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Abstract

A fourteen algebraic order P—stable symmetric four—stages two—step scheme with expunged
phase—lag and its first and second derivatives, is developed, for the first time in the literature,
in this paper. The new four—stages method is developed based on the following steps:
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Contentment of the necessary and sufficient conditions for P-stability.
Contentment of the condition of the expunging of the phase-lag.

Contentment of the junctures of the expunging of the first and second derivatives of the
phase-lag.

The result of the above methodology is the development, for the first time in the literature,
of a four—stages P—stable fourteen algebraic order symmetric two—step method with expunged
phase-lag and its derivatives up to order two.

We present also a full numerical and theoretical analysis for the new algorithm which contains
the following steps:

the development of the new four-stages method,

the achievement of its local truncation error (LTE),

the foundation of the asymptotic form of the LTE of the new four-stages method,

the foundation of the stability and interval of periodicity of the new four—stages method,

the achievement of an embedded algorithm and the determination of the variable step
technique for the changing of the step sizes,

the evaluation of the computational efficiency of the new four—stages method with its
application on:

— the resonance problem of the radial Schrédinger equation and on

— the system of the coupled differential equations of the Schrédinger type.

The above study leads to the conclusion that the new four-stages method is more efficient
than the existed ones.

1

Introduction

A new four-stages P-stable two-step algorithm with eliminated phase-lag and its first

and second derivatives is created, for the first time in the literature, in this paper.

The creation of the new proposed four-stages P-stable two-step algorithm follows the

below mentioned levels:

Level 1: Satisfaction of the property of the P—stability.
Level 2: Satisfaction of the property for the elimination of the phase-lag.

Level 3: Satisfaction of the properties for the elimination of the first and second

derivatives of the phase-lag.

We will evaluate the effectiveness of the new four-stages algorithm by applying it to:
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e the radial time independent Schrodinger equation and
e Systems of coupled differential equations of the Schrodinger type.

‘We mention here that the efficient numerical solution of the above mentioned problems
is very important in Computational Chemistry (see [9] and references therein) since an
important part of the quantum chemical computations contains the Schrédinger equation
(see [9] and references therein). We mention here that in problems with more than one
particle the computational solution of the Schrédinger equation is necessary. The effective
computational solution of the Schrodinger’s equation (via numerical schemes) gives us the

following important information:

e numerical computations of molecular properties (vibrational energy levels and wave

functions of systems) and

e numerical presentation of the electronic structure of the molecule (see for more

details in [10-13]).

We will also create an embedded numerical algorithm which is based on an local
truncation error control procedure and a variable-step method. This new embedded
algorithm is based on the new created four—stages algorithm.

The problems which are investigated in this paper belong to the following category of

special problems:
¢"(z) = f(z,0), (o) =0 and ¢'(z0) = . (1)
which have periodical and/or oscillating solutions.

The main classes of the numerical algorithms and their literature is presented below:

e Exponentially, trigonometrically and phase fitted Runge-Kutta and Runge-Kutta
Nystrom algorithms: [47], [50], [59], [62] — [67], [56] [78]. In this class of schemes,
Runge-Kutta and Runge-Kutta Nystrom algorithms are developed. This class is

divided into two subcategories:

— Numerical algorithms which have the property of accurate integration of sets

of functions of the form:

2’ cos(we),i=0,1,2,...0r 2’ sin(wx),i=0,1,2,...
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or 2 exp(wa),i=0,1,2,... (2)
or sets of functions which are combination of the above functions.

— Numerical algorithms which have the property of evanescence (or vanishing or

elimination) of the phase-lag and its derivatives.

Remark 1. The frequency of the problem in (2) is denoted by the quantity w .

e Multistep exponentially, trigonometrically and phase fitted schemes and multistep
methods with minimal phase-lag: [1]- [8], [18]- [21], [25]- [28], [34], [38], [40], [44],
[48]-[49], [53], [58], [60]— [61], [71]-[73], [79]- [82]. In this class of schemes, multistep

algorithms are created. This class is divided into two subcategories:

— Multistep algorithms which have the property of accurate integration of sets
of functions of the form (2) or sets of functions which are combination of the
functions mentioned in (2).

— Multistep algorithms which have the property of evanescence (or vanishing or

elimination) of the phase-lag and its derivatives.

e Symplectic integrators: [42]- [43], [51], [54], [57], [67]— [70], [76]. In this class of
numerical algorithms, schemes for which the Hamiltonian energy of the system

remains almost constant during the integration procedure, are obtained.

e Nonlinear algorithms: [52]. In this category of numerical schemes, the algorithms
have nonlinear form (i.e. the relation between several approximations of the function

on several points of the integration domain (i.e. yny;, j =0,1,2,...) is nonlinear).

o General algorithms: [14]- [17], [22]- [24], [35] [37], [41]. In the category of numerical

methods, numerical algorithms with constant coefficients are constructed.

2 Theory for the development of symmetric multi-
step schemes

In this section we present the theory for the creation of the general form of the symmetric

multistep algorithms.
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Since the multistep algorithms are finite difference methods, the methodology of the

discretization of the integration domain is used for the numerical solution of the problems

of the form (1). In this research, the integration domain [a, b] is discretized by using the

2m-step symmetric scheme of the form (3). We note that for these type of method the

parameter m determines the number of the discretization points.

The following symbols are used:

e /1 determines the stepsize of the integration which is equivalent with the step length

of the discretization. It is defined using the following relation: h = |z;41 — x4,

i=1-—m(1)m —1 (i.e. the parameter i is moved between 1 —m and m — 1 with

step 1) where

e 1, denotes the n-th point on the discretized domain.

e ¢, denotes the approximation of the function ¢(z) at the point z,. The approxi-

mation ¢, is determined using a numerical algorithm like the 2 m-step method (3)

described below

Let us consider the family of 2 m-step schemes:

m m

A(m): Z Qi Pryi = h? z Bi f(ntir Pnsi)

i=—m i=—m

3)

The above family of schemes is used for the numerical solution of the initial value

problem (1) on the integration domain [a,b], where o; and §; i« = —m(1)m are the

coefficients of the 2 m-step scheme.

Definition 1.

/ B # 0 implicit;
A(m) = { B =0 eaplicit.

Definition 2.
A (m) with &;—m = Om—i, Biem = Pm—i, t = 0(1)m — symmetric

Remark 2. The scheme A (m) is related with the following linear operator

m m

L(z) = Z a;p(x+1ih) — h? Z Bi " (x +ih)

i=—m i=—m

where p € C? (i.e. C2=Cx C).



-390-

Definition 3. [14] A multistep scheme (3) is called that has an algebraic order o, if the

linear operator L (6) is eliminated for any linear combination of the linearly independent

functions 1, x, 2, ..., x°FL,

If we apply the symmetric 2m-step algorithm A (m) into the model equation

we obtain the difference equation:

Tm(v) Pn+m + ..+ YI(U) Pn+1 + YO(U) ©n

+T1(’U) Pn-1+ ... + Tm(v) Prn—m = 0 (8)

and its associated characteristic equation:

T (0) A" 4+ .o+ T1(v) A+ To(v)
T ) AT+ T AT = 0. (9)

where
e v=20h,
e h is the step length or stepsize of the integration and
e T;(v), j = 0(1)m are the stability polynomials.

Definition 4. [15] We call that a symmetric 2m-step algorithm has an non zero interval

of periodicity (0,v3), if its characteristic equation (9)has the following roots :
A= e¥® Ny =0 and [\ < 1,1=3(1)2m (10)
for all v € (0,03), where 1(v) is a real function of v.

