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1. Introduction 

The analysis of genome rearrangements has started from 1983, when Dobzhansky and 

Sturtevant [5] observed that the evolution of certain Drosophila species could be explained 

using a sequence of reversals. In 1988, Jeffrey Palmer [25] observed some interesting patterns 

in the evolution of plant organelles and he compared the mitochondrial genomes of cabbages 

and turnips. About 99.9% of the genes were identical in both the genomes. However, it was 
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The computational study of genome rearrangements is one of the most important research 
area in computational biology and bioinformatics. In this paper, we define a novel graph data 
structure as a rearrangement model for whole genome alignment in large scales. This model 
is capable of realizing non-collinear changes as well as collinear changes. Also we apply our 
rearrangement graphical model to present a dynamic programing method for alignment of 
an arbitrary sequence to a pan-genome reference which is encoded as an outerplanar graph. 
In this method, a gapped alignment is considered where the gaps could be affine, linear or 
constant. 
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noted that the gene orders of both these vegetables were considerably different. These 

discoveries along with similar findings suggested that genome rearrangements might play an 

important role in genome evolution [22]. Up until 1990s, evolution was traditionally explained 

through nucleotide-level changes in the DNA sequence. The novel investigation of approaches 

based on comparison of gene sequences, were pioneered by David Sankoff  [37]. Genome 

rearrangements in comparison to point mutations, are rare events. However, they can 

accumulate over time, prompting a clear distinction between the gene orders of the original and 

evolved genomes [36]. As a result, the similarity between the gene orders of two species can 

reveal their proximity to each other. Thus, genome rearrangements act as good phylogenetic 

markers. Definitely, combinatorial problems posed by genome rearrangements have attracted 

significant interest over the years. 

There are several biological problems that can be treated with mathematical methods. In 

[2,4,12-15,20,24,26,30,33,40,42-49] you can see some mathematical methods as graphical and 

numerical representations for similarity analysis of DNA sequences. Recent advances in rapid, 

low-cost sequencing have opened up the opportunity to study complete genome sequences. The 

computational approach of multiple genome alignment allows investigation of evolutionarily 

related genomes in an integrated fashion, providing a basis for downstream analyses such as 

rearrangement studies and phylogenetic inference [19]. As an effective modeling, analysis and 

computational tool, graph theory is widely used in biological mathematics to deal with various 

biology problems like sequence comparison. Multiple genome sequence alignment is an 

indispensable tool for comparing genomes and finding their shared histories. In bioinformatics, 

a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify 

regions of similarity that may be a consequence of functional, structural, or evolutionary 

relationships between the sequences. Sequence alignment try to uncover homologies by 

assigning sequence positions to each other. A breakpoint is defined as a dissimilar region or 

point where one or more sequences have altered from the other sequences. The genome 

rearrangement describes the one or more breakpoints which make up a structural and 

evolutional variant. Evolutionary events are often classified into small changes and large 

structural changes. Small changes work on only one or few sequence positions which include 

substitutions, insertions, and deletions. They do not influence the order of sequence positions, 

and thus can be captured by collinear alignment. Structural changes involve longer genomic 

segments, thereby working on the structure and order of genomic sequences. They include non-

collinear changes like inversions, translocations and duplications in addition to insertions and 
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deletions of longer segments. The aim of genome rearrangement is to investigate the order of 

homologous segments and infer genomic distances based on the number of breakpoints or 

predict scenarios of evolutionary changes.  

These investigations often employ graphs such as breakpoint graphs [1,3,18] that resemble 

graph data structures used for genome alignment. Graphs can assist in improving genome 

comparison through multiple alignments and analysis of rearrangements. In addition, graphs 

provide an intuitive representation of similarities and changes between genomes, and so 

visualize alignment structures. In comparison to tabular alignments, genome alignment graphs 

are more versatile insofar that it is possible to model collinear and non-collinear changes 

without the need of choosing a reference genome [19]. The earliest graph is the alignment graph 

which has been proposed by Kececioglu in 1993 [17]. The alignment graph defined for 

collinear multiple alignment and this graph contains a vertex for each sequence character and 

edges for aligned characters. The alignment graph has been used in various versions [8,34,35]. 

