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Abstract

An algebraic Kekulé structure (AKS) of a hexagonal system H corresponding
to a geometric Kekulé structure (GKS) is a function from the hexagons to integers
which describe the π-electrons distribution within rings of benzenoid hydrocarbons.
Gutman et al. (2004) showed that all catacondensed hexagonal systems with at
least 2 hexagons have a one-to-one correspondence between GKS and AKS. It is
natural to consider which pericondensed hexagonal systems have such one-to-one
correspondence. In this paper, we characterize the constructable hexagonal system
(CHS) with a one-to-one correspondence between GKS and AKS. As applications to
parallelograms, truncated parallelograms and chevrons, and multiple chains, among
them we determine all several graphs without the above one-to-one correspondence.

1 Introduction

A hexagonal system (HS, or benzenoid) is a 2-connected finite plane graph such that

every interior face is a regular hexagon. A matching of a graph G is a set of pairwise

disjoint edges. A matching is called a perfect matching if it covers all the vertices of

G. We are interested in the hexagonal systems with a perfect matching, which can be

regarded as the carbon skeleton of benzenoid hydrocarbon molecules. A perfect matching
∗This work is supported by NSFC (Grant No. 11871256).
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of an HS is also called geometric Kekulé structure (GKS). About 15 years ago, Randić

[13, 14] introduced algebraic Kekulé structure (AKS) of an HS from a GKS K, which is a

function from hexagons to integers according to the following rule: every edge in K which
belongs to only one hexagon contributes 2 to the function value of this hexagon and every

edge in K shared by two hexagons contributes 1 to each one of these two hexagons. The

function values on hexagons are called the Randić numbers, which are ranging from 0 to

6. The AKS was originally used for the coding and ordering of GKS of some benzenoid

hydrocarbons [12–14, 18] and further employed to assess the π-electron contents of rings

in them in chemistry [1–5, 8, 9, 15].

With regards to coding and computer-aided processing, AKS has an obvious advantage

over the GKS [12, 18]. In view of this, it is of primary interest to establish a one-to-one

correspondence between them. Obviously, every GKS uniquely determines an AKS, but
the opposite is not true [4, 10, 17].

An HS is said to be catacondensed if no three of its hexagons have a vertex in common,

and pericondensed otherwise. It was shown by Gutman et al. [10] that there exists a one-

to-one correspondence between GKSs and AKSs of each catacondensed HS with at least
2 hexagons. However, the correspondence between GKS and AKS of a pericondensed HS

is more complicated. As we know, Vukičević et al. [17] gave a characterization for an

HS to have more GKSs than AKSs (see the next section). Using this result, Y. Zhang

and H. Zhang [21] obtained the following two types of HSs with at least two hexagons

that have a one-to-one correspondence between GKS and AKS: benzenoid parallelogram

P (p, q) except P (2, 2), consisting of p × q hexagons arranged in p rows and q columns,

and any HSs with no P (2, 2) as its subgraph.

In this paper, we characterize the constructable HSs that have a one-to-one corre-

spondence between GKS and AKS. For simplicity, we call an HS H singular if H does

not have a one-to-one correspondence between GKS and AKS, and nonsingular other-

wise. In Section 2, we give some further properties of singular general CHSs. Based on

these properties, in Sections 3 and 4 we obtain our main results that are sufficient and

necessary conditions for monotonic CHSs and general CHSs to be singular, respectively.

In Section 5, applying our results to special types of CHSs, such as parallelograms, trun-

cated parallelograms and chevrons, and multiple chains, among them we determine all

five singular graphs (single hexagon and P (2, 2) for (truncated) parallelograms, two for
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truncated chevrons and one for multiple chains). Finally, we propose some problems on

further researches in Section 6.

2 Preliminaries

For a graph G, the set of vertices of G is denoted by V (G) and the set of edges by

E(G). For a subgraph G′ of G, the graph induced by the set of vertices V (G) \ V (G′)

will be denoted by G− V (G′). For matchings M1 and M2 of G, a cycle C of G is called

(M1,M2)-alternating cycle if the edges of C appear betweenM1 andM2 alternatively. The

symmetric difference of two sets S1 and S2 is denoted by S1 ⊕ S2 = (S1 ∪ S2) \ (S1 ∩ S2).

For an HS H, an edge of H is called an peripheral edge if it belongs to the exterior face of

H, and an inner edge otherwise. We denote the sets of inner edges and peripheral edges

of H by Ei(H) and Ep(H) respectively. For a hexagon h of H and a matching M of H,

let AKSh(M) = |Ei(h) ∩M |+ 2|Ep(h) ∩M |.
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Figure 1. A constructable HS.

An HS is said to be a constructable HS (CHS) [6, 7, 19], if it can be drawn in the plane

such that some edges are vertical and dissected by a series of parallel horizontal lines Li

(i = 1, 2, . . . ,m) into m + 1 horizontal zigzag paths P1, P2, . . . , Pm+1 so that the top P1

and the bottom Pm+1 must be of even length, and all other paths are of odd length (see

Fig. 1). The CHS includes some special classes of HSs, such as parallelogram, truncated

parallelogram and chevron, and multiple chain [6].