Definition 5. (see [15]) We call a symmetric multistep algorithm P-stable if its interval
of periodicity is equal to (0,00).
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Remark 3. We call a symmetric multistep algorithm P-stable if the following necessary

and sufficient conditions are hold:

Al = [Ao] =1 (11)

I\ < 1,5 = 3(1)2m, Yo. (12)

Definition 6. We call a symmetric multistep algorithm singularly P-stable if its interval

of periodicity is equal to (0,00)\S, where S is a finite set of points.

Definition 7. [16], [L7] A symmetric multistep algorithm with associated characteristic
equation given by (9), has phase-lag which is defined by the leading term in the ezpansion
of

t=v—1(). (13)

Ift = O("*Y) as v — oo then the phase-lag order is called as equal to 7.

Definition 8. [18] We call a symmetric multistep algorithm as phase-fitted if its phase-

lag is equal to zero.

Theorem 1. [16] For a symmetric 2m-step scheme, with characteristic equation given
by (9), a direct formula for the computation of the phase-lag order v and the phase-lag
constant w is given by

27, (v) cos(mv) + ... +27;(v) cos(jv) + ... + To(v)

g t2 O/U+4 _
@+ O 2m2 Y (v) + ... +25270;(v) + ... + 2T (v)

(14)
Based on the Theorem 1, we obtain the following conclusion:

Conclusion 1. For the family of symmetric two—step methods the phase-lag order v and
the phase-lag constant w can be directly computed using the formula:

_2 T (v) cos(v) + Yo(v)
2 Tl(?})

—wv't? + O(v™) (15)

where T;(v)j = 0,1 are the stability polynomials.
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3 A new four—stages P—stable symmetric symmetric
method with expunged phase—lag and its first and
second derivatives

The following family of four—stages algorithms is considered:

Pri1 = Pnp1 — h° (Cl fori—cofata fn—l)
@n#»l = Pn+1 — h2 <C3 ﬁl#»l —C2 fn + C3 fn—l)

Gut1 = Pnt1 — B (Cs Fat1 = €4 fo+ 5 fua

(16)

Prt1 + 190 + Qo1 = B2 |:b] (.fnﬂ + fnfl) +bo f
where fryi = ¢ (Tnti, Pnti) i = =1L, fopr = @ (Tni1, o), fn+1 = " (Tpg1, Prt1),
fnﬂ = ¢" (Tpt1, Pnt1) and ag, b;, 1 =0, 1 and ¢;, ¢ = 0(1) 5 are parameters.

Remark 4. The new four—stages method is hybrid and consequently nonlinear with the

the approximations to be based on the point x, 1.

We study the following specific case:

b8, _ L _ 92605
T 6Tt T 127 T 86919’
92347 4139 4139

C3 =

; = ; €5 = . 17
173838 4~ 84370° ® T 168740 (17)

Remark 5. The parameters given by (17) reserves that the new four—stages method (16)

will have algebraic order fourteen which is the maximum possible one.

Application of the new four—stages method (16) with the constant coefficient given by
(17) to the scalar test equation (7), leads to the difference equation (8) with m = 1 and

to the corresponding characteristic equation (9) with m = 1 with:

Ly L, A0 384T o 9347
— U v v v
12" 2024820 Y " 85044960 © 85044960
5 4139 18521 . 2347¢
T _ 9.2 4 6 _ 0 .8
o) = @t v = oY T 8504496 ° 85044960

T (v)

(18)

The layers for the development of the new four-stages algorithm are presented in the

flowchart of Figure 1 (for construction of flowcharts in LaTeX one can see [90]):
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Development of the New
Four-Stages Algorithm

l

Stage 1: Contentment of the
conditions for P—stability

Stage 2: Contentment of the Ex-
punging of the Phase-Lag and
its First and Second Derivatives

Stage 3: Solution of the Obtained
Nonlinear System of Equations

l

Stage 4: Computation of the Local
Truncation Error (LTE) of the New
Developed Four-Stages Algorithm

Figure 1. Production of the four-stages two—step symmetric algorithm

3.1 Contentment of the conditions for P—stability

In order to obtain the contentment of the conditions for the P—stability for the new

four-stages method, the technique of Lambert and Watson [15] and Wang [83] is used:

e The contentment of the characteristic equation given by (9) with m = 1 for A = ¥,

where [ = /—1, leads to the following equation:

(e”)2 Yo (v) +e' Ty (v) +To(v) =0 (19)

e The contentment of the characteristic equation given by (9) with m = 1 for A = e~1?,
where I = y/—1, leads to the following equation:

(") Yo (0) + e Ty () + Yo (v) = 0 (20)

Remark 6. The conditions for P-stability (19) and (20) are produced using:
o the Definition 4

o the characteristic equation given by (9) with m = 1, where ®;, j = 0, 1 given by

(18).
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3.2 Contentment of the expunging of the phase—lag and its first
and second derivatives

The contentment of the expunging of the phase-lag and its first and second derivatives

for the new four-stages algorithm (16) with coefficients mentioned in (17) leads to the

system of equations:

19
Phase — Lag(PL) = 5 \172 =0 (21)
. o vy
First Derivative of the Phase — Lag = N7 0 (22)
3
I Wy
Second Derivative of the Phase — Lag = i 0 (23)
3

where U; (v), j = 0(1)3 are given in the Appendix A.

3.3 Solution of the obtained system of nonlinear equations which
is defined by (19) - (23)

Solving the nonlinear system of equations produced by (19), (20), (21)-(23), the coeffi-

cients of the new four-stages method are determined:

Wy
“1 7 340179840 cos (v) v + 3061618560 sin (v)
\E
C, =
7469408 (cos (v) v + 9 sin (v))
o = L (24)

234708 (cos (v) v + 9 sin (v))
where ¥; (v), j = 4(1)6 are given in the Appendix B.

The probability, during the integration procedure, of impossibility of determination
of the coefficients (24) - a reason, for example, can be that the denominators of (24) —
0 for some values of |v| - leads us to give the truncated Taylor series expansions of the
coefficients developed in (24) in the Appendix C.

The behavior of new obtained coefficients is presented in Figure 1.

The development of the new four—stages algorithm is integrated (see Figure 1) with
the determination of its local truncation error (LTE):

93

LTENxvacp -
NMASPS2DY 161653459968000

" (5 P19 + 324 o110
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behavior of the coefficient a_1 behavior of the coefficient ¢_0
6

4
In(c 0)

10 )
In(a 1)

-6

6

~

Figure 2. Behavior of the coefficients of the new four-stages method (16) given
by (24) for several values of v = ¢ h.

+300° ) — 301 @n> +0 (h"). (25)

We symbolize the new obtained four-stages method as NM4SPS2DV. The explana-
tion of the abbreviation NM4SPS2DV is: New Method of Four-Stages P-Stable with
Vanished Phase-Lag and its Derivatives up to Order Two.

Remark 7. The above determined LTE formula (25) is useful for
e the definition of the algebraic order of the new four—stages method

e for the construction of the asymptotic form of the local error for a specific test

problem on which the evaluation of the efficiency of the new method will be based.



-396-

4 Local truncation error and stability analysis of the
new four—stages method

4.1 Comparative local truncation error analysis

In this section we will study the local truncation error of some four—stages schemes, based

on the test model:

¢'(x) = (V(z) = Vo +T) o) (26)
where

e V(z) denotes the potential function,

e 1/, denotes a constant approximation of the potential on the specific point z,

o Z(z) =V(x) — V. and
e F denotes the energy.

Remark 8. It is easy to see that the test model (26) is the radial time independent

Schrodinger equation with potential V(x).