In all versions, a collinear alignment can be obtained from the alignment graph by solving the 

maximum weight trace problem. In 2004, Pevzner et al. [31] introduced A-Bruijn graphs as a 

generalization of de Bruijn graphs [32] which often use for genome sequencing and fragment 

assembly. The structure of A-Bruijn graphs revisits an idea briefly mentioned by Kececioglu 

[17], the idea of merging aligned vertices. A-Bruijn graphs have one vertex for sets of aligned 

positions, and edges represent sequence adjacencies. In 2008, another graph has been presented 

which named the Enredo graph [29]. Enredo graphs which applied for collinear alignments of 

segments, have two vertices per set of aligned segments, a head and a tail vertex, resembling 

breakpoint graphs from rearrangement studies. The Enredo method iteratively eliminates 

various substructures from the Enredo graph before deriving a final genome segmentation. 

Also, Paten et al. [27,28] introduced a cactus graph model structure as a dissimilar graph which 

has vertices for adjacencies and edges for genome segments. Their structure has two valuable 

properties. The cactus property subdivides the graph (and genomes) into independent units by 

ensuring that any edge is part of at most one simple cycle. The second property is the existence 

of an Eulerian circuit. This circuit traverses all genome segments exactly once, even duplicated 

segments, conveniently providing a consensus genome. 

In this paper, we present a new graph-based genome alignment approach using concept of 

outerplanar graph and properties of this graph. Comparing with traditional alignment matrix or 

partial order alignment graph, in common with A-Bruijn and Cactus graphs, our model is 

flexible by classification non-collinear structural changes like inversion, translocations and 
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duplications as well as collinear changes like insertion and deletion. But in addition, our model 

provides a unique circular visualization to simplify the study of evolutionary relationships 

between aligned genomes. Also, in the line graph approach we can get a unique Eulerian path 

in our representation. This rearrangement model can be use in computational analysis of cancer 

genomic data and other chromosomal aberrations. Then inspiring by V-align algorithm [16], 

we present a dynamic programing method for a gapped local alignment of an arbitrary sequence 

to a pan-genome reference which is encoded as our graphical model structure. This alignment 

can be used for finding a special pattern in a pan-genome reference. 

 
2. Genome alignment with outerplanar graph structure 

In this section, at first, we give a brief review about the definition and properties of outerplanar 

graphs. Outerplanar graphs occur for the first time in the literature in Harary’s classical book 

[9]. In graph theory, a graph is outerplanar if it can be embedded in the plane such that all 

vertices lie on the outerface boundary. An edge of an outerplane graph is called chord, if it is 

not incident with the outerface. A maximal connected subgraph of a graph � is called a 

component of � and a cutvertex of a component is a vertex such that the component without 

this vertex is not connected. A graph � is called biconnected if |�| 	> 	2 and � − {�} be 

connected for every vertex �	 ∈ 	�. The outerplanar graphs are a subset of the planar graphs, 

the subgraphs of series-parallel graphs, and the circle graphs. The maximal outerplanar graphs, 

those to which no more edges can be added while preserving outerplanarity, are also chordal 

graphs and visibility graphs. 

In the following, we bring some useful theorems related to outerplanar graph which we need 

them in this paper. 

Theorem 2.1. [9] A graph � is outerplanar if and only if it contains no induced subgraph 

isomorphic to  �� or	�
,�	.  
Theorem 2.2.  [9] A biconnected outerplanar graph contains a unique Hamiltonian cycle. 

Theorem 2.3.  [9] Every maximal outerplanar graph of order at least 3 is biconnected. 

Now, we describe the construction of outerplanar graph model structure for genomic data. 
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 Let �	be the set of input whole genome sequences, we can assume that the input sequences be 

either linear or circular sequences. Mathematically, a sequence is just a string (likely circular) 

of symbols taken from an alphabet set. 

The whole genome base pairs alphabet set is {�/�, �/�, �/�, �/�} and using sings according 

to oriented reverse complement, we have: �/� = −	�/� and	�/� = −�/�. 

Our graph-based model will cover both types of rearrangements which we explain in the 

following: 

 

1. Balanced rearrangements: This case of rearrangements changes the 

chromosomal gene order but does not remove or duplicate any of the DNA of the 

chromosomes. The two simple classes of balanced rearrangements are inversions and 

translocations. An inversion is a rearrangement in which an internal segment of 

a chromosome has been broken twice, flipped 180 degrees, and rejoined. A translocation is 

a rearrangement in which acentric fragments of two non-homologous chromosomes trade 

places. Note that, for both inversions and translocations, no chromosomal material is gained 

or lost. There is simply a change in the relative locations of genes on the rearranged 

chromosomes.  