The following useful terms and notions about CHSs were introduced in [7]. We call the

linear hexagonal chain which consists of all the hexagons intersecting Li (i = 1, 2, . . . ,m)

the i-th row Ri of H. If the up end-vertex of the most-left (resp. most-right) vertical edge

of Ri (i ≥ 2) has degree 3, then we say that Ri turns to the right (resp. left). If the end
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vertices of the most-left (resp. most-right) vertical edge of Ri both have degree 3, then Ri

is called a right turning (resp. left turning) row. Both right turning row and left turning

row are called turning rows. If a CHS has no turning row, then it is called a monotonic

CHS. More specifically, besides the top row, if each row of a CHS turns to the right (resp.

left), then this CHS is called right monotonic (resp. left monotonic). By symmetry, left

monotonic and right monotonic are equivalent. For more terms and notions we follow [6].

For convenience, we denote by h1,1 the most-left hexagon on the top row of H and

then define all other hexagons of H inductively. If hi,j is a hexagon of H, we denote by

hi,j+1, hi+1,j, hi+1,j−1 and hi,j−1 the hexagons (if they exist) neighboring hi,j on the right,

the bottom right, the bottom left and the left side respectively. Moreover, for a hexagon

h of H we denote by el(h), etl(h), etr(h), er(h), ebr(h) and ebl(h) the left vertical edge, the

top left edge, the top right edge, the right vertical edge, the bottom right edge and the

bottom left edge of h respectively.

We know that a CHS has at least one perfect matching with the following properties.

Lemma 2.1 ([19]). Every perfect matching of a CHS H contains exactly one vertical edge

of each row of H.

Lemma 2.2 ([19]). Let M be a perfect matching of a CHS H with m rows and ei

(i = 1, 2, . . . ,m) be the vertical edge of M in Ri of H. If Ri (2 ≤ i ≤ m) of H turns to

the right (resp. left), then ei is on the right (resp. left) of ei−1.

The following key theorem was obtained by Vukičević et al.

Theorem 2.3 ([17]). An HS H is singular if and only if H contains a subgraph C that

consists of at least one disjoint cycles and the edges of C can be divided into two matchings

M1 and M2 such that the following three conditions are satisfied:

(1) M1 ⊕M2 = E(C),

(2) H − V (C) has a perfect matching, and

(3) for each hexagon h of H, AKSh(M1) = AKSh(M2).

It is obvious that the disjoint perfect matchings M1 and M2 of C in Theorem 2.3

can be extended to two perfect matchings M ′
1 and M ′

2 of H where M ′
1 = M1 ∪ M0 and

M ′
2 = M2 ∪M0 for a perfect matching M0 of H − V (C). We say an edge of M0 is a fixed

matching edge relative to C. In the figure, we often use thick edges to denote the edges of

C, and double edges the fixed matching edges relative to C.
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To get our main results we now discuss some properties of C in Theorem 2.3. From

now on we suppose that H is a singular hexagonal system, and that C, M1 and M2 are the

same as in Theorem 2.3 with the conditions (1), (2) and (3). A HS H is called convex if it

does not have a peripheral edge with two end vertices of degree 3, and concave otherwise.

The following two lemmas have already been obtained.

Lemma 2.4 ([21]). For any hexagon h of H, |Ei(h) ∩ E(C)| is an even number.

Lemma 2.5 ([21]). If a cycle C of C does not contain another cycle of C in its interior,

then C must bound a convex HS.

Further, in the remaining part of this section we suppose that H is a CHS. In this

situation we can see that the condition of Lemma 2.5 always holds. If a cycle C of C

contains another cycle C∗ in the interior of C, then there is some row intersecting both

C and C∗ at vertical edges. So M1 and M2 each contains at least two vertical edges of

this row, because each of such two cycles has one vertical edge of Mi (i = 1, 2) in this

row. Since each of M1 and M2 can be extended to a perfect matching of H, it contradicts

lemma 2.1. So from lemma 2.5 we have the following result.

Lemma 2.6. The interiors of any two cycles of C are disjoint, and each row of H

intersects at most one cycle of C in vertical edges. So each cycle of C bounds a convex

HS.

Lemma 2.7. Any cycle C of C bounds a parallelogram P (p, q) with p, q ≥ 1.

Proof. From lemma 2.6 a cycle C of C bounds a convex HS H ′ with a perfect matching

M such that C is M -alternating. Then either H ′ is a linear chain or the second row of H ′

(if exists) turns to the right or the left. Otherwise, the second row of H ′ exists and has

zero or two vertical edges in M (this can be easily obtained from Lemma 1 of [20] or the

white-black coloring method of [16]). Since C is an M -alternating cycle, this row has at

least one vertical edge in M . On the other hand, since a perfect matching of H ′ can be

extended to a perfect matching of H, this row contains at most one vertical edge in M

by lemma 2.1. Both imply that this row contains exactly one vertical edge in M , which

is a contradiction. Continuing this way we can show that H ′ is also a CHS. Further, that

H ′ is convex implies that H ′ a parallelogram P (p, q) with p, q ≥ 1.
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From lemma 2.7 a cycle of C bounds a parallelogram or its degenerated cases: a single

hexagon and a linear hexagonal chain. For convenience, for a cycle C in C the subgraph

of H that consists of all hexagons of H in the interior of C and the hexagons of H that

have an edge of C is called the local structure of C.

Lemma 2.8. If a cycle C of C is a single hexagon h, then there are 6 possible local

structures of C as shown in Fig. 2.

h
h hh hh

)3()1( )2( )4( )5( )6(

Figure 2. The local structures of a single hexagon h.

