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Abstract 

Automata theory has been used in the subject of organic chemistry. The alphabet of the 
language of all organic compounds has been proposed and discussed, furthermore, universal 
system of notation has been presented that allows writing certain organic compound as a 
string. Deterministic finite-state automaton have been constructed to decide whether the 
organic compound can be synthesized in the esterification reaction. Then deterministic 
finite-state automaton for more synthetically useful organic reaction, which is the 
Radziszewski reaction, has been presented as well as a discussion of problems that arise 
while constructing finite-state automata for more complex organic reactions. A proof that 
the grammar of organic compounds language is not regular has been made based on the 
contrapositive of the Pumping Lemma. The algebraic structure of organic chemistry has 
been briefly discussed. Directions of further investigations that would allow more 
applications of automata theory in chemistry are outlined, especially in chemical informatics 
and organic synthesis planning. 
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1 Introduction 

History of automata theory starts in the 1930s when A. Turing studied an abstract machine 

with computing capability the same as modern computers have, then in the 1940s and 1950s 

concept of finite automata has been introduced [1]. Automata theory, which is a discipline on 

the border of mathematics and informatics and underlies modern computer science, is useful 

in many other sciences. In biology among applications modeling of biological development 

can be mentioned [2]. In biochemistry automata theory has been used to analyze the algebraic 

structure of biochemical reactions on the example of Krebs citric acid cycle [3]. It was the 

first time when such analysis was proposed. Wang and others have built finite automata with 

16 states based on 3 types of logic gates, that showed memory [4]. Oishi and Klavins showed 

a method to build any finite-state automaton with repressing transcription factors and also 

equivalence of finite-state machine and Boolean model of gene regulatory networks [5]. 

Finite-state automaton have been also used (together with cell signaling) in the design of new 

types of multicellular behavior in synthetic biology [5]. Finite state machines have been as 

well applicated in modeling and recognition of gestures utilizing fact, that certain gesture 

composes of ordered number of states [6]. Thanks to that it was possible to create an 

application, which in real time could recognize human gestures [6]. In informatics finite 

automata are a good model for many important kinds of software and hardware, also they are 

base of many algorithms, among others to text mining and Web page scanning [1]. 

Furthermore, it has been proved, that finite state machines can be utilized in the same way as 

recurrent neural networks [7 – 10]. From a properly trained neural network, it is possible to 

extract deterministic finite-state automaton which performance is even better according to the 

same task in comparison to neural network [7]. Also, it has been proved, that in the case of an 

adequately long training period of neural network it can become true finite state automata [8]. 

An algorithm for constructing recurrent neural networks that implements a finite state 

machine has been proposed and proved [10]. It should be emphasized that finite-state 

automata, unlike artificial neural networks, do not require any training procedure. From  

a physical point of view, finite-state automata have been investigated in terms of 

irreversibility and dissipation [11]. 

In chemical informatics, many methods of artificial intelligence have found to be useful, 

among other support-vector machines, genetic algorithms and neural networks [12 - 14]. 

Particularly important are applications of these algorithms in new drugs and materials design 
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[15 - 19]. Finite state machines in chemical informatics for the first time have been used to 

implement fast text-based molecular similarity searching (LINGO) [20]. Sayle and others 

have utilized finite state machines to the recognition of chemical compounds names in patents 

of pharmaceutical interest [21]. Furthermore, the concept of Chemical Reaction Automata, 

which in a maximally parallel manner are computationally equivalent to Turing machines, has 

been proposed [22]. Also, chemical kinetic implementations of neural networks and finite-

state machines have been shown [23, 24]. As can be seen, there is a lot of interesting 

connections between chemistry and informatics.  

In this article automata theory has been used in problems of organic chemistry. Organic 

compounds are threatened as words in the language of organic chemistry, generated by 

respective grammars. Finite-state automata that decide if an organic compound can be 

synthesized by a certain chemical reaction are constructed. Some aspects of grammars of 

organic chemical compounds are discussed based on the contrapositive of the Pumping 

Lemma. The system of linear notation of organic compounds, allowing to process them 

through finite-state machines, is presented and discussed. This work makes foundations for 

further applications of mathematical linguistics and automata theory in chemistry.  

