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Abstract

Let G(V,E) be a graph with vertex set V , |V | = n, and edge set E. In this
paper, we introduce two new polynomial irregularity measures:

IRRm(G) =
(ξ − 1)

n
+

∑
(i,j)∈E

|( diµ(di)− djµ(dj) )|

and
IRRd(G) =

(ξ − 1)

n
+

∑
(i,j)∈E

∣∣∣∣ di
µ(di)

− dj
µ(dj)

∣∣∣∣,
where di is the degree of the vertex vi ∈ V, µ(di) is the degree multiplicity of vi in the
degree sequence and ξ is the number of (different) degree values of G. The results of
two explorations: one, exhaustive, of the graph sets from 4 to 10 vertices, and other,
using AGX-III program on graphs from 11 to 30 vertices, both looking for extremal
graphs of two new polynomial irregularity measures are presented. Some discussion
on the obtained values and structures is presented. The use of AGX-III allowed us to
identify typical structures for the extremal graphs associated with these measures.
Some improvements were obtained through the variation of a parameter, with the
aid of manual graph building by using an optimal strategy. These structures we
built were of the type indicated by the heuristic. For the second measure, AGX-III
showed extremal graphs based on unigraphic sequences which generate threshold
graphs.
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1 Introduction
1.1 Objectives and content

The irregularity in graphs is a property of relatively recent study. It was motivated

by applications in different contexts as one can see in [2] and the references therein,
and particularly in chemistry, where it is a consequence of the different valences of the

chemical elements present in the graph structures associated with chemical formulas, [14].

Despite this structural motivation, the literature has shown, with a single exception - the

Albertson measure, [2] - expressions aimed at measuring the irregularity based only on

degree sequences, which leads to obtaining the same values for different graphs. Recently,

the σ irregularity index, also based on degree sequences, was introduced in [15] and some

basic properties were shown. More results on σ graph with maximal irregularity, especially

for extremal graphs can be found in [1]. The proposal discussed here, as in our previous

work, [9], [11], is based on Albertson measure. This section contains a quick discussion of

the nomenclature and the notation relevant for the work. Section 2 presents the proposed

irregularity measures. Section 3 is dedicated to the exhaustive exploration conducted on

orders 4 to 10. Section 4 presents the results obtained through AGX-III exploration, on

orders 11 to 30. Section 5 aligns some conclusions and suggestions for future research.

1.2 Nomenclature and notation
We consider, in this text, simple graphs G = (V,E) (non-oriented, without multiple edges

and without loops) where V = {vi, i = 1, ..., n} is the vertex set, E = {(vi, vj), i, j =

1, ..., n, i 6= j} is the edge set, n = |V | is the order and m = |E| is the size of G. The

theory includes other equivalent definitions. We call G(n) the set of all graphs G of order

n and G(n,m) the set of all graphs with n vertices and m edges. The degree di of a vertex

vi is the number of edges from which it participates and we define the degree sequence

d = {(di; i = 1, ..., n)} as a non increasing sequence such that d1 ≥ d2 ≥ · · · ≥ dn

producing an ordered degree sequence (ODS). For convenience, we also consider the

graphical sequence as a non increasing sequence. A graph G is k-regular if every vertex

in G has the same degree k. If there is no k ∈ N , such that G is k-regular, then G

is irregular. A graph G on n vertices is antiregular if its degree sequence has n − 1

different values. For every n ≥ 2 there is a connected antiregular graph on n vertices, [20],

which we denote by ARn. The complement of a graph G is a graph G on the same vertices
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such that two distinct vertices of G are adjacent if and only if they are not adjacent in