We will evaluate the following four-stages algorithms:

4.1.1 Classical method (i.e., method (16) with constant coefficients)

53

ITEpp = ———2°
Ol = 7 32330691993600

1 09 4 0 (1) (27)
4.1.2 P-stable method with vanished phase—lag and its first and second
derivatives developed in section 3

The formula of the Local Truncation Error for this four-stages algorithm is given by (25)

For the comparative error analysis, the following methodology is used:

e Step 1: We apply the LTFE formulae given by (27) and (25) to the scalar model
(26).

e Step 2: Step 1 leads to the new formulae of LTE.
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Remark 9. The technique which is used for the production of the new formulae of
LTE consists of the substitution of the formulae of the derivatives of the function p,
which are obtained using the scalar model (26)), in the formulae given by (27) and
(25). Some formulae of the derivatives of the function ¢ are given in the Appendiz

D.

e Step 3: Step 2 leads to the new formulae of LTE for the four-stages algorithms
which are under evaluation.
Remark 10. Observation of the new formulae of LTE — the characteristic of
these formulae is the inclusion of the parameter I' and the energy E.

The general form of the new formulae of LTE is given by:

k
LTE =h" Y &1 (28)
j=0
with ®;:
1. real numbers (frequency independent cases i.e. the classical case) or
2. formulae of v and I' (frequency dependent schemes),
p is the algebraic order of the four—stages method and k is the maximum possible

power of I" in the formulae of LTFE.
e Step 4: Two set of values for the parameter I' are investigated:
1. The Energy is Closed to the Potential.
Resultants:
I~0=I"~0,i=1,2,.... (29)
which leads to:
LTEr_g = h*F Ag (30)

Remark 11. The quantity Ao is the same for all the four-stages methods of
the same family, i.e. LT Ecp = LT Enpaspsapy = h'® Ag. Ag is given in the

Appendiz E.
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Theorem 2. The formula (29) leads us to we conclusion that forT' =V,— E =~
0 the asymptotic forms of the local truncation error of the classical method
(constant coefficients - (27)) and the local truncation error of the four-stages
method with vanished phase—lag and its first and second derivatives developed
in Section 3 (with LTE given by (25), are the same and equal to h'? Ay, where
Ny is given in the Appendiz E.

2. The Potential and the Energy are far from each other. Therefore,
'>>0vI<<0=|I>>0.
Resultants:
The most accurate four—stages method is the one with asymptotic formula of

LTE, given by (28), which contains the minimum power of I' (i.e. minimum

values for k) and the maximum value of p.

e The above leads us to the following asymptotic forms of the LT E formulae for the

four—stages methods which are under evaluation.
4.1.3 Classical method

The Classical Method is the method (16) with constant coefficients.

53
LTEc, = == h'6 4. O (K1) . 31
“L = 32330691993600 (“" (2) T+ ) +0 (h') (31)

We note here that we present the leading term in the asymptotic form of the Local
Truncation Error. Consequently, the symbol --- means that there are also terms for

Tij=0(1)7.

4.1.4 P-stable method with vanished phase-lag and its first and second
derivatives developed in section 3

53 @ .
LT Ennasps = ———pif | —Z I°
NMASPS2DV = 505167062400 <dz2 @@

+> +0 (h). (32)

We present here the leading term in the asymptotic form of the Local Truncation Error.

Consequently, the symbol - - - means that there are also terms for I'V j = 0(1) 5.

The above analysis leads to the following theorem:
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Theorem 3.
e Classical Method (i.e., the method (16) with constant coefficients): For this method

the error increases as the eighth power of T'.

o P-Stable Tenth Algebraic Order Method with Vanished Phase—Lag and Its First and
Second Derivatives Developed in Section 3: For this method the error increases as

the sizth power of .

Consequently, for the numerical solution of the time independent radial Schrodinger equa-
tion, which is the scalar model for the local truncation error analysis, the new four—stages
method with vanished phase-lag and its derivatives up to order two is the most accurate

one.

4.2 Stability analysis
The following scalar model is used:
@' =—w?o. (33)

Remark 12. The observation of (7) and (33) leads to the conclusion that w # ¢, where
¢ is the frequency of the scalar model (7) (phase-lag analysis) and w is the frequency of
the scalar model (33) (stability analysis).

Application of the new four—stages scheme (16) to the scalar model (33) leads to the

difference equation:
Ql (57 U) (QD"+1 + Spn—l) + QO (S,’U) Pn = 0 (34)

and the corresponding characteristic equation:

Qi (s,0) (N+1)+Q(s,0) A =0 (35)

where the stability polynomials ©; (s,v), j = 0,1 are given by:

1+82 bl -+ .8‘4 b](/'g, +$6 bl C3C5 + 88 b1 C1C3Cs

O (s,v)

Qo(5,0) = a1+ 8°by— s bicy — 85y cyes — s5by coes s, (36)

where s =wh and v = ¢ h.
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Remark 13. Observing the formulae (36) and (18), we arrive to the conclusion that the
formulae (36) are dependent on s and v, while the formulae (18) are dependent only on
.

Substituting the coefficients b;, j = 0,1 and ¢, k¥ = 2(1)5 given by (17) and the
coefficients a; and ¢, k = 0,1 given by (24) into the stability polynomials (36), we obtain

the following formulae for the stability polynomials Q; (s,v), j =0, 1:

_ \117(571))
D) = 60w, )
D) = s (37)

170089920 W (s, v)

where U; (s,v), j = 7(1)9 are given in the Appendix F.

Remark 14. We note that the conditions and definitions of P-stability and singularly
almost P—stability, which are given in Section 2, are given for problems with one frequency

i.e. for problems in which the following relation is hold: w = ¢.

In order the new proposed four-stages method (16) to satisfy the condition of a non
zero interval of periodicity, the following relation for the of its characteristic equation (35)

must hold:

Al <1 (38)

4.2.1 Flowchart for the construction of the s — v domain for the new four—
stages method
The development of the s — v domain for the new scheme is based on the flowchart of
Figure 3.
The result of the flowchart presented in Figure 3 leads to the s — v domain which is

constructed in Figure 4.

Remark 15. Observation on the s—v domain presented in Figure 4 leads to the following

remarks:

1. The new produced four-stages P-stable method is stable within the shadowed area

of the domain.
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Development of the s—v Domain
for the New Multistage Scheme

J

Step 1: Construction of the
characteristic equation (35)

l

Step 2: Solution of the equation
mentioned on the Step 1
for several values of s and v

]

Step 3: Evaluation of the developed
solution from the Step 2 - Study of
the satisfaction of the condition (38)

l

Step 4.1 Case A: The solutions of
the equation (35) satisfy the condi-
tion (38) — a point of the (s,v)
domain is obtained and is plotted

|

Step 4.2 Case B: The solutions of the
equation (35) do not satisfy the con-
dition (38) — the specific point
(s,v) is rejected and a new point (s, v)
is selected for evaluation of is hold

Figure 3. Procedure for the construction of the s — v domain for the new four—
stages scheme
2. The new produced four-stages P-stable method is unstable within the white area of

the domain.

Remark 16. The above observations leads to the following remarks on the applicability

of the new produced four-stages P-stable method:

1. Problems for which w # ¢. For these kind of problems, the most efficient methods
are those with s — v domain within the shadowed area of the Figure 4 excluding

the area around the first diagonal.

2. Problems for which w = ¢ (see the Schrodinger equation and related problems).
For these kind of problems the most efficient methods are those with s —v domain

equal with the area around the first diagonal of the Figure /.
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Stability Region for the Family of Four Stages Two-Step P-stable Fourteen Algebraic Order Methods with Vanished Phase-Lag and its First and Second Derivatives
T T T

v (method)

s (test problem)

Figure 4. The plot of s — v domain of the new produced four-stages P—stable
method with eliminated phase—lag and its first and second derivatives.

