2, since π 6= π4 and j ≥ k ≥ 2,

π E
(
n− d− k − j + 5, 4(k−1), 3(j−k), 2(d+1−j), 1(n−d−1)

)
C π4.

Otherwise, j ≥ 3. Since π 6= π4, we have

π E
(
n− d− j + 4, 3(j−1), 2(d+1−j), 1(n−d−1)

)
E

(
n− d+ 1, 3(2), 2(d−2), 1(n−d−1)

)
C π4.

Case 2. p ≤ n− d− 2. It is not hard to see that

π E
(
p− j + 5, 3(j−1), 2(n−p−j), 1(p)

)
E

(
n− d− j + 3, 3(j−1), 2(d+2−j), 1(n−d−2)

)
. (5)

Next, we prove that

If p = n− d− 2, then j ≥ 2. (6)
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Recall that Cs and Ct are two cycles of B such that |V (Cs)∩V (Ct)| = r. We may suppose

that s ≥ t ≥ 3. If r 6= 1, then j ≥ 2 and hence (6) holds. Thus, we may assume that

r = 1 in the following.

By contradiction, we assume that j = 1. Thus π =
(
n − d + 2, 2(d+1), 1(n−d−2)

)
. Let

V (Cs)∩V (Ct) = {w0}. If |V
(
Pd+1

)
∩V (R(B))| ≤ 1, then |NB| ≥ |NPd+1

|+s+t−2 ≥ d+3

by (2), a contradiction. Otherwise, |V
(
Pd+1

)
∩ V (R(B))| ≥ 2.

As in Lemma 5.1, let u0 and v0 be two vertices of V
(
Pd+1

)
∩ V

(
R(B)

)
with the

maximum distance. Since d2 = 2 and d1 = n−d+2, B is obtained fromR(B) by attaching

n− d− 2 paths to the 4-vertex of R(B). Combining this with |V
(
Pd+1

)
∩ V (R(B))| ≥ 2,

we have |{u0, v0} ∩ {x0, xd}| ≥ 1 verifying that |NPd+1
| ≥ d.

If w0 ∈ {u0, v0}, without loss of generality, we may assume that w0 = u0, and so

d(v0) = 2. In this case, v0 ∈ {x0, xd}. Since |NPd+1
| ≥ d, by Corollary 5.2, we have

|NB| ≥ |NPd+1
|+ t− 1 + d s

2
e − 1 ≥ d+ 3, a contradiction. Thus, w0 6∈ {u0, v0}.

Recall that B is obtained from R(B) by attaching n− d− 2 paths to the 4-vertex of

R(B) and d2 = 2. Thus,
{
u0, v0

}
=

{
x0, xd

}
and |NPd+1

| = d + 1. Again, Corollary 5.2

implies that |NB| ≥ |NPd+1
|+

⌈
s
2

⌉
− 1 +

⌈
t
2

⌉
− 1 ≥ d+ 3, a contradiction. This completes

the proof of (6).

By combining (5) and (6), we have πE
(
n− d+ 1, 3, 2(d), 1(n−d−2)

)
C π4, as π 6= π4.

Lemma 6.3 If 4 ≤ d ≤ n− 3, then B1(n, d) =
{
B1,i(n, d), B2,j(n, d), where 1 ≤ i ≤ d− 3

and 1 ≤ j ≤
⌊
d
2

⌋
− 1

}
and B2(n, d) =

{
B3,k(n, d), B4,i(n, d), where 1 ≤ i ≤ d − 3 and

1 ≤ k ≤ d− 2
}

.

Proof. For 1 ≤ i ≤ d− 3, 1 ≤ j ≤
⌊
d
2

⌋
− 1 and 1 ≤ k ≤ d− 2, it is not hard to see that

B1,j ∈ B1(n, d), B2,j ∈ B1(n, d), B3,i ∈ B2(n, d) and B4,j ∈ B2(n, d). Let B be a bicyclic

graph of B1(n, d) ∪ B2(n, d).

Case 1. B ∈ B1(n, d).