G. For every n the complement ARn of ARn is also antiregular and no other graph in

G(n) is antiregular. There is only one graph for each order, the complete graph (Kn),

which contains all possible edges. Two graphs are isomorphic if there exists a bijection

preserving their edge sets. Two graphs are isomeric if they have the same ODS. A walk in

a graph is a sequence v0, e1, v1, . . . , el, vl of vertices vi and edges ei such that for 1 ≤ i ≤ l,

the edge ei has endpoints vi−1 and vi. A path is a walk with no repeated vertex. A graph

with n vertices and n − 1 edges, which is a path, is denoted Pn. A cycle is a closed

path in a graph which does not repeat any of its elements. A graph with n vertices and

n edges which is a cycle is denoted Cn. A graph is connected if for every pair vi, vj of

vertices there is a path joining vi to vj and is not connected, or disconnected, if this is

not true. An independent set S ⊆ V is a vertex set where no vertex pair defines an edge.

Several matrices associated with a given graph can be defined. The most immediate is the

adjacency matrix A = [aij], where aij = 1 if ∃(vi, vj) ∈ E and aij = 0 on the contrary.

The diversity ξ(G) of a graph is the number of (different) degree values of its sequence,

ξ(G) = 1 if G is k-regular, ξ(G) = |{di|, di 6= dj, i = 1, ..., n − 1, j = i + 1, ..., n}|, if G

is irregular. The multiplicity µ(x) of a given value x in a sequence associated with a

graph is the number of times x appears in the sequence. Here, we apply this concept to

the degree sequence of a graph. A split graph is a graph where the vertex set can be

partitioned into a complete graph and an independent set. More details can be found

in [5], [6], [10] and [19].

2 The proposed irregularity measures

An irregularity measure(IM) of a graph G is a real function F : I(G) → R of a G

invariant set I, such that F (G) = 0 if and only if G is regular. The work on this subject

involves not only the definition of new measures which better express the irregularity, but

also concerns the search for extremal graphs associated with the existing measures, i.e.,

graphs that present maximum value for a given IM. These extremal graphs would then

be the most irregular for the corresponding measure. This last topic proved to be quite

difficult, without complete success until today. Details concerning the known extremal

graph families for a number of IMs are in [23] and [24]. The authors in [2] defined the
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imbalance measure,

irr(G) =
∑

(i,j)∈E

|di − dj|. (1)

The module of the difference between i and j degrees is the unbalancing of the edge (i, j).
This measure presents some zero values for disconnected graphs with regular components

of different degrees. This violates the necessity condition to define an IM but, even with
this drawback, it has been included in the IM literature, which can be understood by

the fact that it was, among the existing polynomial IMs, the one in which the definition

involves the edges and therefore properties of structure. We call a measure having this
property a structural one.

We propose two new measures (division and multiplication measures), which are also
structural and take into account the degree multiplicities. The second terms of their

expressions are based on that of Albertson measure and they should present the same
drawback previously discussed concerning that measure. The first terms were introduced

in order to avoid this problem, that is, the case when the graph is disconnected with

regular connected components of different sizes. The division IM (IRRd) is given by

IRRd(G) =
(ξ − 1)

n
+

∑
(i,j)∈E

∣∣∣∣ di
µ(di)

− dj
µ(dj)

∣∣∣∣, (2)

where ξ is the number of different degrees and µ(dk) is the degree multiplicity of k in
the degree sequence. It is an IM, since for a r-regular graph G with n vertices, we have

µ(r) = n and all difference modules are |r/n − r/n| = 0. In this case the first term,

being itself a (nonstructural) IM, will be also null, then IRRd(G) = 0 for a regular graph.
This term marks the presence of irregular graphs even when the second term is null. The

second term of IRRd(G) presents zeroes for P6 and for graphs within a family given by

the ODS (4, 4, 4, 4, 4, 4, 2, 2, 2) for n = 9, (4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2) for n = 12 and so on,

provided the obtained sequences are graphic (like these examples). The multiplication IM

(IRRm) is given by

IRRm(G) =
(ξ − 1)

n
+

∑
(i,j)∈E

|( diµ(di)− djµ(dj) )| (3)

It is easy to see that IRRm(G) = 0 for regular graphs. Here, once again, the first term

acts as a correction for the case of disconnected graphs having regular components with

different degrees and other possible zeroes. The sum of all degree multiplicities is equal

to n. For vertices of equal degree, the degree multiplicities being equal, the results will be
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null. On the other hand, the greater the diversity of the graph, the smaller the number

of zero differences, but the final value depends both on degrees and multiplicities values.