The methodology for the determination of the interval of periodicity of the new pro-

duced four-stages P-stable method is as follows:

1. Substitution s = v on the stability polynomials §;, i = 0,1 given by (37).

2. Evaluation of the produced area around the first diagonal of the s—v domain defined

in Figure 4.

The above methodology leads us to the conclusion that the interval of periodicity of
the new produced four-stages P—stable method is equal to (0, 00).

We have the the following theorem:

Theorem 4. The new four-stages P-stable method produced in Section 3:

e is of four stages
e is of fourteen algebraic order,
o has eliminated the phase—lag and its first and second derivatives and

e is P-stable i.e. has an interval of periodicity equals to: (0,00).
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5 Numerical results
The evaluation of the efficiency of the new obtained four—stages method is based on its
application to the numerical solution of:

1. The one-dimensional time-independent Schrodinger equation and

2. The systems of coupled differential equations of the Schrodinger type.

5.1 Radial or one-dimensional time independent Schrédinger
equation
The one-dimensional time-independent Schrédinger equation is given by:
@"(r) =L+ 1)/ + V(r) = k] o(r), (39)
where

1. The function ©(r) = I(I+1)/r? + V (r) determines the effective potential, for which

we have that: O(r) — 0 as r — co.
2. k% € R determines the energy.
3. | € Z determines the angular momentum.
4. The function V determines the potential.

The problem (39) is a boundary value one and consequently the boundary conditions

are:
p(0)=0

and another condition at the end point of the integration area which is determined for large
values of r from the physical considerations and characteristics of the specific problem.

The new obtained four—stages method has its coefficients aq, ¢g, ¢; dependent from
the quantity v = ¢ h, where ¢ is the frequency of the specific problem. Consequently,
in order the coefficients of the new four-stages algorithm to be computed during the
integration, it is necessary the determination of the frequency ¢ for the specific problem.

In our numerical evaluations and for (39) and [ = 0 we have:

o=V () =k =V|V ()~ El

where V (r) determines the potential and E = k? determines the energy.
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5.1.1 Woods—Saxon potential

As we mentioned above the model of the radial time-independent Schrodinger equation
(39) consists the potential V' (r). Therefore, the computation of the the values of the po-
tential V' (r) requires the formula of the function of the potential V' (r). For our numerical
evaluation the Wood—Saxon potential is used. The formula of the Wood—Saxon potential

is given by:

I T (19
V(T)_l-i-f (1,(1+§)2

with & = exp [T’X”} , Up=—50, a =0.6, and Xy = 7.0.

a

(40)

In Figure 5 we present the plot of the Wood—-Saxon potential for several values of .

The Woods-Saxon Potential

5 10 is

504

Figure 5. Plot of the Woods—Saxon potential for several values of r.

Based on the Woods-Saxon potential and the methodology introduced in [20], [21]

and [19], the following values of the frequency ¢ are used during the integration procedure:

V=50+FE for re€0,6.5— 2h]
V=37T5+FE for r=65—nh

6={ V=25+E for r=65
V—-125+F for r=65+h

VvE for r € [6.5+ 2h,15].

Below we give some examples of this technique:
1. On r = 6.5 — h, the value of ¢ is approximated by the value: /—37.5 + E. Conse-
quently, v = ¢ph =+/-=375+ Eh.
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2. On r = 6.5 — 3 h, the value of ¢ is approximated by the value: +/—50 + E. Conse-
quently, v = ¢ph = +/—50+ E h.

Remark 17. We note here that the potential V (r) is a user defined function. There are
a lot of potentials which are of great interest in several disciplines of Chemistry. For the
most of them, their eigenenergies are unknown. We selected the Woods—Sazon potential

since for this potential the eigenenergies are known.

5.1.2 The resonance problem of the radial Schréodinger equation

As we mentioned above the numerical solution of the problem (39):

e with [ =0 and

e using the Woods-Saxon potential (40)

is the first problem where the new proposed four—stages two—step method will be evalu-
ated.

From theoretical point of view the integration interval of the above problem is equal to
[0, 00). In order to solve the problem (39) numerically, it is necessary the interval [0, c0) to
be approximated by a finite one. For the purposed of our numerical tests, we approximate
the the interval [0, 00) by the interval [0, 15]. We will apply the numerical solution of the
problem (39) under the above conditions, to a wide range of energies: E € [1,1000].

The faster elimination of the potential V' (r) then the term “’;”, leads to a new form

for the equation (39):

" (r) + (kz - l(l; 1)) p(r)=0 (41)

when r — oco. The solutions of the model (41) are given by krj (kr) and krn; (kr),
which are linearly independent, with j; (k7) and n; (kr) represent the spherical Bessel
and Neumann functions respectively (see [84]).

Therefore, the asymptotic form of the solution of the model (39) (i.e. in the case

where r — 00) is given by:

w(r) ~ Akrg (kr) — Bkrng (kr)
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~ AC {sin (kr — %r) + tan §; cos (k?“ — %)}

where ¢, is the phase shift and A, B, AC € R. The phase shift is computed based on the

direct formula:
@ (r2) S(r) — ¢ (r1) S(rz)
@ (r) C(r1) — ¢ (r2) C (r2)

where 7 and 7o are distinct points in the asymptotic region (we chosen r; = 15 and ry =

ry —h) with S(r) = krj(kr) and C (r) = —krn; (kr). The problem described above

tan §; =

is an initial-value one. Therefore, it is necessary to compute the values of ¢;, j = 0,1
before starting the application of a two—step scheme. The value ¢, is determined by the
initial condition of the problem. The value ¢; is computed using the high order Runge—
Kutta—Nystrom methods (see [22] and [23]). The values ¢;, i = 0, 1 are the basis in order
to compute the phase shift §; at the point 7, of the asymptotic region. We note that ¢;
is the approximation of the function ¢ at the point z;.

The numerical solution of the above problem leads to two possible results:

e the phase-shift ¢; or

o The energies £, for £ € [1,1000], for which § = 3.

In our numerical tests we chosen the second problem, which is known as the reso-
nance problem.

The boundary conditions are:
©(0)=0 , (r)=cos (\/Er) for large r.

For comparison purposes we use the following methods for the computation of the the

positive eigenenergies of the resonance problem:

e Method QTS8: the eighth order multi-step method developed by Quinlan and

Tremaine [24];

e Method QT10: the tenth order multi-step method developed by Quinlan and

Tremaine [24];

e Method QT12: the twelfth order multi-step method developed by Quinlan and

Tremaine [24];
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e Method MCRA4: the fourth algebraic order method of Chawla and Rao with

minimal phase-lag [25];
e Method RA: the exponentially—fitted method of Raptis and Allison [26];

e Method MCRS6: the hybrid sixth algebraic order method developed by Chawla

and Rao with minimal phase-lag [27];
e Method NMPF1: the Phase-Fitted Method (Case 1) developed in [14];
e Method NMPF2: the Phase-Fitted Method (Case 2) developed in [14];
e Method NMC2: the Method developed in [28] (Case 2);
e Method NMC1: the method developed in [28] (Case 1);
e Method NM2SH2DV: the Two-Step Hybrid Method developed in [1];
e Method WPS2S: the Two-Step P-stable Method developed in [83];
e Method WPS4S: the Four-Step P-stable Method developed in [83];
e Method WPS6S: the Six-Step P-stable Method developed in [83];

e Method NM3SPS2DV: the Three Stages Tenth Algebraic Order P—stable Sym-
metric Two—-Step method with vanished phase-lag and its first and second derivatives

developed in [6];

e Method NM4SPS2DV: the Four-Stages Fourteen Algebraic Order P-stable Sym-
metric Two—Step method with vanished phase-lag and its first and second derivatives

developed in Section 3.