 

2. Imbalanced rearrangements: This case of rearrangements changes the gene dosage of a 

part of the affected chromosomes, such as the loss of one copy or the addition of an extra 

copy of a segment of a chromosome which can disrupt normal gene balance. The two 

simple classes of imbalanced rearrangements are duplications and deletions. A 

duplication is a repetition of a segment of a chromosome and the loss of part of 

chromosome is called deletion. See Figure 1.  
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Figure 1. Different aberrations in structure of chromosome 

 

To represent the common structure between homologous segments in a set of whole genome 

sequences, we define the concept of "Alignment-set" as follows: 

"Alignment-set" is a set of maximal homologous segments with maximal length and denoted 

by �-set. The size of "�-set" is the number of aligned segments. 

Note that each �-set may contain multiple segments of the same genome when there is some 

duplication in a genome. Also one �-set has two equivalent representations, in the first 

representation, some segments are in the forward orientation and some may be in the reverse 

complemented orientation. In the second representation all segments which are in the forward 

orientation in the first representation are in the reverse complemented orientation and all 

segments which are in the reverse complemented orientation in the first representation are in 

the forward orientation. The essential information about possible inversions is the orientation 

of segments with respect to each other and not the orientation of the �-set representation. In 

Figure 2, an example of an �-set in two representations is shown. 
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Figure 2. Two equivalent representations of �-set 

 

We denote all of the �-sets of genome � by �� which is the input for building a genome 

alignment graph. Note that	�� includes all �-sets of size one and all pairs of �-sets have to be 

non-overlapping. 

Two �-sets ��, �
 ∈ �� are adjacent if there exist two segments �	�∈ ��,  and �
 ∈ �
 which 

are adjacent. The adjacency is defined by the set of positions.  

In fact, assume that �� 	= 	 ���, 	��� and �
 	= 	 ��
, 	�
�  where ��, 	��	and �
, 	�
	are referred to 

the first and end positions of segments	��	 !"	�
, with 	�� = �
, then ��	 !"	�
	are adjacent. 

Since all A-sets have two orientations, there may be up to four different adjacencies between 

two A-sets. It means the head/tail of �� can be adjacent to the head/tail of �
. Each of the four 

adjacencies is defined by a set of adjacency positions between segments from the two A-sets. 

An adjacency of two �-sets ��, �
 ∈ �� is called a “breakpoint” if they are adjacent in at least 

two segments but not in all their segments. A breakpoint is defined as a region or point where 

the sample sequence has altered from the reference sequence. The genome rearrangement 

describes the one or more breakpoints which make up a structural variant. More formally, let 

�	�∈ ��,  and �
 ∈ �
	be two adjacent segments with �� = ���, 	��� and �
 	= 	 ��
, 	�
�  and  let 

�
 = 	��, then, ��	 !"	�
	define a breakpoint if there is a segment ��# = ���# , ��# �  ∈ �� with for 

which no segment �
# = ��
# , �
# � ∈ �
 with exists where ��# = �
# . So in a breakpoint adjacency, 
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the set of adjacency positions is smaller than the size of the �-set. In Figure 3 is shown an 

example of 4 breakpoints in multiple alignment of 3 sequences.  

 

Figure 3. Breakpoints in multiple alignment 

 

 

The biconnected outerplanar graph �� is built in fourth steps: 

1. At first we construct a graph � which every �-set is a vertex of � and there is an edge 

between two �-sets if there adjacency between two segments of them. In fact, the graph 

� is an adjacency graph. As an example. Since one �-set may contain more than one 

segment from the same genome, each �-set can be adjacent to itself and also there may 

be multiple edges between two vertices. 

 

2. Using pDFS �$%&'()*+ [6], we compute biconnected components of �. Since in [9] 

has shown that a graph is outerplanar if and only if every one of its biconnected 

components is outerplanar, we restrict the outerplanarity to biconnected subgraphs. In 

[23] a conceptually simple algorithm is presented to determine if a graph is a maximal 

outerplanar or outerplanar graph. The algorithm is linear in the number of vertices. It 

relies on the fact that a maximal outerplanar graph has a unique Hamiltonian cycle 

which forms the outer face, the remainder of the graph is a triangulation of this cycle.  

So we apply MOP-TEST	�$%&'()*+	[23] to recognize outerplanar and non-

outerplanar subgraphs of . If all of the connected components of � are outerplanar 

graphs, then we do not need to third step and we can skip that. But if there is one or 

more non-outerplanar components, they contain some minors isomorphic to  �� or	�
,�	.  
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3. By merging two adjacency-connected vertices of �� minors and two non-adjacency 

vertices of 	�
,�	minors, we form graph �	 to an outerplanar graph	��. It is shown in 

Figure 5 and 6. 