3 The exhaustive exploration

3.1 The graphs dataset

The calculation involved all graphs (connected and non-connected) with orders from 4 to

10. Table 1, [26], below, presents the number of different graphs for each order. As it can

be seen, the number of connected graphs grows very quickly with the order. More de-

tailed investigations for small orders as, for instance, determining not connected extremal

graphs, can be easily done. The obtained extremals are chiefly connected, which in some

sense confirm that connexity constraints are not so important to the general computations

here.

Order 4 5 6 7 8 9 10
All graphs 11 34 156 1,044 12,346 274,668 12,005,168

Connected graphs 6 21 112 853 11,117 261,080 11,716,571
% of connected graphs 54.5 61,8 71,8 81,7 90,0 95,0 97,6
Maximum of (ξ − 1)/n 0.500 0.600 0.667 0.714 0.750 0.778 0.800

Table 1. Amount of graphs and connected graphs with orders from 4 to 10

We can observe that 0 ≤ (ξ − 1)/n ≤ (n− 2)/n, [11]. Table 1 shows the maximum

values of this term as a function of graph order. Given the low values obtained, its

calculation was limited to the second term. It is easily seen that second-term IRRm

values are always integer. Unless we need a more detailed investigation of the final values,

the sum of the first term is not needed for an extremality study. For the extremal second-

term values, vastly outnumbered, the final verification can be done separately, looking for

different diversities.

Regarding to IRRd, some doubts about the extremality may appear for smaller orders;

however, it turns out that their second-term values are integer and, for these graphs, it is

worth the same argument of the previous case. Additional discussion is presented together

with AGX-III results (Section 4).

-565-



3.2 Some details on the associated programming

We used the well-known GENG procedure from nauty routines, [22], in order to generate

all non-isomorphic graphs of orders from 4 to 10. For each order n, GENG generates a

text file containing the adjacency matrices of all graphs. We also implemented a function

irregularity (G, IrrFunc) that, given a graph G and the IM, IrrFunc computes the

sequence degree of G and its multiplicities and return the value of the chosen IM. The

pseudocode of the implemented algorithm is presented below.
Algorithm 1: ComputeIrregularity(IrrFunc, n)
ObjFunc∗ ← 0 File ← GENG(n)
initialization
while not EndOfFile(File) do

G← ReadAdjMatrix(file)
ObjFunc ← irregularity(G,IrrFunc)
if ObjFunc∗ < ObjFunc then

G∗ ← G
ObjFunc∗ ← ObjFunc

end
end
The experiments were performed in Matlab R2014b on 2.5 GHz Intel Core i5 processor

(Mac OS X 10.9.4) and 8 GB of RAM. The extremal graphs for the two IMs, within each

order, were shown graphically. The results are as follows.

3.3 Results
3.3.1 Extremal graphs and their IRRd values

Figure 1 displays the extremal graphs and Table 2 shows the IM values and a note about

the intersection with the split graph family.

Figure 1. Extremal graphs for IRRd (4 ≤ n ≤ 10)

-566-



Order 4 5 6 7 8 9 10
Second term 8 15 28 46 76.80 113.6 161.333
(ξ − 1)/n 0.250 0.200 0.500 0.571 0.375 0.444 0.400
IRRd value 8.250 15.200 28.500 46.571 77.175 114.044 161.733

Split (|K|, |I|) 1,3 1,4 2,4 2,5 no no no

Table 2. IRRd values and possible split structure for extremal graphs, 4 ≤ n ≤ 10

We found extremal graphs presenting both low and high diversity values. The most

interesting is the presence of a G(8) extremal with ξ = 2, the same value shown by the

G(4) and G(5) extremals. On the other hand, G(6) and G(7) extremals have ξ = 4 while

G(9) and G(10) extremals have ξ = 5. Other interesting observation, for the extremals

from 4 to 7 vertices, is that they are all split graphs, while for G(8) through G(10)

extremals it is not true.