Proof. If a cycle C of C is a single hexagon h, then we know that |Ei(h) ∩ E(C)| is even

by lemma 2.4. When |Ei(h)∩E(C)| = 0, the only local structure of C is Fig. 2(1). When

|Ei(h)∩E(C)| = 2, Condition (3) of Theorem 2.3 shows that there are two local structures

of h as shown in Fig. 2(2) and (3). Similarly, when |Ei(h)∩E(C)| = 4, there are two local

structures of C which are Fig. 2(4) and (5). For |Ei(h) ∩ E(C)| = 6, the local structure

of h can only be Fig. 2(6).

Figure 3. The local structure of C bounding a linear hexagonal chain.

Lemma 2.9. If one cycle C of C bounds a linear hexagonal chain at least two hexagons,

then there is only one local structure of C up to isomorphism in which C has exactly two

peripheral edges as shown in Fig. 3.

Proof. Let a cycle C of C be the boundary of a linear hexagonal chain of length at least

two. Then all possible local structures of C have already been given in Claim 4.3 of Ref.

[21]; see Fig. 4, where just one of hexagon i′ and i′′ (1 ≤ i ≤ n − 1) in the first graph

belongs to H.
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Figure 4. The possible local structures of C bounding a linear hexagonal chain.

It is sufficient to show that all possible local structures except (5) cannot be a subgraph

of H. We only consider (3) (the others are similar). Since an HS has three different

directions, the CHS H has three possible drawings in the plane such that each row is

horizontal. So the local structure of C has also three corresponding drawings as Fig. 5 up

to mirror reflections. For (a), the path P is of even length, which contradicts the definition

P

1
e

1
e

2
e

2
e

)(a )(b )(c

Figure 5. Three drawings for the local structure (3) of C.

of CHS. For (b), the vertical edges e1 and e2 belong to the same perfect matching of H,

and the row including e2 turns to left, but e2 is on the right side of e1, which contradicts

lemma 2.2. For (c), the vertical edges e1 and e2 belongs to the same perfect matching

of H, and the row including e1 turns to the right, but e1 is on the left side of e2, a

contradiction again. Hence the local structure (3) cannot be a subgraph of H.

Lemma 2.10. If a cycle C of C bounds a parallelogram P (p, q) with p, q ≥ 2, then there

is only one local structure of C up to isomorphism in which C has exactly two peripheral

edges as shown in Fig. 6.
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Figure 6. The local structure of C bounding a parallelogram.

Proof. Suppose that a cycle C of C is the boundary of a parallelogram H ′ = P (p, q) with

p, q ≥ 2 (see Fig. 7). We can see that H ′ − V (C) has only one perfect matching and

there is no cycle of C inside C. All hexagons of H ′ and possible neighboring hexagons are

labelled as Fig. 7. Applying lemma 2.4 and theorem 2.3 (3) to hp,1, we find that hp+1,0
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Figure 7. Illustration for the proof of lemma 2.10.

is not a hexagon of H and both hp+1,1 and hp,0 are hexagons of H. Applying lemma 2.4

to hp,2, hp,3, . . . , hp,q−1 successively, and to hp−1,1, hp−2,1, . . . , h2,1 successively, we find that

hp+1,2, hp+1,3, . . . , hp+1,q−1 and hp−1,0, hp−2,0, . . . , h2,0 are hexagons of H. Similarly, we can

show that h1,q+1, h2,q+1, . . . , hp−1,q+1 and h0,q, h0,q−1, . . . , h0,2 are hexagons of H, and h0,q+1

is not a hexagon of H. Furthermore, applying lemma 2.4 to h1,1 and hp,q, we find that

)1( )2( )3(

Figure 8. The possible local structures of C bounding a parallelogram.

both h1,0 and h0,1 are hexagons of H or not simultaneously, and both hp,q+1 and hp+1,q

are hexagons of H or not simultaneously. Therefore, there are total three possible local

structures of C as shown in Fig. 8.
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We can show that none of the first two is a subgraph of H by the same method as in

the proof of lemma 2.9.

3 Monotonic constructable hexagonal system

LetH be a right monotonic CHS. ThenH can also be dissected by parallel oblique lines

L′
i (i = 1, 2, . . . , n) so that it decomposes into n + 1 oblique zigzag paths P ′

1, P
′
2, . . . , P

′
n+1

such that the one most-left P ′
1 and the one most-right P ′

n+1 must be of even length,

A
colum

n
1

P¢
2

P¢
3

P¢

nP¢
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¢
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2
L¢
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¢
nL nL¢

right sunken edge

left sunken edge

1,1
h

jih
,

nmh
,

Figure 9. A right monotonic CHS.

and all other paths are of odd length (see Fig. 9). All the hexagons which intersect

L′
i (i = 1, 2, . . . , n) form a linear hexagonal chain, called the i-th column of H. In this

section, an edge on the left (resp. right) boundary of H is called a left (resp. right) sunken

edge if its end vertices both have degree 3. The most-left hexagon h1,1 on the top row of

H and the most-right hexagon hm,n on the bottom row of H are called the two corners

of H.

The following theorem can characterize the singular monotonic CHSs.

Theorem 3.1. Let H be a right monotonic CHS with m rows and n columns except

P (1, 1) and P (2, 2). Then H is singular if and only if it has k pairs of left and right

sunken edges {e1,u, e2,u}, u = 1, 2, . . . , k, k ≥ 1, satisfying the following two conditions

(see Fig. 10):

(1) e1,1 lies in P ′
2 and not in P2, e2,1 lies in P2 and not in P ′

2; e1,k lies in Pm and not

in P ′
n, e2,k lies in P ′

n and not in Pm;

(2) For u = 2, 3, . . . , k, e1,u and e2,u−1 lie in one oblique zigzag path, and e2,u and

e1,u−1 lie in one horizontal zigzag path.
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Figure 10. A monotonic CHS satisfying Conditions (1) and (2) of theorem 3.1.