 

4. Finally, to make our graph biconnected, we need to make it bridgeless. In the second 

step, if there is any bridge as a biconnected component, we easily merge vertices of that 

bridge just like you see in Figure 7.  

 
 

 

Figure 4. The graph � according to 3 sequences ATCGGTTGGGATCGT (Red), 

ATCAGGATGATCGT (Green) and ATCTGGCCATAGG (Blue) 

 

 

                     

Figure 5. The original graph �� (left) and after merge two vertices (right) 
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Figure 6. The original graph 	�
,�		(left) and after merge two adjacent vertices (right) 

 

 

 

Figure 7. A non-biconnected graph (a) and after merge the bridge (b) 

 

To show a circular visualization of this model, we can use �$%&'()*+	1 in [38]. Input should 

be a biconnected outerplanar graph and output would be a circular drawing - of ��  such that 

each node in . lies on the periphery of a single embedding circle. The time complexity of 

�$%&'()*+	1 [38] is /�+�, where m is the number of edges in ��. 

If the biconnected graph given to �$%&'()*+	1 [38] is outerplanar then the result will be a 

circular visualization such that no two edges cross. This technique has been inspired by the 

(a) 

(b) 
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algorithm for recognizing outerplanar graphs presented in [7]. By the definition of outerplanar 

graphs, we know that there exists a plane circular drawing for any outerplanar graph. Also, by 

that same definition we know that a graph which is not outerplanar does not admit a plane 

circular drawing. In fact, the set of biconnected graphs which may be drawn in a circular 

fashion without any crossings is exactly the set of biconnected outerplanar graphs. The 

requirement of placing all nodes on the periphery of some embedding circle is equivalent to 

placing all nodes on a single face of some embedding. Furthermore, if a zero-crossing 

visualization exists for a biconnected graph, then that drawing can be found by �$%&'()*+	1 

[38].  

As we mentioned in the previous section, one of important properties of this method is that any 

biconnected outerplanar graph contains a unique Hamiltonian cycle which can be found in 

linear time. We close this section by another interesting property of this method which show 

that there is a unique permutation of vertices which give us a cross-free circular visualization 

of our outerplanar graph data structure model. 

Theorem 2.4. [38] There exists only one clockwise ordering of the nodes in a biconnected 

outerplanar graph � such that the drawing of � with the nodes in that order around the 

embedding circle is plane. 

 

3. Line outerplanar graph structure 

In this section, we would like to present another approach to describe genome rearrangements 

by concept of line outerplanar graph and finally will compare this method with the previous 

one. In Graph theory, the Line graph 0��� of undirected graph �	is another graph that 

represents the adjacencies between the edges of �. The Line graph is defined as follows: 

The Line graph [11] of � denoted by	0��� is the intersection graph of the edges of �, 

representing each edge by the set of its two end vertices. In other words, 0��� is a graph such 

that each vertex of 0��� represents an edge of � andTwo vertices of 0��� are adjacent if their 

corresponding edges share a common end point in �. 

In this method, we start with graph ��	which we have mentioned it is a biconnected outerplanar 

graph with a Hamiltonian cycle which passes every �-set just once. So we are going to 

construct a new graph �
	which the Line graph of this graph, is isomorphism to ��. This 
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approach is inspired by Pevsner’s approach [32] for fragment assembly using De-bruijn graphs. 

We need the following theorems to prove that �
	is Eulerian.  

Theorem 3.1. [41] Let �	be a non-outerplanar graph, then 0��� is also non-outerplanar. 

Theorem 3.2. [10] Let 1 be the line graph of �, then there is an Eulerian path/circuit in � if 

and only if there is a Hamiltonian path/circuit in 1. 

Our new graph �
 is built in the following steps: 

1. Let �	be the set of all adjacencies of segments. The vertices . of �
  will be a pairwisely 

disjoint subset of �	and the edges 2 of �
 represent �-sets. It’s like block edges in 

Enredo graph [6]. We consider each �-set, as an undirected edge 3	 = 	�, 4 which the 

endpoint �	 ∈ 	. of 3 represents a subset of adjacencies in � that contains all 

adjacencies at one end of 3, and the other endpoint 4	 ∈ 	. contains all adjacencies at 

the other end of 3. It is possible that �	 = 	4. 