3.3.2 Extremal graphs and their IRRm values

We also calculated separately the second term values. Figure 2 displays the extremal

graphs.

Figure 2. Extremal graphs for IRRm (4 ≤ n ≤ 10)

Table 3 gives the extremal IRRm values for these datasets.

Order 4 5 6 7 8 9 10
Second term 8 36 96 200 380 660 1056
(ξ − 1)/n 0.250 0.200 0.167 0.142 0.250 0.222 0.333
IRRd value 8.250 36.200 96.167 200.142 380.250 660.222 1056.333

Table 3. IRRm values for extremal graphs, 4 ≤ n ≤ 10
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Unlike that observed with IRRd, here all the extremals have low diversity, 2 for G(4)

to G(7), 3 for G(8) and G(9) and 4 for G(10). Their general structure is near to that of

Kn, with one or two less edges.

4 The use of AGX-III

4.1 Using the multiobjective AGX-III capacity

A systematic exploring of IRRd and IRRm landscapes, from orders 11 to 30, was done

with the aid of AGX-III, [12], Version 3.1.6. This software applies the Variable Neighbor-

hood Search (VNS) metaheuristic, [21], [13], [16] to a universe of graphs automatically

added in order to look, in our case, for maximum IRRd and IRRm values. Depend-

ing on the problem, the optimization may fail when no better solution is found in the

neighborhood of the current one. Diversification of the search is then needed. Since

the perturbation phase of VNS aims at handling this difficulty, we used the new multi-

objective capability of AGX-III to help the search. Indeed, a secondary criterion based on

a very discriminating invariant to be minimized and maximized was added to the prob-

lem. A solution then becomes a tentative Pareto front, which yields a large number of

graphs with rather good quality. The neighborhoods of this set of graphs being larger, the

chances to find a better solution are increased. The Balaban index [3], which is known to

be very discriminating, was used, which clearly improved the efficiency of the search.

For IRRd, and chiefly for IRRm, the results were strongly consistent with the struc-

tures obtained by the initial exhaustive exploration. The IRRd landscape showed to be

more complex, while the IRRm one showed the most interesting properties. Through

that exploration we can see that the vertex set V of a IRRd extremal graph can be, since

n = 4, partitioned according to their multiplicity values, into two subsets, which we call

A and B (Table 4). The cases n = 6 and 7 are exceptions, since the set A presented one

degree value lesser than that of set B. All results from n = 8 on, both with exhaustive

research and metaheuristic application, show the set B formed by equal integers lesser

than A minimum value.
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Order A B Divers. Order A B Divers.
4 3 13 2 8 7,6,5 45 4
5 4 14 2 9 8,7,6,5 45 5
6 5,4,1 23 4 10 9,8,7,6 46 5
7 6,5,4,2 33 4

Table 4. Partitioning of vertex sets according to degrees (n = 4 to 10)

Table 5 below gives the best IRRd values found and the degree sequences correspond-

ing to the associated graphs. A continuously descending degree subsequence is indicated

by a→ b, where a and b are its maximum and minimum values. Multiplicity is shown as

an exponent in B column. Orders 8 to 10 were included in benefit of general comparison.

Let dA and dB be the minimum and maximum degrees in the sets A and B, respectively.