2 Theoretical basis 

2.1 A brief introduction to automata theory 

Basic concepts of the theory of automata are: alphabet, strings, and language. An alphabet 

is a finite, nonempty set of symbols, which here is denoted by ∑. Examples of the alphabet 

are the binary alphabet (∑ = {0, 1}) and the Latin alphabet. A string is a finite sequence of 

symbols that belongs to some alphabet. For example, the word "alphabet" is a string from the 

Latin alphabet. A language is a set of strings composed of symbols belonging to that same 

alphabet.  

A grammar G is a tuple G = (V, T, P, S), where V – a finite set of nonterminal symbols, T – 

a finite set of terminal symbols, S – the starting symbol of grammar (S ∈ V), P – a finite set of 

productions. Grammars generate strings that belong to a certain language. There are four 

classes of grammars: regular (RgL), context-free (CFL), context-sensitive (CSL) and 

unrestricted (REL). They are ordered in the following hierarchy: 

RgL ⊂ CFL ⊂ CSL ⊂ REL 
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Regular grammars generate regular languages and so on. Strings that belong to regular 

language are accepted (recognized) by finite-state automata (FSA). FSA is a system 

composed of 5 components, A = (Q, ∑, δ, q0, F) where: Q – set of states, ∑ - alphabet, q0 – 

starting state (q0 ∈ Q), F – set of accepting states, δ: Q x ∑ → Q – transition function. Finite-

state automata recognize strings only from regular languages. For more information about 

automata theory and mathematical linguistics see the handbook of Hopcroft and others [1]. 

2.2 System of notation and alphabet 

System of notation that allows writing organic compounds as strings is needed to make 

them suitable for proceeding by finite-state automata. In system used in this article each 

symbol in string has a general form X(a)
b, c where X is a chemical element symbol, (a) means 

maximal order of each bond in which certain atom is involved (for example (a) = (2) for sp2 

carbon atom or (1) for any hydrogen atom), b is stoichiometric index and c points out if 

certain atom begins (c = s) or ends (c = e) ring. Including typical chemical occurrence of 

elements in organic compounds, the following alphabet has been proposed:  

 carbon: C(1), C(2), C(3), C(1)
s, C(2)

s, C(3)
s, C(1)

e, C(2)
e, C(3)

e 

 oxygen: O(1), O(2), O(1)
s, O(1)

e 

 hydrogen: H(1), H(1)
2, H(1)

3 

 nitrogen: N(1), N(2), N(3), N(1)
s, N(2)

s, N(1)
e, N(2)

e 

 sulphur: S(1), S(2), S(1)
s, S(1)

e 

 halogens: F(1), F(1)
2, F(1)

3, Cl(1), Cl(1)
2, Cl(1)

3, Br(1), Br(1)
2, Br(1)

3, I(1), I(1)
2, I(1)

3 

 Arabic numbers: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

 a symbol denoting bridges: b  

 symbols denoting respectively begin and end of branch: (, ) 

 empty symbol: ε 

Expansions of this basic alphabet can be considered, for example, to include metal organics, 

radicals, a charge of atoms in the molecule and even stereochemistry. The presented alphabet 
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makes a foundation for modifications leading to describe more complex organic compounds. 

It must be mentioned that the nature of chemical bonding is so far not well understood, so it is 

better to denote bonding by maximal order, not by hybridization. 

The string is started by any C atom, then it's ligands are denoted in the order of decreasing 

atomic number, then goes another C atom and so on. Oxygen, sulfur, and nitrogen atoms are 

threatened in the same way as carbon atoms. Branches in organic compounds are denoted by 

(i…….)i where i is an integer describing the number of the branch in the molecule. If there is 

only one branch in compound i is omitted for simplicity. Notation of rings is following: begin 

of the ring must be set (f. e. C(2)
s), then goes every atom in the ring, and then end of the ring 

must be denoted (f. e. C(2)
e). If the molecule has multiple rings, the described procedure is 

applied for the most outer ring and remaining chains are threatened as branches and bridges 

(see example f below). Strings of some organic compounds presented in Figure 1 are as 

follows: 

a) C(1) H(1)
3 C(2) O(2) O(1) H(1) 

b) C(1) H(1)
3 C(2) O(2) O(1) C(1) H(1)