Proof. We first prove the sufficiency. Suppose that H has k ≥ 1 pairs of left and right

sunken edges {e1,u, e2,u} with Conditions (1) and (2). We can see that h1,1 and hm,n each

has exactly two inner edges. Let C0 be h1,1, and Ck+1 be hm,n. Let Cj be the boundary

of a parallelogram including e1,j and e2,j as the peripheral edges and having the local

structure illustrated in Figs. 2(5), 3 and 6 for j = 1, 2, . . . , k. For example, see Fig. 10.

Then we can check that the subgraph C composed of the Cj’s, 0 ≤ j ≤ k + 1, satisfies

Conditions (1), (2) and (3) of theorem 2.3, where two disjoint perfect matchings M1 and

M2 of C are chosen as follows: For each 0 ≤ i ≤ k, if the perfect matching of Ci with the

left (resp. right) vertical edges is given to M1 (resp. M2), then the perfect matching of

Ci+1 with the right (reps. left) vertical edges is given to M1 (resp. M2). Consequently,

H is singular.

Next we prove the necessity.

Suppose that H is singular. Then H has a subgraph C consisting of at least one

disjoint cycles satisfying Conditions (1), (2) and (3) of theorem 2.3 and each cycle of C

bounds a parallelogram by Lemma 2.7.

Claim 1: P1 has at least one edge e0 in E(C).

lP
jlh

,

jlh
,1−

1, −jlh

Figure 11. Illustration for the proof of Claim 1.

Let l be the minimum number such that Pl has an edge e in a cycle C of C (see Fig. 11).

If l ≥ 2, let hl,j be the hexagon on the top left corner of the parallelogram surrounded
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by C. Then at least one of hexagons hl,j−1 and hl−1,j belongs to H. For labellings of

hexagons and their edges, we may refer to the last section. If hl,j−1 is a hexagon of H,

then ebl(hl,j−1) is a fixed matching edge relative to C, and etl(hl,j−1) cannot belong to any

cycle of C, otherwise Pl−1 has an edge in C. Therefore all edges of hl,j−1 except the one

shared with hl,j cannot belong to any cycle of C. Hence |Ei(hl,j−1) ∩ E(C)| = 1, which

contradicts lemma 2.4. If hl−1,j is a hexagon of H and hl,j−1 is not a hexagon of H, we can

also see that hl−1,j has exactly one edge in C, so |Ei(hl−1,j) ∩ E(C)| = 1, a contradiction.

Hence l = 1 and the claim holds.

Claim 2: The hexagon h1,1 is one cycle of C.

jh
,11,1 −jh

1,1
h

0
C

)1( )2(

Figure 12. Illustration for the proof of Claim 2.

Let C0 be the cycle of C that contains an edge e0 of P1. Then C0 must be a hexagon.

Otherwise, C0 bounds a P (p, q) with p or q ≥ 2, and C0 has exactly two peripheral edges

of H, which are not adjacent, by Lemmas 2.9 and 2.10, an obvious contradiction. If C0 is

h1,j(j ≥ 2), we can see that |Ei(h1,j−1)∩E(C)| = 1, a contradiction to lemma 2.4. Hence,

C0 = h1,1 (see Fig. 12).

Claim 3: There is a pair of left and right sunken edges e1,1 and e2,1 satisfying Con-

dition (1) of this theorem.

We know that |Ei(h1,1) ∩ E(C)| is an even number by lemma 2.4, and h1,1 has one or

two inner edges of H since H has at least two hexagons. So |Ei(h1,1) ∩ E(C)| = 2, and

h1,2 and h2,1 are two hexagons of H. Applying lemma 2.4 to h1,2 and h2,1, we find that

ebr(h1,2) and er(h2,1) must belong to another cycle C1 of C.

If C1 = h2,2, then neither h1,3 nor h3,1 is a hexagon ofH. Otherwise, |Ei(h1,3)∩E(C)| =

1 by lemma 2.6, or |Ei(h3,1) ∩ E(C)| = 1 since the other cycles of C must lie on the right

side of C1 by lemma 2.2, both contradicting lemma 2.4. If |Ei(h2,2) ∩ E(C)| = 2, then H

is P (2, 2), a contradiction. So |Ei(h2,2) ∩ E(C)| = 4, and h2,3 and h3,2 are two hexagons

of H. In this case, e1,1 and e2,1 are the first pair of the required sunken edges of H (see

Fig. 13).
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Figure 13. The case that C1 is a hexagon.

If C1 bounds a linear chain of at least two hexagons, there are two possibilities by

lemma 2.9 as shown in Fig. 14(1) and (2). If C1 bounds a parallelogram with at least

two rows and two columns, there is only one possibility by lemma 2.10 as shown in Fig.

14(3). In any case, let e1,1 and e2,1 be the peripheral edges of C1 on the left and right

boundary of H respectively. Then e1,1 and e2,1 satisfy Condition (1) of this theorem. So

the claim is verified.
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Figure 14. Illustration for C1 bounding a parallelogram P (p, q) with p or q ≥ 2.

For short, cycle C1 in the above three cases always bounds a parallelogram P (p, q)

with p, q ≥ 1, and C1 has a pair of sunken edges e1,1 and e2,1.