Some properties such as size, diversity and the difference dA − dB, are also presented.

n
IRRd value Degree seq. subsets Size Diversity |A| dA − dBA B m

8 77.175 7 → 5 45 19 4 3 1
9 114.044 8 → 5 45 23 5 4 1
10 161.733 9 → 6 46 27 5 4 2
11 219121 10 → 6 56 35 6 5 1
12 291845 11 → 7 57 40 6 5 2
13 374635 12 → 8 58 45 6 5 3
14 467468 13 → 9 59 50 6 5 4
15 579333 14 → 9 79 66 7 6 2
16 713104 15 → 9 89 78 8 7 1
17 849804 16 → 9 89 86 9 8 1
18 1033.64 17 → 10 810 94 9 8 2
19 1195.88 18 → 11 1011 113 9 8 1
20 1379.43 19 → 13 813 108 8 7 5
21 1640.07 20 → 13 813 113 9 8 5
22 1875.18 21 → 13 1113 148 10 9 2
23 2178.68 22 → 14 1014 151 10 9 4
24 2477.98 23 → 15 915 153 10 9 6
25 2846.02 24 → 13 1213 189 13 12 1
26 3192.96 25 → 15 1415 215 12 11 1
27 3537.90 26 → 17 1117 201 11 10 6
28 3956.16 27 → 17 1217 223 12 11 5
29 4477.00 28 → 17 1417 254 13 12 3
30 4809.73 29 → 18 1518 276 13 12 3

Table 5. Maximum IRRd values found by AGX-III and their degree sequences
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4.2 Some discussion on the results

Table 5 allows us to observe some interesting points in what concerns the structure of

(presumably) IRRd-extremal graphs. In what follows, we call |A| = k, then dk = dmin(A),

µ(dB)=n − k. First of all, every order between 8 and 30 presents a set A formed by

descending consecutive degree values. All results but those of n = 25 were obtained by

AGX-III. We managed the exception through building a graph with the same character-

istics found in other orders from Table 5, using the same reasoning presented later in

this item when discussing an upper bound calculation. We can observe that dk = µ(dB),

which is a consequence of set complementarity, given A and B definitions. A number of

cases present dk−dB > 1, which allows us to explore similar structures based on different

dB values. For instance, the difference dk − dB is 5 for n = 20 and 21 and 6 for n = 24

and 27. These points were used as a basis to state Conjecture 1.

Conjecture 1. For any order, an IRRd-extremal graph G = (V,E) has a partition

V = (A,B), such that the vertex degrees in A can be consecutively decreasing ordered

from n − 1 to dk and the vertex degrees in B are all equal and lesser than dk. Besides

that, we have |B| = µ(dB) = dk.

Figure 3 shows extremal graphs with orders 10 and 17, where the (A,B) partition can

be observed. The difference dk − dB is 2 for the graph on the left and 1 for that on the

right.

Figure 3. IRRd-extremal graphs of orders 10 and 17
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4.3 Discussion on dk − dB > 1 cases
The edge set E can be partitioned into three subsets:

(A,A) = {(u, v)|u ∈ A, v ∈ A}; (A,B) = {(u, v)|u ∈ A, v ∈ B}; (B,B) = {(u, v)|u ∈ B, v ∈ B}.

A number of graph orders investigated by AGX-III showed dk − dB > 1, which points

to the possibility of better IRRd values be found by examining the graph structure from

Conjecture 3, with every feasible dk − dB difference. (The feasibility of these values

depends on the parity of the sequences). This should be done by graph construction

based on graphic sequences, by using an optimality criterion.

From IRRd definition, we conclude that the edges giving the greater contribution for

its value should be the (A,B) ones, because the multiplicities 1 of A degrees and |B| of

the single degree in B shall correspond to greater edge values. The lesser contribution of

(A,B) edges is dk − dB/(n − k), while the (A,A) edges contribute with values between

1 and dk − dB = k − 1. We have to find conditions for the cheapest (A,B) edge to have

a greater or equal value than the most high-valued (A,A) edge. This is given by the

following lemma:

Lemma 2. Let G = (V,E) be a graph whose structure follows Conjecture 3. Then there

is a minimum |A| value, such that the subgraph containing all possible (A,B) edges, to

which are added the admissible (A,A) edges, is able to show an upper bound for IRRd

value on G, when the edge values are calculated by using the original degree values.