3 

c) C(2)
s H(1) C(2) H(1) C(2) H(1) C(2) H(1) C(2) H(1) C(2)

e H(1) 

d) C(1) H(1)
3 C(2) O(2) O(1) C(1)

s H(1) C(1) H(1)
2 C(1) H(1)

2 C(1)
e H(1)

2 

e) C(2) O(2) O(1) H(1) C(1) H(1)
2 C(2)

s C(2) (1 C(1) H(1)
2 C(1) H(1)

2 C(2) O(2) O(1) H(1))1 C(2) 

H(1) N(1) H(1) C(2)
e (2 C(1) H(1)

2 N(1) H(1)
2)2 

f) C(1)
s H(1)

2 C(1)b1 H(1) C(1) H(1)
2 C(1)b2 H(1) C(1) H(1)

2 C(1) H(1)
2 C(1) H(1)

2 C(1)b2 H(1) 

C(1) H(1)
2 C(1) H(1)

2 C(1)b3 H(1) C(1) H(1)
2 C(1) H(1)

2 C(1) H(1) (C(1)b1 H(1) C(1)b3 H(1) 

C(1)b2 H(1)) C(1) H(1)
2 C(1)

e H(1)
2 
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Figure 1. Examples of organic compounds for which strings are given. 

The presented notation allows generating strings for a given structure of the molecule. It is 

obvious that one molecule can be written as many strings, depending on which carbon atom 

will be selected for start. However, this system of notation is unambiguous and two different 

molecules must have different strings. It is because two compounds would have same strings 

only if they would have the same summary formula, but presented system of notation deals 

with structural isomers by denoting branches – two compounds with different structure must 

have different strings. Also, stereochemistry can be easily included by adding two more 

symbols to the alphabet, S and R, to denote the absolute configuration of an atom. Note that 

strings generated by presented in this paper notation system can be utilized in the same way as 

SMILES strings, but are as well more chemically intuitive than SMILES strings. 

3 Results 

3.1 Finite-state automata for example reactions 

System of notation allows to write certain organic molecule as a string, so it can be 

proceeded by finite-state automata. FSA can be utilized in the planning of organic synthesis. 

Let's consider the following problem: one has to plan synthesis of certain organic compound 
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characterized by promising biological activity. However, this compound has a very 

complicated structure. It would be very useful to have computer algorithms which would say 

"Use certain reaction". Thanks to the presented system of notation it is possible to construct 

finite-state automaton that decides whether the organic compound can be synthesized with 

certain organic reaction. Let's consider simply esterification reaction. Figure 2 presents finite-

state automaton that accepts only compounds that can be obtained in that reaction. FSA reads 

the input string (organic compound) symbol by symbol and moves from state to state in a way 

described by transition function δ. If FSA ends up on accepting state (q1 in Figure 2) it means 

that this organic compound can be obtained in the esterification reaction.  

 

Figure 2. Finite-state automaton accepting esters. 

The esterification reaction is a somewhat trivial example. The more complex and 

synthetically useful reaction is now considered: the Radziszewski reaction. The Radziszewski 

reaction is a multicomponent universal reaction of any dicarbonyl, any aldehyde, and 

ammonia leading to the creation of imidazoles, which are compounds with varying biological 

properties (Figure 3) [25]. Furthermore, it is a very efficient method that is investigated in 

continuous microreactors and is still used recently [26 – 28]. Also, many expansions and 

modifications of this reaction have been discovered [26, 29]. General scheme of the classical 

Radziszewski reaction and corresponding finite-state automaton are presented in Figure 3 and 

4 respectively. 
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Figure 3. General scheme of the classical Radziszewski reaction. 

 

Figure 4. Finite-state automaton that accepts compounds which can be obtained with the 
Radziszewski reaction. 

Finite-state automaton for the Radziszewski reaction is much more complicated in 

comparison with the case of the esterification reaction. While constructing this automaton it 

was assumed that R2 in Figure 3 is hydrogen atom for simplicity and that the ring is entered 

through R4. Furthermore, it was assumed that there is only one branch in the whole molecule, 

so ‘i' after ‘(‘ and ‘)' is omitted. The assumption that there are 2 branches and that they can 

occur as well as R1, R2 and R3 (in other words that sp3 nitrogen atom does not have to bind 

with hydrogen) leads to much more complicated automaton. For exercise, one can try to 

construct that automaton and also universal finite-state automaton for the Radziszewski 

reaction. It can be easily proved that universal FSA for this reaction does not exist. 
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4 Discussion 

A fact from automata theory is that every finite-state automaton accept words from regular 

languages. Finite-state automaton that would accept words from at least context-free language 

(in other words: that string would be produced by at least context-free grammar) does not 

exist. 

