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Abstract

The computational study of genome rearrangemertigdsof the most important research
area in computational biology and bioinformatiestHis paper, we define a novel graph data
structure as a rearrangement model for whole geradigrement in large scales. This model
is capable of realizing non-collinear changes dsagecollinear changes. Also we apply our
rearrangement graphical model to present a dynpmoigraming method for alignment of
an arbitrary sequence to a pan-genome referenaghwhiencoded as an outerplanar graph.
In this method, a gapped alignment is considereeravthe gaps could be affine, linear or
constant.

1. Introduction

The analysis of genome rearrangements has started from 1983, when rid&bzhad
Sturtevant [5] observed that the evolution of certain Drosophila specigd be explained
using a sequence of reversals. In 1988, Jeffrey Palmer [25] observed sonséngteadterns
in the evolution of plant organelles and he compared the mitochondniaings of cabbages
and turnips. About 99.9% of the genes were identical in both the genomesvét, it was
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noted that the gene orders of both these vegetables were considerBégndifThese
discoveries along with similar findings suggested that genomenggments might play an
important role in genome evolution [22]. Up until 1990s, evolution was tradityoegdlained
through nucleotide-level changes in the DNA sequence. The novel intiestigbapproaches
based on comparison of gene sequences, were pioneered by David Sankofbe[8#he
rearrangements in comparison to point mutations, are rare eventsvefipwiegey can
accumulate over time, prompting a clear distinction between theogéees of the original and
evolved genomes [36]. As a result, the similarity between the gdeesasf two species can
reveal their proximity to each other. Thus, genome rearrangemeras gobd phylogenetic
markers. Definitely, combinatorial problems posed by genome rearrangetrave attracted

significant interest over the years.

There are several biological problems that can be treatéd mathematical methods. In
[2,4,12-15,20,24,26,30,33,40,42-49] you can see some mathematical methods as graphical and
numerical representations for similarity analysis of DNussces. Recent advances in rapid,
low-cost sequencing have opened up the opportunity to study complete geqoereces. The
computational approach of multiple genome alignment allows investigatievotftionarily
related genomes in an integrated fashion, providing a basis for doamsrelyses such as
rearrangement studies and phylogenetic inference [19]. As an\edfeubdeling, analysis and
computational tool, graph theory is widely used in biological mattiesi® deal with various
biology problems like sequence comparisultiple genome sequence alignment is an
indispensable tool for comparing genomes and finding their shastediés. In bioinformatics,

a sequence alignment is a way of arranging the sequences of DNA oRpitein to identify
regions of similarity that may be a consequence of functional, stalictur evolutionary
relationships between the sequences. Sequence alignment try to uhoma@bpgies by
assigning sequence positions to each other. A breakpoint is definedsasralali region or
point where one or more sequences have altered from the other ssquBEne genome
rearrangement describes the one or more breakpoints which make upctaratrand
evolutional variant. Evolutionary events are often classified amall changes and large
structural changes. Small changes work on only one or few sequence pediicménclude
substitutions, insertions, and deletions. They do not influence the ordeyuEirge positions,
and thus can be captured by collinear alignment. Structural changegeihwmodier genomic
segments, thereby working on the structure and order of genomic sequengésclide non-

collinear changes like inversions, translocations and duplicatioriliticen to insertions and
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deletions of longer segments. The aim of genome rearrangememvestigate the order of
homologous segments and infer genomic distances based on the nurhbsakebints or

predict scenarios of evolutionary changes.