Let hi,j denote the hexagon on the bottom right corner of the parallelogram bounded

by C1. Then hi+1,j and hi,j+1 are two hexagons of H. Applying lemma 2.4 to hi+1,j and

hi,j+1, we find that ebr(hi,j+1) and er(hi+1,j) must belong to one more cycle C2 of C. So

hi+1,j+1 is a hexagon of H. If C2 = hi+1,j+1 and hi+1,j+1 has exactly two inner edges, then

k = 1 and the necessity holds. Otherwise, repeating the above process, finally we can

obtain a set of pairs of left and right sunken edges {e1,u, e2,u} (u = 1, 2, . . . , k) satisfying

the two conditions of this theorem and show that hm,n is a cycle Ck+1 of C (see Fig. 10).

Remark 3.2. The conditions of theorem 3.1 can have an equivalent description: H has a

series of disjoint parallelograms P (p0, q0), P (p1, q1), . . . , P (pk+1, qk+1) arranged from top
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to bottom such that the first and the last are hexagons of H on top left corner and

bottom right corner respectively, the others have local structures as Fig. 6, and for any

consecutive P (pi, qi) and P (pi+1, qi+1) the bottom right hexagon of P (pi, qi) is connected

to the top left hexagon of P (pi+1, qi+1) by two hexagons. In the sense a single hexagon

and P (2, 2) are regarded as satisfying the above conditions as the degenerated cases.

4 General constructable hexagonal system
We now turn to a general CHS H for which a turning row is allowed. We denote by Bi

(i = 1, 2, . . . , t) the i-th turning row ofH from top to bottom, and by Ai (i = 1, 2, . . . , t+1)

the monotonic CHS consisting of all rows of H sandwiched between Bi−1 and Bi, where

B0 = ∅, Bt+1 = ∅ and some Ai may be empty for 2 ≤ i ≤ t. Moreover, let Āi denote

the monotonic CHS consisting of Ai and turning rows Bi−1 and Bi for i = 1, 2, . . . , t+ 1.

That is, the Āi is the maximal monotonic CHS as subgraphs of H, and the consecutive

two of them intersect in a turning row. So each Āi contains at least two rows of H. For

example, the CHS in Fig. 1 has three turning rows with B1 = R3, B2 = R5 and B3 = R6.

A1 = R1 ∪ R2, A2 = R4, A3 = ∅, and A4 = R7. Ā1 = R1 ∪ R2 ∪ R3, Ā2 = R3 ∪ R4 ∪ R5,

Ā3 = R5 ∪R6, and Ā4 = R6 ∪R7.

In this section, we call the most-left (resp. most-right) hexagon on the top row of H

when A1 is right (resp. left) monotonic and the most-right (resp. most-left) hexagon on

the bottom row of H when At+1 is right (resp. left) monotonic the two corners of H.

Lemma 4.1. Let H be a CHS with t (t ≥ 1) turning rows. If a maximal monotonic CHS

Āt0 (1 ≤ t0 ≤ t+1) of H is singular and each corner of Āt0 has the same two inner edges

in H and Āt0, then H is singular.

Proof. Suppose that Āt0 is singular. By theorem 3.1, Āt0 has a subgraph C consisting of at

least two disjoint cycles as described in remark 3.2 such that the edges of C can be divided

into two matchings M1 and M2 satisfying Conditions (1), (2) and (3) of theorem 2.3. We

can check that C, M1 and M2 also satisfy the same Conditions (1), (2) and (3) for H.

First, M1 ⊕ M2 = E(C) remains. Then, since Āt0 − V (C) and H − V (Āt0) each has a

perfect matching, H − V (C) has a perfect matching. Moreover, since each corner of Āt0

has the same two inner edges in H and Āt0 , each hexagon h of H not in Āt0 has no edges

of C, so AKSh(M1) = AKSh(M2) = 0. Hence theorem 2.3 implies that H is singular.
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In the following, we introduce two types of connecting two monotonic CHSs, which

will paly an essential role in characterizing the singular CHSs.

Type 1: Let Ai be a right monotonic CHS and h1 be the bottom right corner of Ai,

and let Aj be a left monotonic CHS and h2 be the top right corner of Aj. Ai is connected

to Aj by a turning row which has two hexagons h3 and h4 each adjacent to both h1 and

h2 (see Fig. 15(1)).

1
h

1
h

2
h

2
h

3
h

4
h

iA iA

jA

jA

)1( )2(

Figure 15. Two types of connecting two monotonic CHSs.

Type 2: Let Ai and Aj be two right monotonic CHSs, and h1 and h2 be the bottom

right corner of Ai and the top left corner of Aj respectively. Ai is connected to Aj by a

left monotonic parallelogram P (2, 3) so that Ai is above Aj and h1 and h2 each is adjacent

to two hexagons of P (2, 3) as shown in Fig. 15(2).

Lemma 4.2. Let a CHS H be obtained by connecting two singular monotonic CHSs Ai

and Aj by Type 1 or 2. Then H is singular.

Proof. By theorem 3.1, Ak (k = i, j) has a subgraph Ck (k = i, j) consisting of at least

two disjoint cycles as described in remark 3.2 satisfying Conditions (1), (2) and (3) of

theorem 2.3 for Ak. Then h1 ∈ Ci and h2 ∈ Cj.