Proof. This condition will be valid everywhere the corresponding expression, based on

IRRd definition, is valid every time we have to eliminate (A,B) edges to create residual

degrees to put (A,A) edges:

dmin(A) −
dB
|B|
≥ (n− 1)− dmin(A) (4)

With |A| = k, from the definitions of A and B, we have |B| = dmin(A) = n− k

Then, from (4),

n− k − dB
n− k

≥ k − 1 (5)

Solving for k, we have

k ≥ 1

4
(3n+ 1)±

√
(3n+ 1)2 − 4(n2 + n− dB) (6)
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The value under the radical sign is O(5n2): then, the sum is O( (3n+n
√
5+1)

4
> n, which

is senseless since k = |A|, A ⊂ V . Then the correct solution is given by the subtraction,

k ≥ 1

4
(3n+ 1)−

√
(3n+ 1)2 − 4(n2 + n− dB) (7)

The value given by (7) approaches (3n− n
√
5 + 1)/4 = O(0.2n) when n grows. Then

the cardinality of B would be O(0.8n) and this puts a limit on dB value for the obtained

graphs to be extremal with k near the limit: when dB grows, the number of (B,B) edges

will also grow and they count null for IRRd value. The conclusion is that this limit is

very weak for practical uses. Table 6 gives the minimum |A| values, based on (7), for

dB = dn/2e (a common value, since dB has little influence on k limit). The integer values

are the lesser feasible ones.

Order LS Int Order LS Int
8 1.553 2 20 3.846 4
9 1.756 2 21 4.042 5
10 1.935 2 22 4.228 6
11 2.136 3 23 4.423 5
12 2.317 3 24 4.610 5
13 2.517 3 25 4.805 5
14 2.699 3 26 4.992 5
15 2.898 3 27 5.187 6
16 3.081 4 28 5.374 6
17 3.279 4 29 5.568 6
18 3.463 4 30 5.756 6
19 3.660 4

Table 6. Minimum A cardinality for (7) to be valid

4.3.1 The use of Lemma 2

When building an (A,B) set, for each new added edge (a, b), a ∈ A, b ∈ B, we will discount

a unity from da and another from db. In order to have the highest edge contributions,

we have to work with the current highest degrees in A. After the process is finished,

every vertex will have a residual degree value. Let’s consider the set A and the residual

degree sequence SA. Looking for an upper bound for IRRd, we can add (A,A) edges

and sum their contribution to the current (A,B)-obtained value. This can be done,

even if SA is not graphic – when there will be at least one degree value not completely
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fulfilled. Let ΨP be the provisional IRRd value thus obtained. If SA is graphic, (A,A)

and (A,B) edge contributions will be added to give the final IRRd value (the eventually

present (B,B) edges give no contribution). Otherwise, we will have to eliminate (A,B)

edges in order to modify SA. This can result in the addition of new (B,B) edges to

compensate the degree changes. Let SA′ be the graphic sequence obtained as described.

We had already a provisional IRRd value, which is not correct as discussed before. To

obtain SA we had to replace some (the most expensive) (A,B) edges, for (the cheaper)

(A,A) ones – and, if we follow Lemma 2 condition for |A|, it guarantees this trade result

as a value loss. Then ΨP is an upper bound for IRRd. We defined a percent slack,

Slack% = 100(ΨP −AGX−IIIextremal)/AGX−IIIextremal. If the slack is negative,

the corresponding sequence cannot be extremal. If it is positive, it can be extremal or

not, depending on the effect of the edge changes when trying to complete the graph

construction. In Table 7, the columns under the head “AGX-III extremals data” show

AGX-III better results, their upper bounds ΨP and their corresponding percent slacks.