These investigations often employ graphs such as breakpoint graphs [1,3,18k¢nalble
graph data structures used for genome alignment. Graphs can rassipraving genome
comparison through multiple alignments and analysis of rearrangemendklitiorg graphs
provide an intuitive representation of similarities and changesebetvgenomes, and so
visualize alignment structures. In comparison to tabular aligtsngenome alignment graphs
are more versatile insofar that it is possible to model caltiraxd non-collinear changes
without the need of choosing a reference genome [19]. The earliestgthplalignment graph
which has been proposed by Kececioglu in 1993 [17]. The alignment graph defined for
collinear multiple alignment and this graph contains a vertex fdr saquence character and
edges for aligned characters. The alignment graph has been useduns varsions [8,34,35].
In all versions, a collinear alignment can be obtained fromlitpenaent graph by solving the
maximum weight trace problem. In 2004, Pevztel. [31] introduced A-Bruijn graphs as a
generalization of de Bruijn graphs [32] which often use for genome sengend fragment
assembly. The structure of A-Bruijn graphs revisits an idealyorigEntioned by Kececioglu
[17], the idea of merging aligned vertices. A-Bruijn graphs have onexviar sets of aligned
positions, and edges represent sequence adjacencies. In 2008, anothegbagin presented
which named the Enredo graph [2Bhredo graphs which applied for collinear alignments of
segments, have two vertices per set of aligned segments, angeadadl vertex, resembling
breakpoint graphs from rearrangement studies. The Enredo methdivetgraliminates
various substructures from the Enredo graph before deriving a final gesegmentation.
Also, Pateret al. [27,28] introduced a cactus graph model structure as a dissimafzr which
has vertices for adjacencies and edges for genome segmentstriictires has two valuable
properties. The cactus property subdivides the graph (and genomesjlagendent units by
ensuring that any edge is part of at most one simple cycle. The ggopedty is the existence
of an Eulerian circuit. This circuit traverses all genoegnsents exactly once, even duplicated
segments, conveniently providing a consensus genome.

In this paper, we present a new graph-based genome alignment appiiogcbonsept of
outerplanar graph and properties of this graph. Comparing with tradigibbgrament matrix or
partial order alignment graph, in common with A-Bruijn and Cactuphgaour model is
flexible by classification non-collinear structural changes iikersion, translocations and
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duplications as well as collinear changes like insertion alediaie But in addition, our model
provides a unique circular visualization to simplify the study of @ianary relationships
between aligned genomes. Also, in the line graph approach we caorgeti@ Eulerian path
in our representation. This rearrangement model can be use in etionmltanalysis of cancer
genomic data and other chromosomal aberrations. Then inspiring bgrivaiorithm [16],

we present a dynamic programing method for a gapped local alignmentbitearyasequence
to a pan-genome reference which is encoded as our graphicalstradglre. This alignment

can be used for finding a special pattern in a pan-genome reference.

2. Genome alignment with outer planar graph structure

In this section, at first, we give a brief review aboutdaénition and properties of outerplanar
graphs. Outerplanar graphs occur for the first time in the tiiteydn Harary’s classical book

[9]. In graph theory, a graph is outerplanar if it can be embedded iahe such that all
vertices lie on the outerface boundary. An edge of an outerplane gregdledschord, if it is

not incident with the outerface. A maximal connected subgraph of ph grds called a
component of; and a cutvertex of a component is a vertex such that the compotismtwi
this vertex is not connected. A graphis called biconnected ifG| > 2 andG — {u} be
connected for every vertak € G. The outerplanar graphs are a subset of the planar graphs,
the subgraphs of series-parallel graphs, and the circle grdphmaximal outerplanar graphs,
those to which no more edges can be added while preserving outerplamarédiso chordal

graphs and visibility graphs.

In the following, we bring some useful theorems related to outerpigaph which we need

them in this paper.

Theorem 2.1. [9] A graphG is outerplanar if and only if it contains no induced subgraph

isomorphic toK, orK, ;.
Theorem 2.2. [9] A biconnected outerplanar graph contains a unique Hamiltonian cycle.
Theorem 2.3. [9] Every maximal outerplanar graph of order at least 3 is biconnected.

Now, we describe the construction of outerplanar graph model structure for gentamic da
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LetS be the set of input whole genome sequences, we can assume thptitiseduences be
either linear or circular sequences. Mathematically, a sequencs a string (likely circular)

of symbols taken from an alphabet set.

The whole genome base pairs alphabet 4et/%,T /A, C /G, G/C} and using sings according
to oriented reverse complement, we hayjf = — T/A andC/G = —G/C.