If Ai and Aj are connected by Type 1, let C = Ci ∪ Cj. We choose two disjoint perfect

matchings M1 and M2 of C as follows: for any pair of consecutive disjoint cycles of C

from top to bottom, if the perfect matching of the upper cycle with the left (resp. right)

vertical edges is given to M1 (resp. M2), then the perfect matching of the next cycle

with the right (reps. left) vertical edges is given to M1 (resp. M2). So M1 ⊕ M2 = C.

Obviously, the union of perfect matchings of Ai − V (Ci) and Aj − V (Cj) can be extended

to a perfect matching of H − V (C). It remains to check all hexagons h in the turning
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row satisfying (3) of theorem 2.3: AKSh(M1) = AKSh(M2) = 0 or 1 according as h is

adjacent to h1 and h2 or not. Thus by theorem 2.3 H is singular.

If Ai and Aj are connected by Type 2, let C consist of the cycles in C1 ∪ C2 and the

two hexagons on the corners on the connection P (2, 3). Note that the two corners have

no edges of Ai and Aj. Two disjoint perfect matchings M1 and M2 of C can be chosen by

the same rule as the last paragraph. We can check similarly that C, M1 and M2 satisfy

Conditions (1), (2) and (3) of theorem 2.3 for H. Hence H is also singular.

From theorem 3.1 and Lemmas 4.1 and 4.2 we can characterize all singular CHSs:

each has a maximal monotonic CHS Āi as a singular subgraph so that both corners of

Āi has exactly two inner edges, only in Āi, or the subgraph Āi is replaced with a series

of monotonic singular CHSs connected consecutively by Type 1 or 2. More precisely, we

have the following description.

)2()1(

H

H

u
B

v
B

Figure 16. Two examples of singular CHSs.

Theorem 4.3. Let H be a CHS with t (t ≥ 1) turning rows. Then H is singular if and

only if one of the following two statements holds:

(1) There is a t0 (1 ≤ t0 ≤ t + 1) such that Āt0 of H is singular and each corner of

Āt0 has the same two inner edges in H and Āt0 (see Fig. 16 (1));

(2) There are u and v (0 ≤ u < v ≤ t + 1, v − u > 1) such that the subsystem H

consisting of all rows of H from Bu to Bv satisfies: (a) Each nonempty one of Bu∪Au+1,

Au+2, Au+3, …, Av−1 and Av∪Bv is singular; (b) Every consecutive pair of nonempty ones

in Bu ∪ Au+1, Au+2, Au+3, …, Av−1 and Av ∪ Bv (empty ones are ignored) are connected
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by Type 1 or 2; (c) Each of the two corners of H has the same two inner edges in H and

H. (see Fig. 16 (2))

Proof. We first prove the sufficiency. If statement (1) holds, then H is singular from

lemma 4.1. So suppose that statement (2) holds. For convenience, let A′
u+1 = Bu ∪

Au+1, A
′
i = Ai, u+2 ≤ i < v, and A′

v = Av ∪Bv. Then H = ∪v
i=u+1A

′
i. By Conditions (a)

and (b), if A′
i 6= ∅, u + 1 ≤ i ≤ v, then A′

i has the subgraph Ci composed of at least two

disjoint cycles as described in remark 3.2. Otherwise, both A′
i−1 and A′

i+1 are not empty

and connected by Type 2, and let Ci consist of both corners of the connection P (2, 3).

Let C = ∪v
i=u+1Ci. In the same method as in the proof of lemma 4.2 we can choose two

disjoint perfect matchings M1 and M2 of C and show that they satisfy Conditions (1), (2)

and (3) of theorem 2.3 for H. Hence H is singular. Further, since any perfect matching

of H can extend to a perfect matchings of H and the two corners of H has the same two

inner edges in H and H (Condition (c)), we can check that C, M1 and M2 also satisfy

Conditions (1), (2) and (3) for H similar to the proof of lemma 4.1. Hence H is singular.

We now prove the necessity.

Suppose that H is singular. Then H has a subgraph C satisfying (1), (2) and (3) of

theorem 2.3 and each cycle of C bounds a parallelogram by Lemma 2.7.

Claim 1: If a cycle C of C contains some hexagon of a turning row in its interior,
then C is an end hexagon of this row and has exactly two inner edges in H.

Suppose to the contrary that C is not a hexagon. Then C bounds a parallelogram

which has m rows and n columns with m or n ≥ 2. By Lemmas 2.9 and 2.10, the

local structure of C is as shown in Fig. 17. Let R′
i (i = 0, 1, . . . ,m + 1) denote the

1
e

2
e

m
e

0
R¢

1
R¢

2
R¢

m
R¢

1+
¢
m

R

Figure 17. Illustration for the proof of Claim 1.

row of H containing the i-th row of the local structure of C from top to bottom and ei

(i = 1, 2, . . . ,m) the right vertical edge of C in R′
i. Then H has a perfect matching M

such that C is M -alternating and all ei’s belong to M . From the local structure of C, we

can see that for 2 ≤ i ≤ m− 1, ei−1 is on the left side of ei and ei+1 is on the right side of
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ei. By lemma 2.2, R′
i (2 ≤ i ≤ m− 1) turn to right. Furthermore, the two sunken edges

make R′
1 and R′

m+1 turn to right. Thus all R′
is (i = 0, . . . ,m+ 1) form a right monotonic

CHS, contradicting some R′
i, 1 ≤ i ≤ m, being a turning row. Hence C is a hexagon of

the turning row.