In Figures 6 and 7 we present the maximum absolute errors Err,,,, which are defined

by: Ertmae: = mazx|logy, (Err) | where
ETT = |Ecalculated - Eaucurute‘ .
In order to define the quantity Err, two values of the specific eigenenergy are used:

1. The computed eigenenergies determined as F.yjeuiated Which are computed using each

of the numerical methods under evaluation.
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Figure 6. Accuracy (Digits) for several values of CPU Time (in Seconds) for the
eigenvalue Ey = 341.495874. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

2. The accurate eigenenergies (or as also called reference values for the eigenenergies)
determined as Ejceyrate Which are computed using the well known two-step method

of Chawla and Rao [27].

In Figures 6 and 7 we present the following:

e the maximum absolute errors Err,,,, for the eigenenergies Fy = 341.495874 and
FE3 = 989.701916, respectively, and for all the numerical methods under evaluation

and for several values of CPU time (in seconds).

e the needed CPU time (in seconds) (as mentioned above).

We use the symbols Fy and Fj for the eigenenergies in our numerical tests since it
is known that the Woods—Saxon potential has also the eigenenergies Ey and E;. We
chose the eigenenergies E, and F3 because for these eigenenergies the solution has stiffer
behavior and therefore the newly obtained method can show its efficiency more effectively.

5.1.3 Conclusions on the achieved numerical results for the radial Schrédinger
equation

Figures 6 and 7 lead us to the following conclusions:
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Figure 7. Accuracy (Digits) for several values of C PU Time (in Seconds) for the
eigenvalue F3 = 989.701916. The nonexistence of a value of Accuracy
(Digits) indicates that for this value of CPU, Accuracy (Digits) is less
than 0.

Method QT10 is more efficient than Method MCR4 and Method QTS8.

Method QT10 is more efficient than Method MCRG6 for large CPU time and
less efficient than Method MCR6 for small CPU time.

Method QT12 is more efficient than Method QT10

Method NMPF1 is more efficient than Method RA, Method NMPF2 and
Method WPS2S

Method WPSA4S is more efficient than Method MCR4, Method NMPF1 and
Method NMC2.

Method WPS6S is more efficient than Method WPS4S.
Method NMC1, is more efficient than all the other methods mentioned above.

Method NM2SH2DV, is more efficient than all the other methods mentioned

above.



-410-

e Method NM3SPS2DV, is more efficient than all the other methods mentioned

above.

e Method NM4SPS2DV, is the most efficient one.

5.2 Error estimation

The second of our tests is the numerical solution of systems of coupled differential equa-
tions arising from the Schrodinger equation.

We will use variable-step schemes in order to solve this problem.

Definition 9. Variable-step method is called the numerical algorithm with a step length

or a stepsize which is changing during the integration procedure.

Definition 10. We call Local Truncation Error Estimation Procedure (LTERRESTPRO)
a methodology which uses a variable-step method for changing the stepsize during the
integration.

For the bibliography on the development of numerical methods of constant or variable
step length for the numerical solution of the Schrédinger equation and related problems

one can see [14]- [83] and references therein.

The categories of the LTERRESTPRO procedures are shown in Figure 8.

Viariable-Step Methods
— Embedded Methods

cedure Based on dure Based on the the Order

—
LTERRESTPRO Pro- ‘ ‘ LTERRESTPRO Proce-
the Algebraic Order of Derivatives of the Phase-Lag

Figure 8. Categories of LTERRESTPRO Procedures used for the Development of
Embedded Methods for the Problems with Oscillatory and/or Periodical
Solutions

The estimation of the local truncation error (LTE) in the lower order solution ¢Z,
is necessary for the procedure of changing of the stepsize during the integration. We use

for this the following relation:
LTE =| ¢7€I+1 - Wﬁﬂ | (42)

where %, and ¢ | are
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¢ LTERRESTPRO Procedure which is based on the algebraic order of the
numerical schemes. For this procedure, L, ; denotes the numerical method with
the lower algebraic order solution and ¢, denotes the numerical method with the

higher algebraic order solution.

¢ LTERRESTPRO Procedure which is based on the order of the derivatives
of the phase—lag. Let us consider that the higher order of the derivatives of
the phase—lag which are vanished for the numerical methods which belong in this
procedure are p and s respectively, where p < s. For this procedure ¢~ ; denotes
the numerical method with vanished all the derivatives of the phase-lag until the
order p and ¢, | denotes the numerical method with vanished all the derivative of

the phase-lag until the order s.

For our evaluation methodology we use the first LTERRESTPRO procedure for the
estimation of the local truncation error. Consequently, we use:

As @k | we use the tenth algebraic order method developed in [6] and as ¢ff,; we use
the fourteenth algebraic order method developed in Section 3.

Using the Local Truncation Error Control Procedure LTERRESTPRO, in Figure 9

we present the variable-step technique used in our paper.Notifications:

e h, is denoted as the step length which is used during the n'* step of the integration

technique and

e acc is denoted as the requested accuracy for the local truncation error LT E which

is defined by the user.

Remark 18. We use the methodology of local extrapolation, i.e. the local truncation
error estimation is based on the lower order solution oL, while the approzimation of the

solution at each point of the integration domain is done via the higher order solution @¥, .

5.3 The system of coupled differential equations arising from
the Schrédinger equation

The systems of the close-coupling Schrodinger equations are given by:

2, L+ 1) X
@‘F’Ci*T*‘/ﬁ @ij:mglv;m@@mj
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Error Con-
trol Technique
LTERRESTPRO

I

LTERRESTPRO <

hn+1 = th ves acc
acc <
hpy1 = hy LTERRESTPRO <

100 acc

hn+1 = %hn and
the step is repeated

Figure 9. Flowchart for the Local Truncation Error Control Technique
LTERRESTPRO. The parameter acc is defined by the user

for 1 <i < N and m # i.

Models of problems which are expressed with systems of differential equations of the
above form, can be found in several scientific disciplines like: quantum chemistry, material
science, theoretical physics, quantum physics, atomic physics, physical chemistry, chemical
physics, quantum chemistry, electronics, etc.

Since the above problem is a boundary value one, the boundary conditions, are given
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by (see for details [29]):
pij=0at =0

AN
i ~ ki gy, (kiw)dy; + (k—) K by xny; (ki) (43)
j

Remark 19. The four-stages scheme produced in this and the associated embedded method

can be applied effectively to both open and close channels problem.

The analysis presented in [29] leads to the new formulae of the asymptotic condition

(43):

¢~ M+ NK'.

where the matrix K’ and diagonal matrices M, N are give by :

ki 1/2
K= ()

M;; = kixj,(kiz)d;

Ni]‘ = kixnli (klx)&]

The specific problem which we solve in our numerical tests is the rotational excitation
of a diatomic molecule by neutral particle impact. This problem can be found in several
disciplines like quantum chemistry, theoretical chemistry, theoretical physics, quantum
physics, material science, atomic physics, molecular physics, in technical applications in
the analysis of gas dynamics and stratification of chemically reacting flows, dispersed
flows, including with nano-sized particles etc. In the above mentioned problem one can
finds the close-coupling Schrodinger equations (see [9], [10-13], [85] - [89]). Using the

determinations:

e quantum numbers (j,!) which determine the entrance channel (see for details in

29]),
e quantum numbers (j',{") which determine the exit channels and

e J=j+1=j +1 which determine the total angular momentum.

we have:
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where
2p Loy o
b= 3 [+ DG+ 0 -0+ 1]
and F determines the kinetic energy of the incident particle in the center-of-mass system,
I determines the moment of inertia of the rotator, y determines the reduced mass of the
system, Jjl determines the angular momentum of the quantum numbers (j,1) and j” and

" determine the quantum numbers.