Our graph-based model will cover both types of rearrangements whigxpi@n in the
following:

1. Balanced rearrangements. This case of rearrangements changes the

chromosomal gene order but does not remove or duplicate any of the DNA of the

chromosomes. The two simple classes of balanced rearrangesmeritssersions and
translocations. An inversionis a rearrangement in which an interrgthese of
a chromosome has been broken twice, flipped 180 degrees, and rejoined.ckataonsis
a rearrangement in which acentric fragments of two non-homologous a$womas trade
places. Note that, for both inversions and translocations, no chroralbsaterial is gained
or lost. There is simply a change in the relative locations of gemebe rearranged
chromosomes.

2. Imbalanced rearrangements: This case of rearrangements changes the gene dosage of a

part of the affected chromosomes, such as the loss of one copyaaiditien of an extra
copy of a segment of a chromosome which can disrupt normal gene bdlaecevo
simple classes of imbalanced rearrangements are duplicatiods deletions. A
duplication is a repetition of a segment of a chromosome and theofopart of

chromosome is called deletion. See Figure 1.
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Figure 1. Different aberrations in structure of chromosome

To represent the common structure between homotogegments in a set of whole genome
sequences, we define the conceptAignment-set as follows:

"Alignment-set is a set of maximal homologous segments with maklength and denoted
by A-set. The size dfA-set' is the number of aligned segments.

Note that eacl-set may contain multiple segments of the samemenehen there is some
duplication in a genome. Also onéset has two equivalent representations, in the first
representation, some segments are in the forwaedtation and some may be in the reverse
complemented orientation. In the second repredentall segments which are in the forward
orientation in the first representation are in tegerse complemented orientation and all
segments which are in the reverse complementedtatien in the first representation are in
the forward orientation. The essential informatadiout possible inversions is the orientation
of segments with respect to each other and nobtieatation of thed-set representation. In

Figure 2, an example of afiset in two representations is shown.
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Figure 2. Two equivalent representationsAfket

We denote all of thel-sets of genomé& by X which is the input for building a genome
alignment graph. Note th&} includes allA-sets of size one and all pairsdtets have to be

non-overlapping.

Two A-setsagy, g, € X are adjacent if there exist tveegments , € o;, ands, € g, which

are adjacent. The adjacensydefined by the set of positions.

In fact, assume that = (p,, q;) ands, = (p,, q,) Wherep,, g, andp,, q, are referred to

the first and end positions of segmentand s,, with g, = p,, thens; and s, are adjacent.

Sinceall A-sets have two orientations, there may beaufotrr differentadjacencies between
two A-sets. It means the head/tailgfcan beadjacent to the head/tail af. Each of the four

adjacencies is defined by a set of adjacgragitions between segments from the two A-sets.

An adjacency of twal-setsoy, 0, € X is called a “breakpoint” if they are adjacent flemst
two segments but not in all their segments. A bpeak is defined as a region or point where
the sample sequence has altered from the refermempueence. The genome rearrangement
describes the one or more breakpoints which malke stpuctural variant. More formally, let

s 1€ g1, ands, € g, be two adjacent segments with= (p;, q;) ands, = (p,, q,) and let

P2 = qq1, then,s; and s, define a breakpoint if there is a segmgn& (p1, q1) € oy with for

which no segment, = (p3, q3) € o, with exists wherg; = p;. So in a breakpoint adjacency,
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the set of adjacency positions is smaller thansthe of theA-set. In Figure 3 is shown an

example of 4 breakpoints in multiple alignment cfegjuences.

Breakpoint
ACT
ACT | LY /‘

Breakpoint

Figure 3. Breakpoints in multiple alignment

The biconnected outerplanar graphis built in fourth steps:

1. Atfirst we construct a grapf which everyA-set is a vertex of and there is an edge
between twal-sets if there adjacency between two segmentsai.tin fact, the graph
G is an adjacency graph. As an example. Sincedeset may contain more than one
segment from the same genome, e&daet can be adjacent to itself and also there may

be multiple edges between two vertices.