Suppose that C is a hexagon of a right turning row. Then C can only be the most-

right hexagon of this row. Otherwise, the next hexagon of C on the right-side has only

one inner edge in E(C), which contradicts lemma 2.4. On the other hand, the most-right

hexagon of the right turning row has at most 3 inner edges. Applying lemma 2.4 to this

hexagon, we obtain that this hexagon has exactly two inner edges. So Claim 1 is verified.

Let u be the minimal integer such that A′ = Bu ∪ Au+1 has a hexagon in the interior

of a cycle C0 in C for u ≥ 0. Using the same method in Claims 1 and 2 of theorem 3.1,

we can show that C0 must be a hexagon hi0,j0 of the first row Bu of A′. By Claim 1 this

hexagon is an end of Bu, say the most-left end, and has exactly two inner edges, which

belong to Bu and the next row. So hi0,j0+1 and hi0+1,j0 are two hexagons of H.

Claim 2: C has a cycle C1 in A′ that has some hexagon of the last row of A′ in its

interior (see Fig. 18).

00
, jih

1,
00
+jih

1
C0

C

00
,1 jih

+ 1,1
00

++ jih
A¢

Figure 18. Illustration for the proof of Claim 2.

If C0 is a hexagon in the last row of A′, the Claim holds trivially. Otherwise, A′ has at

least two rows, and there is another cycle C of C that contains ebr(hi0,j0+1) and er(hi0+1,j0).

By Claim 1, C cannot go through vertical edges of a turning row and is contained in A′.

Similar to theorem 3.1, repeating this process, we can find a cycle C1 of C in A′ that has

some hexagon of the last row of A′ in its interior. So Claim 2 holds.
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1, +jih

jih
,1+

1
C

2
C

1,1 ++ jih

jih
,

Figure 19. Illustration for the proof of Claim 3.

Claim 3: If C1 bounds a parallelogram P (p, q) with p or q ≥ 2 (see Fig. 19), then

Āu+1 = A′ ∪Bu+1 satisfies Condition (1) of this theorem.

Let hi,j be the hexagon on the bottom right corner of the parallelogram surrounded

by C1. By the local structure of C1 we have that hi,j+1 and hi+1,j are two hexagons of H

and there is another cycle C2 of C which contains ebr(hi,j+1) and er(hi+1,j). By Claim 1,

C2 can only be the hexagon hi+1,j+1, which has exactly two inner edges. By theorem 3.1

Āu+1 is singular and Claim 3 holds.

So, from now on suppose that C1 is a single hexagon hi,j (for simplicity, let h1 = hi,j).

If |Ei(h1) ∩ E(C)| = 6, then |Ei(hi−1,j+1) ∩ E(C)| = 1, contradicting lemma 2.4. If

|Ei(h1) ∩ E(C)| = 2, then Bu+1 = ∅ and Āu+1 = A′ is singular and Condition (1) holds.

The remaining case is |Ei(h1) ∪ E(C)| = 4. By lemma 2.8, there are two possible local

structures of h1 as shown in Fig. 20. If h1 has the local structure as shown in Fig. 20(1),

1
h 1, +jih

jih
,1+ jih

,1+1,1 -+ jih
1

h

2
h

1
C

1
C

)1( )2(

Figure 20. Illustration for the two local structures of h1.

then hi,j+1 and hi+1,j are two hexagons of H. Similarly as Claim 3, A′ ∪Bu+1 is singular

and Condition (1) holds.

So suppose that h1 has the local structure as shown in Fig. 20(2). Similarly we have

that A′ = Bu ∪ Au+1 is singular. We now show that Condition (2) happens. There are

the following two cases.

Case 1: Au+2 6= ∅, i.e., there is a row between Bu+1 and Bu+2.
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Figure 21. Illustration for Case 1.

Applying lemma 2.4 to h3 = hi+1,j−1, we obtain that one of ebl(h3) and ebr(h3) belong

to a cycle C ′ of C. If ebl(h3) belongs to C ′ (see Fig. 21(1)), then h6 = hi+2,j−2 is a hexagon

of H, er(h6) belong to C ′ and ebl(h4) is a fixed matching edge relative to C. Applying

lemma 2.4 to h4, we find that h5 = hi+1,j+1 is another cycle of C with two inner edges by

Claim 1 and h8 = hi+2,j is a hexagon of H. Thus ebr(h8) is a fixed matching edge relative

to C and |Ei(h8) ∩ E(C)| = 1, which contradicts lemma 2.4. Hence ebr(h3) belongs to a

cycle C2 of C (see Fig 21(2)). So ebl(h4) ∈ E(C2), but ebr(h4) /∈ E(C2). Then C2 bounds

a linear chain. If its length is more than one, er(h2) is a sunken edge by lemma 2.9, which

contradicts that the next row turns left. So C2 = h2 = hi+2,j−1. Since h2 has at least

three inner edges, |Ei(h2) ∩ E(C)| = 4 or 6. If er(h2) is an inner edge, then h5 must be a

cycle of C and |Ei(h4) ∩ E(C)| = 3, a contradiction. So |Ei(h2) ∩ E(C)| = 4, and h2 has

the same local structure with h1. Hence A′ and Au+2 are connected by Type 1.

Case 2: Au+2 = ∅, i.e. there is no row between Bu+1 and Bu+2 (see Fig. 22).
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Figure 22. Illustration for Case 2.