The following potential V' is used during our numerical experiments (see [29]):

Vi(w, k) = Vo) Po(ky ;) + Va(a) Pa(ky k)
and consequently, the coupling matrix has elements of the form:
<JU T\ V| 3" T >= 650500 V() + fo(5'1, 51" T)Va(z)

where f5 coefficients are determined from formulae described by Bernstein et al. [30] and
ﬁjrj determines a unit vector parallel to the wave vector kj; and P;, ¢ = 0,2 determine the
Legendre polynomials (see for details [31]). We note also that Vy(z) and Va(x) determine
the potential functions defined by the user. Based on the above achievements, we obtain

the following new formulae of the boundary conditions:

¢li@)=0atz =0 (44)
Jjl . kb 2 J( 7. 71 . /
Py (x) ~ 8500w expl—i(kje — 1/2m)] — | 7= | 5751 J') expli(kyjz — 1/2U'm)]
J

where S matrix. For K matrix of (43) the following formula is used:
S =(I+iK)(I—-iK)™

Based on the methodology fully described in [29], we use the four—stages two—step
method and the embedded pair both obtained in this paper in order to solve numerically
the above mentioned problem.

We use the following parameters for the S matrix for our numerical tests:

2p 7
73 = 10000 5 5 =2351 ; E=11
1 1
Vo(z) = 2% Va(z) = 0.2283Vo ().

Based on the study fully presented in [29] we chose the following for our test:
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e J=06and

e j =0 for the excitation of the rotator state to levels up to j/ = 2,4 and 6.

The above values obtain systems of four, nine and sixteen coupled differen-
tial equations of the Schrodinger type, respectively. Following the theory and the

methodology fully described in [31] and [29], the potential is considered infinite for x less

than zo. Therefore, the boundary condition (44) can be written now as
Sﬁ}lfjlf(lo) =0.
For our numerical test and for comparison purposes we use the following methods:
o the Iterative Numerov method of Allison [29] which is indicated as Method I?,

e the variable-step method of Raptis and Cash [32] which is indicated as Method
II

)

e the embedded Runge-Kutta Dormand and Prince method 5(4) (5(4) means: Runge-
Kutta method of variable step which uses the fourth algebraic order part in order
to control the error of the the fifth algebraic order part) which is developed in [23]
which is indicated as Method III,

e the embedded Runge-Kutta method ERK4(2) developed in Simos [33] which is
indicated as Method IV,

e the embedded two—step method developed in [1] which is indicated as Method V,

e the new developed embedded two-step method with error control based on the

algebraic order of the method developed in [6] which is indicated as Method VI.

e the new developed embedded two-step method with error control based on the
algebraic order of the method developed in this paper which is indicated as Method
VIIL

In Table 2 we present:

2We note here that Iterative Numerov method developed by Allison [29] is one of the most well-known
methods for the numerical solution of the coupled differential equations arising from the Schrédinger
equation



-416-

Table 1. Coupled Differential Equations. Real time of computation (in sec-
onds) (RTC) and maximum absolute error (MErr) to calculate |S|? for
the variable-step methods Method I - Method VIIL acc=10"%. Note that
hmax is the maximum stepsize. N indicates the number of equations of
the set of coupled differential equations

Method N hmax RTC MErr
MethodI 4 0.014 325 12x1073
9 0014 2351 5.7x1072
16 0.014 99.15 6.8 x 107!
Method II 4 0.056 1.55 8.9 x 1071
9 0056 843 7.4x107°
16 0.056 43.32 8.6 x 1072
Method IIT 4 0.007 45.15 9.0 x 10°

Method IV 4 0.112 039 1.1x107°
9 0.112 348 28x107*
16 0.112 1931 1.3x 1073
Method V. 4 0448 0.20 1.1x10°°
9 0448 207 57x107°
16 0.448 11.18 8.7 x 107°
Method VI 4 0.896 0.04 38x107°
9 0.896 0.55 5.6x1078
16 0.896 845 6.5x 1078
Method VII 4 0.896 0.01 1.2x 1078
9 0.896 039 1.9x1078
16 0.896 7.12 22x1078

e the real time of computation requested by the numerical algorithms I-VII mentioned
above in order to calculate the square of the modulus of the S matrix for the sets

of 4, 9 and 16 of systems of coupled differential equations respectively,

e the maximum error on the computation of the square of the modulus of the S

matrix.

All computations were carried out on a x86-64 compatible PC using double-precision

arithmetic data type (64 bits) according to IEEE® Standard 754 for double precision.
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Conclusions

A new P-stable four-stages fourteen algebraic order two-step method with eliminated

phase-lag and its first and second derivatives was created in this paper.

The creation was done using the following levels:

1.

1st Level: Satisfaction of the P—stability properties (based on the requirements first

introduced by Lambert and Watson [15] and Wang [83]).

. 2nd Level: Satisfaction of the property of the elimination of the phase-lag.

. 3rd Level: Satisfaction of the properties of the elimination of the first and second

derivatives of the phase-lag.

We note here that the above methodology for the creation of P—stable numerical

methods was first introduced by Medvedev and Simos [6].

We have also analyzed the new created four-stages two—step method using the follow-

ing levels:

o Ist Level: Computation of the local truncation error (LTE).

2nd Level: Computation of the asymptotic form of the LTE

3rd Level: Comparison of the asymptotic form of the LTE of the new four—stages
two—step method with the asymptotic forms of the LTE of similar methods.

4th Level: Investigation of the stability and the interval of periodicity properties of

the new four-stages two—step method.

5th Level: Evaluation of the computational efficiency of the four-stages two-step

method.

The theoretical, computational and numerical achievements presented in this paper

lead to the conclusion that the new four—stages two—step method is more effective for

the numerical solution of the Schrédinger equation than other well known and recently

obtained methods of the literature.

Acknowledgment: The reported study was funded by RFBR, according to the research
project No. 16-38-60114.
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Appendix A: Formulae for the Y; (v), i = 0(1)3
4694 cos (v) v ¢; — 234718 ¢y
4694 cos (v) v® — 185210 0°
347676 cos (v) v — 347676 v*
14174160 cos (v) v* + 70870800 v
170089920 cos (v) + 85044960 a;
6027204351168000 v — 2863208668320 sin (v) v°
79794794439360 sin (v) v* — 63486403764 sin (v) v®
1205440870233600 sin (v) v — 31380540408 v°
5508409 sin (v) v'? — 815995572 sin (v) v'°
2057863708800 v" — 7232645221401600 sin (v)
62037576881280 v° — 59136183025920 v* + 434687870 v'3¢;
815995572 v' ¢ + 1631991144 v ¢y — 49900130280 v7 ¢y
399201042240 sin (v) v8¢; — 815995572 sin (v) v'%¢;
33266753520 sin (v) v'%; — 798402084480 v”a; ¢,
798402084480 v”cy — 5508409 v'3¢,
11016818 sin (v) v'¢; — 5508409 sin (v) v'%¢;?
499001302800 v¢; — 602720435116800 va,

598801563360 v°a; — 29568091512960 v3a,

—615100023548290215936000 cos (v) — 2304728831776020249600 v°
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33295113411815974118400 v* — 143233541199203264409600 v
53304062970357239040 v® — 12928235923 cos (v) v'®
51258335295690851328000 a; + 421422460419280320 v°
220950385012728 v + 29255400239322096 v'2
4243754583657388800 v3ar ¢ — 475300513369627545600 v8a;cy
1040944661713756800 v'%a;c; — 12928235923 cos (v) v*1c,?