Under the head “Optimal strategy results” we show the number of results stronger than

AGX-III, their corresponding optimal sequences and the overall best result value. The

presence of isomers is indicated by an asterisk: since they are built using the optimal

strategy, their values are better than those obtained by the metaheuristic, but they give

not the best result, excepting for n = 17 and 18.
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Remark 1. The sequences could be defined by the single term (dB)
n−k. The extended

form used before aims for better clarity.

We can see that for all orders up to n = 19, AGX-III found structures corresponding

to extremal IRRd values. For n = 25 and dB = 12, the upper bound was so close to the

corresponding IRRd value that AGX-III was unable to find an extremal structure.

4.4 Exploring IRRm landscape

We can divide the degree sequences in a way similar to that used with IRRd. Here, we call

A the set of greater degrees with their multiplicity values and B the set of the remaining,

and value-non-increasing, degrees. Preliminary results for small graphs are given in Table

8, where we can notice some facts: from n = 4 to 10 the diversities form a non-decreasing

sequence; A has only one repeated element equal to n− 1; the minimum degree of the set

B is equal to µ(dA).

Order A B Divers. Order A B Divers.
4 32 22 2 8 75 62, 5 3
5 43 32 2 9 86 72, 6 3
6 54 42 2 10 96 8, 72, 6 4
7 65 52 2

Table 8. Partitioning of vertex sets according to degrees (n = 4 to 10)

Table 9 below gives the best IRRm values found and the degree sequences correspond-

ing to the associated graphs. A continuously descending degree subsequence is indicated

by a→ b, where a and b are their maximum and minimum values.
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n
IRRm value Degree seq. subsets Size DiversityA B m

10 1056.30 96 8, 72, 6 41 4
11 1638.27 107 9, 82, 7 51 4
12 2286.33 118 10, 92, 8 62 4
13 3366.23 129 11, 102, 9 74 4
14 4612.29 139 12, 112 → 9 85 5
15 6204.27 1410 13, 122 → 10 99 5
16 8122.25 1510 14, 132, 12, 11 114 5
17 10522.30 1611 15→ 132, 12, 11 127 6
18 13398.30 1712 16→ 142 → 12 144 6
19 16750.30 1813 17→ 152 → 13 162 6
20 20712.30 1913 18→ 162 → 13 178 7
21 25412.30 2014 19→ 172 → 14 198 7
22 30776.30 2115 20→ 182 → 15 219 7
23 36816.30 2216 21→ 192 → 16 241 7
24 44182.30 2316 22→ 192 → 16 260 8
25 52212.30 2417 23→ 202 → 17 284 8
26 61150.30 2518 24→ 212 → 18 309 8
27 71680.30 2618 25→ 222 → 18 331 9
28 83146.30 2719 26→ 232 → 19 358 9
29 95760.30 2820 27→ 242 → 20 386 9
30 110452.0 2920 28→ 242 → 20 410 10

Table 9. Maximum IRRm values found by AGX-III and their degree sequences

4.4.1 Some discussion on the results

From the results obtained in Table 7, we observe some interesting points on the structure

of (presumably) IRRm-extremal graphs: all of them are supergraphs of a complete split

graph where the set A induces a clique, say of order |A| = n − t, and the set B induces

the complement of an antiregular graph of order |B| = t, that is, G is isomorphic to

Kn−t on ARt; the degree sequence of B decreases from n − 2 to n − t and the vertex of

degree n−bt/2c− 1 has multiplicity 2 and the others multiplicity one. These points were

used as a basis for the following conjecture:

Conjecture 3. For any order, an IRRm-extremal graph G = (V,E) is a join of a clique

of order n− t and a complement of an antiregular graph with order t. Besides, the degree

sequence of G is given by dG = (n− 1)n−t, n− 2, n− 3, · · · , (n− bt/2c − 1)2, · · · , n− t.