Lemma 4.1. (the Pumping Lemma): 

If language L is regular then exists constant nL such that for every string z ∈ L following 

statement is true: 

|z| ≥ nL => (∃ u, v, w ∈ ∑*, z = uvw, |uv| ≤ nL, |v| ≥ 1) (∀ i = 0, 1, 2, 3, …) zi = uviw ∈ L 

where: ∑* - set of all words over alphabet ∑, vi – v repeated i times, |z| - length of word z. 

Theorem 4.2. The contrapositive of the Pumping Lemma: 

If for any constant n exists word z ∈ L such that: 

|z| ≥ n and (∀ u, v, w ∈ ∑*, uvw = z, |uv| ≤ n, |v| ≥ 1) (∃ i ∈ {0, 1, 2, 3, …}) zi = uviw ¬∈ L 

then language L is not regular. 

With the help of contrapositive of the Pumping Lemma, it is easy to prove that the language 

of all organic compounds over the alphabet proposed in this article, in general, is not regular. 

Let's take a word (string) from organic compounds language that has the symbol ‘(‘ or ‘)' 

inside. Now let's take v = (. Then |v| = 1, which meets the requirements of Theorem 4.2. It's 

also obvious that v ∈ ∑* and that constant n can be chosen so |uv| ≤ n. Iterating of v will lead 

to a string that does not describe any real organic compound, in other words there exists i ∈ 

{0, 1, 2, 3 …} such that zi = uviw does not belong to the language of organic compounds. 

Thus this language is not regular. This is the reason why universal finite-state automaton for 

the Radziszewski reaction can’t be constructed. Parentheses ‘(‘ or ‘)’ are necessary to denote 

branches (R1, R2, R3 and R4 in Figure 3) which number generally is not known – in branches 

can exist other branches and so on. 

However finite-state automaton has been constructed for simply esterification reaction. It 

means that the language of esters is regular. In fact, if the presence of a linear group (such as 

ester group –COO-) in an organic molecule is crucial for recognition by automaton then 
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finite-state automaton can be constructed. Less complicated reactions are equivalent to regular 

languages and more complicated reactions are equivalent to non-regular languages. This 

statement shows some structure of organic chemistry, as regular languages are a subset of 

context-free languages. Nevertheless, it is still possible to construct finite-state automaton for 

the Radziszewski reaction, but some assumptions are necessary (Figure 4). In particular, 

knowledge about numbers of branches is needed. 

Finite-state automata can be utilized in computational organic synthesis. FSA can be 

constructed for every reaction, at last with the help of some assumptions. Knowing that FSA 

outperforms recurrent neural networks it is possible to create a very powerful and useful 

computational tool not only for organic synthesis planning but also even for drug design. 

Applications of automata in this subject should be explored. 

5 Conclusions 

Automata theory is widely used not only in computer science but also in other sciences such 

as biology or chemistry. This article shows a new approach in applications of automata theory 

in organic chemistry. Linguistics basics for organic compounds language are proposed that 

allows the construction of finite-state automata for either simple and complex organic 

reactions. Furthermore, the algebraic structure of organic chemistry has been shown, as more 

complex organic reactions are equivalent to more complicated languages. This conclusion 

points out the potential application of automata theory in complex systems physics, as many 

of the problems in chemistry belongs to that discipline. In this term connection between 

artificial neural networks, which are equivalent to finite-state automata, and nonlinear 

dynamics should be mentioned. Further exploration of grammars of organic compounds 

would lead to some constructive and interesting conclusions. 

Chemical informatics requires efficient computational algorithms. Thus finite-state 

automata utilized in problems of organic chemistry offers a promise of fast and efficient 

computational tools for drug design and synthesis planning. It would be interesting to 

compare the performance of an artificial neural network and finite-state automaton in terms of 

recognizing compounds that could be obtained in a certain synthetically important organic 

reaction. 
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