Easily one can see that each maximal component in � which includes vertices 

connected only by adjacency edges is considered as a vertex in this new graph by 

ignoring all the  �-sets	which were defined as edges in �
. 

2. According to the collapsed vertices of ��, we do similar collapses for some edges in 

graph �
	corresponded to those vertices.  

In 2015, Liu [21] presented a new and efficient algorithm, “ILIGRA”, for inverse line graph 

construction. Given a line graph 1, ILIGRA constructs its root graph G with the time 

complexity being linear in the number of nodes in H. using ILIGRA �$%&'()*+ and considering 

�� as input, easily we can compute the graph G
 which 0��
� 	= 	��. 
Corollary 3.1. The graph �
 is an Eulerian Outerplanar graph.  

Proof. By ILIGRA �$%&'()*+, it is known that 0��
� 	= 	��. If �
 is a non-outerplanar graph, 

according to Theorem 3.1, 0��
� should be non-outerplanar too, but ��	is an outerplanar graph, 

then �
	is outerplanar too. Also �� has a unique Hamiltonian cycle and using Theorem 3.2, we 

find that �
 is an Eulerian graph with a unique Eulerian cycle.                                                �                                             

Comparing with pervious approach, here we do not miss any �-set, it means that we consider 

all of aligned segment in our path of circuit.   

 

 

-592-



4. Gapped alignment on outerplanar graph structure  

In this section, as an application of outerplanar model structure, we present a gapped local 

alignment model which is shifting from focusing on a single reference genome to using a ‘pan-

genome’, that is, a representation of all genomic content in a certain species or phylogenetic 

clade. 

Let’s consider the alignment of an arbitrary sequence to a pan-genome reference which is 

encoded as an outerplanar graph. Our goal is to compute an alignment of the input sequence to 

a path in the outerplanar graph having maximum alignment score among all paths in the graph. 

We consider gapped alignments where the gaps could be affine, linear or constant.  

In the following inspiring by the method of V-Align Algorithm [16], we define a dynamic 

programing formulation that would allow us to find optimal alignments. 

According to substitution matrix for local alignment [39], for each base pairs	  and ; in the 

alphabet set of {�/�, �/�, �/�, �/�}, let �� ‚	;� denote the substitution score between   and 

;. Let =�>� denote the penalty for a k length gap, it can be an affine, linear, or constant gap 

and =�0� 	= 	0 by definition. We assume that  ��  is the biconnected outerplanar graph which 

the vertices are A-sets of � and we define graph �′� derived from ��	as follows: 

For each vertex �	in ��, since �A�	is an �-set, we can show the vertex � by � ≔ �4�, … 4D�E��, 
which each 4F is an aligned base pairs, for 1 ≤ (	 ≤ $���	and $��� is the length of �-set �. We 

denote �# =	⋃ 	I4�, … , 4D�E�J	EKL as the set of vertices of �′� and Clearly |�#| = ∑ �$����EKL . 

In	�′�, there exists an edge between 4F and 4N if  O = ( + 1, for all �A� and		1 ≤ (	 ≤ $���	. 
Also, if there is an edge between �	and	�′ in �′�, then there is an edge between the last aligned 

base pairs of �	and the first aligned base pairs of	�′.  
For two vertices	�′�, �′
 in �′�, let "′���′�, �′
� denote the minimum number of edges on any 

path from �′� to �′
 in �′�.  

Let	Q	 = 	 �Q�‚	. . . ‚QD�R��  be the input sequence of length	$�Q�	, and S denote the scoring matrix 

of size	|�#| × �$�Q� + 1�, where S��#‚	O� is the entry for �#A�#	and 	1 ≤ (	 ≤ $�Q�Then we 

define scoring matrix	S, using the following recurrence relation on S��#‚	O� for all 	1 ≤ O ≤
+	and �#A�#. 
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S��#‚	O� =  S Q	
UV
W
VX
S��#‚	O − >� − =�>�	,				Y&'	 $$		1 ≤ >	 ≤ O		S���#‚	O − 1� + 	�Z�′
‚QN[ − =�"#���#
, �′��	0

	, 			Y&'	 $$	��′�‚	�′
�A2��′�� 

The entry S��′‚	O� stores the maximum score for aligning the subsequence (Q�‚ . . . ‚QN) from 

the sequence Q	 = (Q�‚ . . . ‚QD) to any path ending at vertex �′ in �′�. The first term of the 

above formula corresponds to an alignment having > gaps in the end due to the deletion of the 

last k elements of (Q�‚ . . . ‚QN). The second term corresponds to aligning QN to an intermediate 

�′
 in the path followed by gaps due to the deletion of the remaining path, whose length is no 

more than "#���#
, �′� for an optimal alignment. And the third term, always is considered for 

local alignment.  