Figure 4 shows extremal graphs with orders 12 and 18, where the (A,B) partition,

the antiregular structure and the degree sequence can be observed.
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Figure 4. IRRm-extremal graphs of orders 12 and 18

Remark 2. From Merris [20], every antiregular graph is threshold. Besides that, if we

iteratively add universal vertices to a threshold graph, the graph thus obtained is always

threshold. As a consequence, the extremal graphs of Conjecture 3 are threshold.

Discussion: The edge set E can be partitioned into three subsets:

(A,A) = {(u, v)|u ∈ A, v ∈ A}; (A,B) = {(u, v)|u ∈ A, v ∈ B};

(B,B) = {(u, v)|u ∈ B, v ∈ B}.

In what follows, let dmin(B) and dmax(B) respectively be the minimum and maximum

degrees of B. From the results, the following equalities hold: µ(dA) = dmin(B) = n − t,

which implies that the diversity is given by t, and dmax(B) = n − 2. Also, dA = n − 1.

From IRRm definition, the edges (A,A) do not contribute to the summation. The edge

in (A,B) that contributes the most to the irregularity is the one connecting the vertices

of degrees dA and dmin(B) and its contribution is equal to (n − t)(n − 2). The lesser

contribution is (n − 1)(n − t − 1) + 1, given by connecting the vertices of degrees dA

and dmax(B). The edges of the set (B,B) contribute with values between 0 and t − 2. It

is interesting to note that, unless the IRRd-extremals, the degree sequences of IRRm-

extremal graphs are unigraphic. This fact occurs for the following reasons: the n − t

vertices of degree n− 1 should be connected to every vertex which generates a complete

split graph; the residual degrees are 0, 1, 2, · · · , t−1, and the remaining edges should only

connect vertices in B. Since both (complementary) antiregular sequences are unigraphic,

and the residual degrees correspond to the sequence of a disconnected antiregular graph,
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the whole degree sequence is unigraphic. Then it should be fruitless to search for graphs

with better IRRm values as we have done for IRRd.

5 Conclusions and suggestions for future research
5.1 An interesting feature of IRRd-extremal graphs is the existence of a two-subset par-

tition, V = (A,B), defined according to their degree values. The descending-degree

definition for set A, starting with d1 = n − 1, obliges |B| cardinality to be equal to the

lesser degree in A. Moreover, we always have dmin(A) − dB ≥ 1 and, exploring the strict

inequality values we can find, for some orders, better IRRd values. The extremal struc-

tures, nevertheless, were always similar to those proposed by AGX-III and we conjecture

there is no other structure with higher IRRd values. Using an extremal-value strategy

for graph building of AGX-III typical structure, we were able to derive upper bounds

for IRRd. This was initially used when we looked for an extremal 25-vertex graph, an

order where the very low slack given by the upper bound shows the problem as partic-

ularly difficult. For this order, AGX-III found a local optimum of value 2839.58 with

structure A = 24→ 15, 13 and B = 1214, only 0.21% far from a better value we found to

correspond to A = 24→ 13 and B = 1213 by following the lead of the typical structure.

Further exploration gave an even higher value, as shown by Table 7.

5.2 In what concerns IRRm, it seems that the sequence degree of the extremal graphs

follows some sort of a pattern where the vertex set can be partitioned into two sets A

and B, V = (A,B), where A is a clique of order n− t and B is isomorphic to ARt . The

complementary graph G of the extremal one has an even clearer structure since it is a

union of an independent set of order n− t (then, a trivial graph) to ARt. We conjecture

that the same structural properties hold for any IRRm-extremal graph and, consequently,

that the degree sequences of the extremal ones are unigraphic, since this is valid both for

antiregular and trivial graphs.

5.3 Both from the graph-theoretical and the numerical comparison point of view, we think

there are multiple interesting points to explore in what concerns these two measures. They

can certainly allow for the research of still better measures, since the extremal graphs for

our measure are not antiregular graphs, which, from a numerical point of view, are the

most irregular among all graphs.
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