By Lemma 5.3, x0 and xd are two pendant vertices of B and R(B) = B1 with

V
(
Pd+1

)
∩ V (B1) =

{
y1, y2, y3

}
and so min

{
d(y1), d(y2), d(y3)

}
≥ 3. Since B contains

exactly d non-pendant vertices by the definition of π3, {x1, x2, . . . , xd−1, y4} are all these

non-pendant vertices of B. Note that {y1, y2, y3, y4
}
are the four vertices with degree at

least three in B, and d1 = n− d+1 ≥ 3 = d2 = d3 = d4 > d5. Thus, y1 is symmetric with

y3 and y2 is symmetric with y4, and either d(y1) = n− d+ 1 or d(y2) = n− d+ 1.
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Here, we only consider the case of d(y2) = n−d+1, as the case of d(y1) = n−d+1 can be

proved similarly. Since x0 and xd are two pendant vertices of B and since d(y2) = n−d+1,

B is obtained from B1 by attaching n − d − 2 isolated vertices to y2, one path with q

vertices to y1, and another path with d− q − 2 vertices to y3, where 1 ≤ q ≤ d− 3. It is

easily checked that B2,q(n, d) = B2,d−2−q, and so B = B2,j, where 1 ≤ j ≤
⌊
d
2

⌋
− 1.

Case 2. B ∈ B2(n, d).

Recall that Cs and Ct are two cycles of B with |V (Cs) ∩ V (Ct)| = r. By Lemma 6.1,

r ≥ 2 and hence we may suppose that V (Cs) ∩ V (Ct) = {w0, w1, . . . , wr−1}, s ≥ t ≥

2(r − 1) and min
{
d(w0), d(wr−1)

}
= 4, as x0 and xd are two pendant vertices of G and{

w0, wr−1

}
=

{
u′
0, v

′
0

}
(see Lemma 6.1). Since

{
w0, wr−1

}
=

{
u′
0, v

′
0

}
and s ≥ t ≥ 2(r−1),

at least s+ t− 2r vertices of V
(
R(B)

)
are not on Pd+1. Combining this with (2),

d− 1 + (s+ t− 2r) ≤ |NPd+1
|+ (s+ t− 2r) ≤ |NB| = d+ 1, (7)

and hence 2(r − 1) ≤ t ≤ r + 1. Thus, 2 ≤ r ≤ 3.

Combining with t ≥ 3, we have t = r + 1. By (7) and s ≥ t = r + 1, we have

d + 1 = |NB| ≥ d − 1 + 2(r + 1) − 2r = d + 1, which implies that s = t = r + 1. Recall

that |V (Cs) ∩ V (Ct)| = r ∈ {2, 3}. Thus, R(B) ∈ {B1, B2}. In view of the definition of

π4 and since min
{
d(w0), d(wr−1)

}
= 4, we may suppose that d(w0) = n− d+ 1.

We first suppose that R(B) = B1 and we may assume that y2 = w0 by symmetry.

Since x0 and xd are two pendant vertices of B, B is obtained from B1 by attaching one

path with k vertices together with n − d − 3 isolated vertices to y2, and one path with

d− k − 1 vertices to y4, where 1 ≤ k ≤ d− 2, this implying that B = B3,k(n, d) for some

1 ≤ k ≤ d− 2. Now, we suppose that R(B) = B2. In a similar way, we can conclude that

B = B4,i(n, d) for 1 ≤ i ≤ d− 3, and so complete the proof of this result.

Proof of Theorem 2.3. In view of Theorems 3.3 and 3.4, it suffices to show that B has

the maximum (resp., minimum)Hf (B) if f(x) is a strictly convex (resp., concave) function

on x ≥ 1. Suppose that the degree sequence of B is π. If π ∈ {π3, π4}, then Lemma 6.3

implies that B ∈ B1(n, d)∪B2(n, d). Otherwise, π 6∈ {π3, π4}. Since 4 ≤ d ≤ n−3, πCπ3

or π C π4 by Lemma 6.2. Now, the result follows from Theorem 3.2.

Remark 6.4 Actually, in this paper, we have determined all the extremal graphs with

maximum (resp., minimum) vertex-degree-function index Hf (G) for any strictly convex
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(resp., concave) function f(x) defined on x ≥ 1 among the class of trees, unicyclic graphs

and bicyclic graphs with given diameter, respectively.
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