45876483175002480 v'2cy — 14351287847755098240 v'0¢;
2076425259161853600 v*2¢; + 94569538910945616 v e,
117115605767160 cos (v) v'8¢;? — 1405387269205920 cos (v) v'6¢,?
5745424822452 cos (v) v'8¢; — 38784707769 cos (v) v,
2872712411226 cos (v) v*°c,? — 38784707769 cos (v) v*0c;
38784707769 v*0coc; — 475300513369627545600 v5cy
2872712411226 cos (v) v'® — 447007768902324 cos (v) v'%¢
20159852233641120 cos (v) v'c; — 2872712411226 v'%¢

8198092403701200 v'%¢;? + 9837710884441440 v'%a;

425553114736008 v ¢y + 512583352956908513280000
9575708037420 v'®cyer + 1020212430890 v'® ¢

819809240370120 v'®che; — 329892163135164 cos (v) v'*
24007788523551672 cos (v) v'? — 1204342384201276320 cos (v) v'°

55168809587546054400 v3cy — 594125641712034432000 v5¢;
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889546964873364 v'%¢c; 4 37016968351902739200 v%a,
936850195542381120 v¥a; — 12928235923 v'8¢,
3060637292670 v*°c;? — 19151416074840 v'3¢, 2
50925055003888665600 cos (v) v5¢;

561835147647533760 cos (v) v'%¢;

8487509167314777600 cos (v) v'%¢

16864647230471040 v a1 ¢,

16864647230471040 v ¢ye; + 24828508422637920 v'%a; ¢y
2392797873552166080 v'0¢y + 688356159979065177600 v'a;
5270732343934644787200 v2a,

42391524755918257920 cos (v) v®
1035540006778525248000 cos (v) 2°
16586509563916746854400 cos (v) v*
153775005887072553984000 cos (v) v?

2347 0% ¢; + 234705 + 173838 v ++ 7087080 v? + 85044960.

Appendix B: Formulae for the Y; (v), j = 4(1)6

U, = 185210 cos (v)v” + 2347v" cos (2v)

+ 555630 sin (v) v® — 7041 v sin (2v)

7041 0" 4 695352 cos (v) v° + 347676 v° cos (2v)
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3476760 sin (v) v* — 1738380 v sin (2v)

1043028 v® — 212612400 cos (v) v*

21261240 v3 cos (2v) — 1488286800 sin (v) v2
148828680 v? sin (2v) — 63783720 v*

340179840 v cos (2v) — 3061618560 sin (2 v)
1020539520 v

2347 (cos (v))? " + 30511 cos (v) sin (v) v°
277815 cos (v) v — 680359680 v

235020 (cos (v))? v® — 3055965 sin (v) v°

4694 v" + 3824436 cos (v) sin (v) v*

4097364 cos (v) v° + 10135608 (cos (v))? v*
4519788 sin (v) v* — 695352 v°

191351160 cos (v) sin (v) v + 46561032 cos (v) v*
531531000 sin (v) v — 42522480 v

2381258880 cos (v) sin (v) — 1700899200 cos (v) v
2347 cos (v) v” + 11735 sin (v) v°

202002 cos (v) v® + 173838 sin (v) v*

1111260 v° + 9868488 cos (v) v* — 2781408 v*
21261240 sin (v) v* + 170089920 cos (v) v

595314720 sin (v) + 425224800 v.
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Appendix C: Truncated Taylor Series Expansion Formulae for the

coefficients of the new proposed multistage scheme given by (24)

9 53 v'6 4578089 v'8 n
a = —2— _ .
! 53884486656000  90028044925378560000

592847 530

~ 122460 T 69705900
10499317 v8 925328737 v1°

46009611648000  50066822856960000

Cy —

32980634809 v'? _ 468157795613 v
14161758465254400000  1628602223504256000000

1025325640556311 v'°
28728543222615075840000000

756845475622778557 v'® n
170647546742333550489600000000

o 6253 n 5300 n 5898883 v®
1T 844920 ' 139411800 | 92019223296000
n 1177910291 v*0 107298199231 v!2
137683762856640000  99132309256780800000
n 140054628697 v'*
1036383233139072000000
n 1932493783626253 v'6

114914172890460303360000000

178413063067461767 v1® N
85323773371166775244800000000

Appendix D: Expressions for the Derivatives of ¢,

Expressions of the derivatives which are presented in the formulae of the Local Trun-

cation Errors:

P = (V(2) = Ve+T) p(2) = (E(2) +T) p(a)



(4)

(5)

(6)

(=) e +2 (£20) o) + @) +T
(£=@) @ +3 (1220@) £o )
AE@) +T) 0 () w2 (@) + (B (@) + TP o (a)
(@) e+ (m2@) 2o



We compute the j-th derivative of the function ¢ at the point x,, i.e. 50;] )7 substituting

in the above formulae x with x,,.
Appendix E: Formula for the quantity Ag
4

110399 (2 (2))" ¢ (v) L2 (2)
16165345996800

2173 (E(2))* ¢ (z) (L2 (2))
57733378560

630 (52 (2) ¢ () H2@) 53 (HE2@) v (0) HE @)
177641164800 - 8074598400

23479 (2 (2))* ¢ (¢) &2 (2) 7937812 (2) ¢ (2) (L2 (2))° L2 (2)
4041336499200 2020668249600

63017 (2 (2))* (L (2)) (L2 (2))* L= (2)
288666892800

622697 (2 ()% ¢ (2) (L2 (2))” L2 (2)

de—

2020668249600

316037Z () ¢ (2) (452 (1)) 452 (@)
4041336499200

11819 Z (2) ¢ (2) (;1—‘15 (x)) 4= ()
91848556300

200872 (z) (L (2)) (L2 (2))* L2 (2)
72166723200

- 2
65243 E () ¢ (z) <f—E (x)) 4= ()
91848556800




23797E () (L () (dL: (1‘)) 42 ()
673556083200

97997 = (2) (Lo () (j—;z (x)) L2 (z)
1010334124300

- 6 — 3
261292 (z) (Lo (2)) (ddzs:' (1)) L2(2)
144333446400

5832 (2) (£ () (2 () &2 (@)
2385676800

2912 (2) ¢ (2) (& (2) £2 ()
168389020800

170713 = (2) ¢ () (%E (x)) L ()
4041336499200

2
53 (d = (fv)) ¢ () 53 (2(@)°p (2) LE(2)
10766131200 128296396800

dx

10 —
26977 (L= (JU))2 (Lo(2) 4= (2) N 53 (dr2~ (»‘)) ¢ (@) G (2)
367394227200 29606860800

265 (L2 (2))° (Lo (2)) L2 (2) L 87 (L2(2) (L¢ (2)) LHE (@)
1049697792 104969779200

164353 (L2 (2) (£ (@) (52 @) 52 @)
288666892800

351 (2 (@) (e (@) &2 (@) L (£2@) (Lo @) L2 ()

9868953600 1284595200
. s 3
1007 (ddz = (x)) () LS (x) 1641569 (2 (2))* ¢ (x) (%z (x))
113044377600 + 8082672998400

169441 (L2 (2))° (ko (0) (52 (@) 2 (@)
144333446400
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2
—_ 4 —
8533 (52(0) ¢ (@) (£2@) 53 (42 (2) Lo (@)
44410291200 2624244480