2. Using pDFSAlgorithm [6], we compute biconnected components oSince in [9]
has shown that a graph is outerplanar if and ohigvery one of its biconnected
components is outerplanar, we restrict the outagslty to biconnected subgraphs. In
[23] a conceptually simple algorithm is presentedétermine if a graph is a maximal
outerplanar or outerplanar graph. The algorithdnisar in the number of vertices. It
relies on the fact that a maximal outerplanar gragb a unique Hamiltonian cycle
which forms the outer face, the remainder of thepbris a triangulation of this cycle.
So we apply MOP-TESZAlgorithm [23] to recognize outerplanar and non-
outerplanar subgraphs of . If all of the conneatethponents of; are outerplanar
graphs, then we do not need to third step and weskip that. But if there is one or

more non-outerplanar components, they contain soimers isomorphic td{, orK, 5 .
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3. By merging two adjacency-connected verticepfminors and two non-adjacency
vertices of K, ; minors, we form graplé to an outerplanar gragh. It is shown in

Figure 5 and 6.

4. Finally, to make our graph biconnected, we neeghadée it bridgeless. In the second
step, if there is any bridge as a biconnected corep we easily merge vertices of that

bridge just like you see in Figure 7.

ATCGT

ATC ATCGT

ATC
ATC

Figure 4. The graphG according to 3 sequences ATCGGTTGGGATCGT (Red),
ATCAGGATGATCGT (Green) and ATCTGGCCATAGG (Blue)

D

Figure5. The original graplk, (left) and after merge two vertices (right)
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Figure 6. The original graphk, ; (left) and after merge two adjacent vertices (fight

Figure 7. A non-biconnected graph (a) and after merge ttdgbr{b)

To show a circular visualization of this model, ean usedlgorithm 1 in [38]. Input should
be a biconnected outerplanar graph and output wweila circular drawin@ of G; such that
each node iV lies on the periphery of a single embedding cir€lee time complexity of
Algorithm 1 [38] is O(m), where m is the number of edgessin

If the biconnected graph given Hgorithm 1 [38] is outerplanar then the result will be a

circular visualization such that no two edges crd$ss technique has been inspired by the
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algorithm for recognizing outerplanar graphs presented in [7]. By thatabef of outerplanar
graphs, we know that there exists a plane circular drawing for any outerplanar graph. Also, by
that same definition we know that a graph which is not outerplanar rdmieadmit a plane
circular drawing. In fact, the set of biconnected graphs which mayavendn a circular
fashion without any crossings is exactly the set of biconnected @narpgraphs. The
requirement of placing all nodes on the periphery of some embedding isiefuivalent to
placing all nodes on a single face of some embedding. Furthermorezeifoecrossing
visualization exists for a biconnected graph, then that drawing caubé byAlgorithm 1

[38].

As we mentioned in the previous section, one of important propertieis ofi¢thod is that any
biconnected outerplanar graph contains a uniqgue Hamiltonian eyitd can be found in
linear time. We close this section by another interesting propethisomethod which show
that there is a unique permutation of vertices which give us a fte@ssircular visualization

of our outerplanar graph data structure model.

Theorem 2.4. [38] There exists only one clockwise ordering of the nodes in a bicmthec
outerplanar grapt& such that the drawing af with the nodes in that order around the

embedding circle is plane.

3. Lineouterplanar graph structure

In this section, we would like to present another approach to describmgesarrangements
by concept of line outerplanar graph and finally will compare this metfiibdthe previous
one.In Graph theory, the Line graph(G) of undirected grapl@ is another graph that
represents the adjacencies between the edgesTdfe Line graph is defined as follows:

The Line graph [11] ofG denoted by.(G) is the intersection graph of the edgesGof
representing each edge by the set of its two end vertices. Invattes,L(G) is a graph such
that each vertex df(G) represents an edge ®@fandTwo vertices af(G) are adjacent if their
corresponding edges share a common end poiht in

In this method, we start with gragh which we have mentioned it is a biconnected outerplanar
graph with a Hamiltonian cycle which passes evéfget just once. So we are going to
construct a new grapti, which the Line graph of this graph, is isomorphismG{o This
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approach is inspired by Pevsner’s approach [32] for fragment asseriniglyDasbruijn graphs.
We need the following theorems to prove tfiats Eulerian.

Theorem 3.1. [41] Let G be a non-outerplanar graph, thgi) is also non-outerplanar.