Applying lemma 2.4 to h3 = hi+1,j−1, we obtain that ebl(h3) or ebr(h3) belong to a

cycle C ′′ of C. By Claim 1 C ′′ must be hexagon h6, the most-left end of Bu+2. Further

-657-



by lemma 2.8 we obtain that h6 has exactly two inner edges shared with hexagons h3

and h7 of H. Thus etr(h7) is a fixed matching edge relative to C. Applying lemma 2.4 to

h4 = hi+1,j, we find that h5 = hi+1,j+1 is another cycle of C, the most-right end of Bu+1,

and h8 = hi+2,j is a hexagon of H by Claim 1. So A′ and Au+3 are connected by Type 2.

Applying lemma 2.4 to h7 and h8, we find that ebr(h7) and ebl(h8) belong to a cycle C2

of C. We claim that the row below h7 and h8 is not a turning row. Otherwise, the row is

a right turning row, and the most-right end belongs to C, a contradiction. Similar to the

Case 1, we have that C2 = h2 = hi+3,j−1 and has the same local structure with h1.

For short, h2 is a hexagon of C lying on one corner of Au+2. Starting this, we continue

the above process and finally find the subsystem H from the first row of A′ to a turning

row or the last row of H which satisfies (a), (b) and (c) in Condition (2).

As an example, we consider the CHS in Fig. 1. By theorem 3.1 we can check that all

Bi−1 ∪ Ai’s and Āi’s (i = 1, 2, 3, 4) of the CHS are nonsingular. So theorem 4.3 implies

that this CHS is nonsingular.

5 Applications

In this section, we determine all singular graphs in several typical classes of HS using

the characterizations described in the last two sections.

(1) Parallelogram

For a benzenoid parallelogram P (p, q) with p or q ≥ 2, it is known that P (p, q) is

singular if and only if p = q = 2 from ref. [21]. theorem 3.1 implies obviously this fact.

(2) Truncated parallelogram

1
n

m

m
n

Figure 23. Truncated parallelogram TP (8, 7, 6, 6, 5, 3).

A right monotonic CHS is a truncated parallelogram if the most-left hexagons of all

rows form a linear hexagonal chain. Let TP (n1, n2, . . . , nm) be the truncated parallel-
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ogram so that the i-th row has ni hexagons, i = 1, 2, . . . ,m, from bottom to top (see

Fig. 23). theorem 3.1 implies that TP (n1, n2, . . . , nm) with at least two hexagons is

nonsingular except P (2, 2).

(3) Truncated chevron

1
n

2
n

q
n

p
n¢

)1( )2( )3( )4(

2
n¢

Figure 24. A truncated chevron and all possible singular truncated chevrons.

We denote by TC(n′
p, . . . , n

′
2, n1, n2, . . . , nq) the truncated chevron obtained by merg-

ing the bottom row of truncated parallelogram TP (n1, n2, . . . , nq) and the top row of the

reflection of another truncated parallelogram TP (n′
1, n

′
2, . . . , n

′
p) along a horizontal line

where n′
1 = n1 (see Fig. 24(1)). By theorem 4.3 we have that TC(n′

p, . . . , n
′
2, n1, n2, . . . , nq)

is singular if and only if it is isomorphic to TC(2, 2, 1, . . . , 1), or TC(2, 2, n1, 2, 2) with

n1 ≥ 2 (see Fig. 24(2) to (4)).

(4) Multiple chain

5 3
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3 1
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4 34 3

3 4

31
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4 3

3 1

4 3
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3 4

31
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34

3 1

4

3 5

3

r

)3()1( )2( )4(

Figure 25. An example for M(5), and M0(2) with the same AKS corresponding to
two GKSs.
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A multiple chain M(n) is a CHS so that each row has n hexagons and the leftmost

hexagons of all rows form a hexagonal chain (see Fig. 25(1)). In particular, let M0(2) be

a multiple chain M(2) so that there are two rows above the first turning row and below

the last turning row respectively, and there are two rows between any two consecutive

turning rows (see Fig. 25(2)), including the degenerated case P (2, 2). By theorem 4.3 we

can see that M(n) is singular if and only if it is isomorphic to M0(2).

6 Concluding remarks

In this paper, we have characterized the constructable hexagonal systems that are sin-

gular, which have no one-to-one correspondence between GKS and AKS. As applications

we found out all singular graphs in several typical classes of CHSs as parallelograms, trun-

cated parallelograms and chevrons, and multiple chains. Gutman et al. [10] showed that

the unique singular graph for cata-condensed HSs is the single hexagon. Such conclusions

shows that there are only a small number of singular graphs among them. For further

researches, we may consider the following problems:

(1) How to characterize general peri-condensed HSs that are singular? For other

typical classes of non-contructable HSs, such as rectangle-, pentagon- and hexagon-shaped

benzenoids, etc., (see [6]), find out the singular graphs. Perhaps it is necessary to analyze

the local structures of the cycle C of C described in theorem 2.3 that bounds a hexagon-

shaped HS or a concave HS.

(2) Let α and γ denote the numbers of AKS and GKS of an HS H respectively. It

is obvious that α/γ = 1 when H is nonsingular and 0 < α/γ < 1 otherwise. This ratio

implies the extent of singularity of an HS. It is necessary to study the accumulation points

or the density of the ratios of all HSs with perfect matchings in the interval (0, 1].

(3) For other graphs, such as rotagraphs (closed benzenoid strips), coronoid ben-

zenoids, and fullerene graphs, etc., partition of π-electrons in rings has been considered

[2, 3, 8, 9, 11]. Graovac et al. [11] showed that the ratios α/γ within benzo[e]pyrenic ro-

tagraphs can tend towards 0. It is natural to consider one-to-one correspondence between

GKS and AKS and the the ratios α/γ for such graphs.
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