53 (£:2 @) (0 (1) {52 (@)
1009324800

11183 ((;LE (x)) (Lo () (%E(:p)) 42 ()
11102572800

—_ 2 4 — 2 —
138787 (2 () 0 (2) (&2 (2)) 2 (@)
577333785600

265 (fiE (x))ch(x) L2(e) 624181 (2 (2))’ o (2) (%E (@)2

2368548864 + 4041336499200

d= d? = 7o
16271 (a: () ¢ (x) (W: (1)) = (x)
15395567616

2491 (L2 (x)) ¢ (x) (f—E (:,;)) A= ()
9542707200

371 (2 ()" (¢ (@) (£2 (@) &2 (@)
28866689280

168169 (Z (1)) ¢ (v) (L2 (2)) L2 ()

2020668249600

b Q (m 3 —_ 2 42 —

33443 (2(2))’ ¢ (2) (L2 (2))" L= (2)
288666892800

31747 (2 (2))* ¢ () (%E(z)) 42 ()
202066824960

2083E (a) ¢ (1) (A2 (0)” (2 ()
367394227200

14893 (2 (2) (e () (L2 (@) (2 (@)’
52484889600
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511 = d =3\ &=
%%u:@ﬂa¢u»&m:uﬂzg:u)
288666892800

6307 = (z) ¢ (x) (%5 (ff)) (5*5 (95))2
7401715200

1277989 (2 (2))* ¢ () (52 (2)) 52 (@)
8082672998400

87821 (2 (2))* ¢ (z) (L2 (2)) L2 (2)
1347112166400

5353 (2 (2))* (L (7)) (L2 (2)) L= ()
64148198400

1mMSG(W¢@N%£(D§H@)
673556083200

53 (2(2))° (L () (dd—E (:1;)) A5 (z)
198806400

35351 (2 ())° (¢ (@) ({52 (@) 52 (@)

192444595200

88512 (z) (Lo (1)) (L2 (2))” L= (a)
32074099200

- d = 2 46 —
61427 () ¢ (2) (L2 (2))” L= (2)
310872038400

= () (4, = 2;L
5671 = (I) ((1150 ($)) ((151:3 = (I)> da
9020840400

[1]
&

2809 (2 (2))* (¢ (@) (52 @) &2 (@)
28866689280

2173 (2(2)° (Lo (2) (L2 () &2 ()
36083361600

38213 (2(2)) ¢ (2) (L2 (2)) L= (2)
1154667571200
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d

3
A7T17 (2 (@) ¢ (2) TpE () 371 (d,w(x)) e (@)

2694224332800 1850428800
24912 () (Lo (2)) T2 (2) L5 (E ()P (2)
4041336499200 32330691993600

53 (A2() o () S42 () SR FE@)’ ¢ () (H2@)

dzll

85530931200 1154667571200

657732 (1) ¢ (v) (LZ (1)) (52 (@) &2 @)
80826729984

371 (2 (@) (&0 (@) £5E (@)
288666892800

901 (Z(2))* (L¢ (2)) L= (x) L 1961 (E(x N (Lo (2) L2 (2)
126291765600 384889190400

25387 (12 (2)) ¢ (2) (%E (x)) &2 (z)
128296396300

1007 (52 @) (e (@) 2 (@)
88820582400

) 2 P
371 (2 @) (e (@) &2@) 4823 ({520) ¢ (@) &2 @)
14803430400 + 22205145600

540072 () ¢ () (%E(z)f 12137 (L2 (2)) ¢ (x) (dd—;s (x)) &= (z)

734788454400 + 107768973312

—_ 2 —_
2491 (L2 (2)) ¢ () T2 (2)
104969779200

USTTIZ (2) (ke (1) (42 (@) (&2 @) &2 @)
144333446400

1643 (2 (2))* (ke (1)) &= (@)
449037388800

1007 (= ()" (2) (L2 (2))” | 53 (2(x))° (Lo (2)) L= (2)
577333785600 577333785600
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371 (E (@) (Lo (@) (L2(@)° | 53 (E(@) ¢ (1) 55 (1)

28866689280 + 18041680800
. 3
39167 (L2 (2))" ¢ (2) L2 (x) . 53 (£2(2)) (v (@) (ﬁz(r))
288666892800 106913664

208867 (= (2))? ¢ (v) (LE (x)) <d‘1—E (:17)) L2 ()

310872038400

2334809 = (x) ¢ () (;7: (x)) (%3 (I)) 42 (z)

2020668249600

7897 (L2 (1)) ¢ (2) L2 (x) 48707 (E(2))° ¢ (2) (%E (I))2

dax®

52484889600 505167062400

2

53 (%E (l’))4 ¢(2) 12192 (2) ¢ (v) THE (2)

526344192 8082672998400

53 (d'i;LE(x)) p(r) 53 (%E (I)) d%go(x)

32330691993600 * 2309335142400

16589 (2 (x))" ¢ (v) (ﬁg(”ﬁ)y

769778380800

67363 (L2 (2)) (L9 () (2 @) HE (@)

192444595200

53 (£2(0) (e @) (L= @)

159045120

20839 (ﬁa (x)) o (z) (di—E (.r)) £ ()

88820582400

at every point z = x,,.

Appendix F: Formulae for the ¥; (v), j = 7(1)9

U, (5,0) = 2347 cos (v) s*v” — 2347 cos (v) s°°

+ 11735 sin (v) s%0° — 21123 sin (v) s%°
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+ 202002 cos (v) s%0° — 173838 cos (v) s'v°
+ 173838 sin (v) s®v? — 1564542 sin (v) s0®
— 1111260 s®v® + 9868488 cos (v) s%v® — 7087080 cos (v) s%v°
— 21261240 sin (v) s*v? + 425224800 s®v
— 63783720 sin (v) s>0® — 2781408 s%°
+ 170089920 cos (v) s*v — 85044960 cos (v) v°
— 595314720 sin (v) s° — 765404640 sin (v) v®
Vg (s,v) = v¥(cos(v)v+ 9 sin(v))
Uy (s,v) = 6803596800° — 695352 s50°
— 42522480 s%0® — 680359680 s5v — 4694 5307
— 92605 cos (v) v™® — 277815 sin (v) v
— 347676 cos (v) v™® — 1738380 sin (v) v'?
+ 106306200 cos (v) v + 744143400 sin (v) v*°
+ 30511 sin (v) cos (v) s%0° — 277815 cos (v) s%07
+ 3824436 sin (v) cos (v) s%v* + 191351160 sin (v) cos (v) s*v*
+ 370420 cos (v) s°0? — 3055965 sin (v) s%°
+ 3333780 sin (v) s%® 4 4097364 cos (v) s*0°
+ 695352 cos (v) s*v® — 4519788 sin (v) s5v*
+ 6258168 sin (v) s*v® + 46561032 cos (v) s*v*

— 141741600 cos (v) s?v? + 531531000 sin (v) s*v?
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— 1275674400 sin (v) s%0® + 235020 (cos (v))* s*0°

— 1700899200 cos (v) s%v 4 2347 (cos (v))? 5307

+ 10135608 (cos (v))® s*v® + 2381258880 sin (v) cos (v) s°

+ 6953520'% — 340179840 (cos (v))*v°

+ 42522480 v + 4694 '

+ 7041 cos (v) sin (v) v + 1738380 cos (v) sin (v) v*?

+ 148828680 cos (v) sin (v) v'° + 3061618560 cos (v) sin (v) v®
— 2347 (cos (v))? v'® — 347676 (cos (v))*v'?

— 21261240 (cos (v))* ™.
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