Theorem 3.2. [10] Let H be the line graph af, then there is an Eulerian path/circuitGnf
and only if there is a Hamiltonian path/circuitdn

Our new graplg, is built in the following steps:

1. LetC be the set of all adjacencies of segments. The veltioé6, will be a pairwisely
disjoint subset of” and the edgeg of G, representd-sets. It's like block edges in
Enredo graph [6]. We consider eattset, as an undirected edge= u, v which the
endpointu € V of e represents a subset of adjacenciesCirthat contains all
adjacencies at one end@fand the other endpoint € V contains all adjacencies at
the other end of. It is possible that = v.

Easily one can see that each maximal componert which includes vertices
connected only by adjacency edges is considered as a vertex in thisapwbgr
ignoring all the A-setswhich were defined as edgesdp.

2. According to the collapsed vertices ®f, we do similar collapses for some edges in
graphG, corresponded to those vertices.

In 2015, Liu [21] presented a new and efficient algoriththJGRA”, for inverse line graph
construction. Given a line grapH, ILIGRA constructs its root graph G with the time
complexity being linear in the number of nodes in H. uHIlGRA Algorithm and considering
G, as input, easily we can compute the gréphvhichL(G,) = G;.

Corallary 3.1. The graphG, is an Eulerian Outerplanar graph.

Proof. By ILIGRA Algorithm, itis known thaL(G,) = G;. If G, is a non-outerplanar graph,
according to Theorem 3.L(G,) should be non-outerplanar too, iBytis an outerplanar graph,
theng, is outerplanar too. Als6; has a unique Hamiltonian cycle and using Theorem 3.2, we
find thatG, is an Eulerian graph with a unique Eulerian cycle. ]

Comparing with pervious approach, here we do not missiesst, it means that we consider
all of aligned segment in our path of circuit.
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4. Gapped alignment on outer planar graph structure

In this section, as an application of outerplanar model structur@resent a gapped local
alignment model which is shifting from focusing on a single refergaoeme to using a ‘pan-
genome’, that is, a representation of all genomic content in arceptacies or phylogenetic
clade.

Let’'s consider the alignment of an arbitrary sequence to a pan-gerefetence which is
encoded as an outerplanar graph. Our goal is to compute an alignnieninpiutt sequence to
a path in the outerplanar graph having maximum alignment score amepathalin the graph.
We consider gapped alignments where the gaps could be affine, linear or constant.

In the following inspiring by the method of V-Align Algorithm [16], we defia dynamic
programing formulation that would allow us to find optimal alignments.

According to substitution matrix for local alignment [39], for eaelse paira andb in the
alphabet set ofA/T,T/A,C/G,G/C}, lets(a, b) denote the substitution score betweaesnd

b. Let A(k) denote the penalty for a k length gap, it can be an affine, lineeonstant gap
and4(0) = 0 by definition. We assume that; is the biconnected outerplanar graph which
the vertices are A-sets Sfand we define grapf’; derived fromG, as follows:

For each vertexr in Gy, sinceseX is anA-set, we can show the vertexy o = (v, ... vy)),
which eachy; is an aligned base pairs, fb< i < (o) andl(o) is the length ofi-seta. We
denoteX’ = Uges {71, -, Vi) } @s the set of vertices 6f; and Clearlyi2’| = ¥,ez(1(0)).
InG'y, there exists an edge betwegnandv; if j=i+1, foralloeX and1<i <1(0).
Also, if there is an edge betweermnds’ in G';, then there is an edge between the last aligned
base pairs of and the first aligned base pairsoof

For two vertices’;, ', in G'4, letd', (¢'1,0',) denote the minimum number of edges on any
path fromo’;, toa’, in G';.

Letx = (x,...,x)) bethe input sequence of lengf) , andM denote the scoring matrix
of size|2'| x (I(x) + 1), whereM(¢',j) is the entry fore’e2’ and 1 <i < I(x)Then we
define scoring matri¥, using the following recurrence relation tf{(c’, j) forall 1 <j <

mando’eX’.