In the same manner, we know that  �
  is the biconnected outerplanar graph which the edges 

are �-sets (section 3) and we define graph �′
 derived from �
	as follows: 

For each edge �	in �
, since �A�	is an �-set, we can show the edge � by � ≔ �3�, … 3D�E��, 
which each 3F is an aligned base pairs, for 1 ≤ (	 ≤ $���	and $��� is the length of A-set �. We 

denote �# =	⋃ 	I3�, … , 3D�E�J	EKL as the set of edges of �′
 and Clearly |�#| = ∑ �$����EKL . 

In	�′
, there exists a vertex between 3F and 3N if  O = ( + 1, for all �A� and		1 ≤ (	 ≤ $���	. 
Also, if there is a vertex between edges �	and	�′ in �′
, then there is a vertex between the edges 

corresponding to last aligned base pairs of �	and the first aligned base pairs of	�′.  
For two edges �′�, �′
 in �′
, let "′
��′�, �′
� denote the minimum number of vertices between 

edge �′� and edge �′
 in �′
.  

Now, let Q	 = 	 �Q�‚	. . . ‚QD�R�� be the input sequence of length $�Q�, and S′is denoted as scoring 

matrix of size |�′	| × �$�Q� + 1�, where S′��′‚	O� is the entry for �′A�′		and 1 ≤ (	 ≤
$�Q�.	Then we define scoring matrix	S′, using the following recurrence relation on S′��′‚	O� 
for	1 ≤ O ≤ +	 and �′A�′. 

S′��′‚	O�=  S Q	
UV
W
VX
S′��′‚	O − >� − =�>�	,				Y&'	 $$		1 ≤ >	 ≤ O		S′��′�‚	O − 1� + 	�Z�′
‚QN[ − =�"′
��#
, �′��	0

	, 			Y&'	 $$	��′�‚	�′
�A.��′
� 

Similarly, the entry S′��′‚	O� stores the maximum score to align the subsequence (Q�‚ . . . ‚QN) 
from the sequence Q	 = (Q�‚ . . . ‚QD) to any path ending at edge �′ in �′
. The first term of the 

mentioned max expression corresponds to an alignment having > gaps in the end due to the 
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deletion of the last > elements of (Q�‚ . . . ‚QN). The second term corresponds to aligning QN to 

an intermediate �′
 in the path followed by gaps due to the deletion of the remaining path, 

whose length is no more than "′
��#
, �′� for an optimal alignment.  

As we mentioned above, each matrix was presented as a scoring matrix for local alignment of 

an input sequence on an outerplanar graph as a graphical model of a pan-genome reference to 

find most similar regions between a sequence and the pan-genome reference or to match an 

input query with a pan-genome reference which is encoded as an outerplanar graph. Easily, 

with removing the third term in the above matrices, one can perform an end-to-end alignment 

or so-called global alignment to compare an input sequence with a pan-genome reference which 

encoded as an outerplanar graph, along their entire length and to get a direct mapping between 

all positions in the sequence and the pan-genome reference. 

 

5. Conclusion  

Genome rearrangements problem consists of finding the evolution between genomes by 

solving a combinatorial puzzle to find the shortest sequence of rearrangements that can 

transform each genome into another. In this problem, as input a set of genomes is provided 

where each genome is defined by the order of genes along the chromosomes. In this paper, we 

described a new graph theoretical data structure as a genome rearrangement model which 

represents and analyses repeat segments in a set of related genomes. Our method determines 

an outer planar graph model for multiple alignment of whole genome sequences. Also, this 

graph representation provides a circular visualization to simplify the study of evolutionary 

relationships between aligned genomes. Comparing with traditional alignment matrix or partial 

order alignment graph, our model is more flexible by classification non-collinear structural 

changes like inversion, translocations and duplications as well as collinear changes like 

insertion and deletion. This rearrangement model can be use in computational analysis of 

cancer genomic data and other chromosomal aberrations. Also, we presented a dynamic 

programing method for gapped local alignment of an arbitrary sequence to a pan-genome 

reference which is encoded as our graphical model structure. This alignment can be used for 

finding a special pattern in a pan-genome reference. 
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