-504-

M(c',j—k)—A4A(k), forall 1<k <j
M(c',j) = Max { M(a{,j — 1) + s(0'5%,) — A(d'1(0"5,6")), for all (¢'1,0';)eE(G'y)

0
The entryM (o’, j) stores the maximum score for aligning the subsequence.(. ,x;) from
the sequence = (x,, . . . ,x;) to any path ending at vertex in G';. The first term of the
above formula corresponds to an alignment hakiggps in the end due to the deletion of the
last k elements obq, . . . ,x;). The second term corresponds to aligningp an intermediate
a', in the path followed by gaps due to the deletion of the remaining path, lengsie is no
more thard’, (¢’,, ¢") for an optimal alignment. And the third term, always is considered f
local alignment.

In the same manner, we know thGj is the biconnected outerplanar graph which the edges
areA-sets (section 3) and we define graph derived fromG, as follows:

For each edge in G,, sinceseX is anA-set, we can show the edgedy o = (ey, ... &),
which eacke; is an aligned base pairs, fb< i < I(¢) andl(o) is the length of A-set. We
denoteZ’ = Ugex {€1, -, €1y} s the set of edges 6f, and Clearly|Z'| = Yyex(1(0)).
InG',, there exists a vertex betweenande; if j=i+1, foralloeX and1<i <1(0).
Also, if there is a vertex between edgesnda’ in G',, then there is a vertex between the edges
corresponding to last aligned base pairs ahd the first aligned base pairsoof

For two edges’;, o', inG',, letd', ("4, 0';) denote the minimum number of vertices between
edges’; and edge’, in G',.

Now, letx = (xy,...,%,x)) be the input sequence of leng(l), andM'is denoted as scoring
matrix of size |2’ | x (I(x) + 1), where M'(¢’,j) is the entry fora’eX’ and 1 <i <
1(x). Then we define scoring matrit’, using the following recurrence relation dfi(c’, j)
for1 <j<m andog’'eX’.
M'(a',j—k)—Ak), forall 1<k <j
M'(d',j)= Max {M'(d'y,j — 1) + s(0’2x;) —A(d'3(a'3,0"), forall (0’1, 0'2)eV(G',)
0
Similarly, the entryM’(o”, j) stores the maximum score to align the subsequence.(. ,x;)

from the sequence = (x4, . . . ,x;) to any path ending at edgéin G’,. The first term of the
mentioned max expression corresponds to an alignment hiagags in the end due to the
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deletion of the lask elements ofX;, . . . ,x;). The second term corresponds to alignipgp
an intermediate’, in the path followed by gaps due to the deletion of the remaining path,
whose length is no more thdf,(¢’,, o) for an optimal alignment.

As we mentioned above, each matrix was presented as a scotingfardocal alignment of
an input sequence on an outerplanar graph as a graphical model ejenpare reference to
find most similar regions between a sequence and the pan-genore@cefer to match an
input query with a pan-genome reference which is encoded as an anéergiaph. Easily,
with removing the third term in the above matrices, one can perfoendtto-end alignment
or so-called global alignment to compare an input sequence withgepame reference which
encoded as an outerplanar graph, along their entire length and target andpping between
all positions in the sequence and the pan-genome reference.

5. Conclusion

Genome rearrangements problem consists of finding the evolution betyeg®mes by
solving a combinatorial puzzle to find the shortest sequence of mgaments that can
transform each genome into another. In this problem, as inputcd gehomes is provided
where each genome is defined by the order of genes along the chromoasotiis paper, we
described a new graph theoretical data structure as a gepamangement model which
represents and analyses repeat segments in a set of related gegbommethod determines
an outer planar graph model for multiple alignment of whole genemgeesces. Also, this
graph representation provides a circular visualization to simghlgystudy of evolutionary
relationships between aligned genomes. Comparing with traditionatredignmatrix or partial
order alignment graph, our model is more flexible by classificationcoimear structural
changes like inversion, translocations and duplications as wetbllisear changes like
insertion and deletion. This rearrangement model can be use in ctiomaltanalysis of
cancer genomic data and other chromosomal aberrations. Also, ventptest dynamic
programing method for gapped local alignment of an arbitrary sequenceao-genome
reference which is encoded as our graphical model structurealigfpment can be used for
finding a special pattern in a pan-genome reference.
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