
Largest Wiener Index of Unicyclic Graphs
with Given Bipartition

Hui Jianga, Wenjing Lib,∗
a School of Mathematics, Hefei University of Technology

Hefei 230000, P. R. China
b School of Mathematics and Statistics

North China University of Water Resources and Electric Power
Zhengzhou 450046, P. R. China

jhuihgd@126.com ; wjlimath@163.com

(Received August 25, 2018)
Abstract

The Wiener index of a connected graph is the sum of distances between all un-
ordered pairs of its vertices. In this paper, we first identify the graphs whose Wiener
index is second largest among trees with given bipartition. Based on this result,
the largest Wiener index of unicyclic graphs with given bipartition is determined
and the corresponding extremal graphs are characterized.

1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow the

terminology and notation of Bondy and Murty in [1] for those not defined here. For a

connected graph G, we use V (G), E(G), n and m to denote the vertex set, edge set, order

and size of G, respectively. The cyclomatic number µ of a connected graph G is the

minimum number of edges that must be removed from G in order to transform it to an

acyclic graph. It is known that µ = m−n+1, see [15]. A unicyclic graph is a graph with

µ = 1. Throughout this paper, let Pn, Sn and Cn denote a path, a star and a cycle on n

vertices, respectively.

Let G be a connected graph. For a subset S of the edge (vertex, respectively) set of

G, we use G−S to denote the graph obtained by deleting the edges (vertices and incident
∗The corresponding author.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 82 (2019) 77-92
                         

                                          ISSN 0340 - 6253 



edges, respectively) in S. If S = {uv} ({v}, respectively), we write G − uv (G − v,

respectively) for short. Let G+uv denote the graph obtained from G by adding the edge

uv /∈ E(G). For a subgraph H of G, denote by |H| the number of vertices in V (H) and

simply write G − H for the graph G − V (H). Let dG(v) be the degree of the vertex v

in G. For u, v ∈ V (G), we use Puv to denote the path connecting u and v. Let dG(u, v)

denote the distance between the vertices u and v in G, and let DG(u) denote the sum of

distances between u and all the other vertices of G, that is, DG(u) =
∑

v∈V (G) dG(u, v).

The Wiener index of a connected graph G, denoted by W (G), is defined as the sum

of distances between all unordered pairs of its vertices, i.e.,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v) =
1

2

∑
u∈V (G)

DG(u).

This graph invariant was proposed by Wiener in 1947, while its equivalent definition as

above was first given by Hosoya [9] in 1971. The Wiener index has found many applications

in chemistry and has been extensively studied, see surveys [10, 11, 16] and the references

therein. For Pn and Cn, we can easily get their Wiener indices.

Lemma 1. [3] W (Pn) =
(
n+1
3

)
.

Lemma 2. [14]

W (Cn) =

{
1
8
n3 if n is even;

1
8
n(n2 − 1) otherwise.

One of the fundamental problems for a graph invariant is to determine its extremal

(maximum and minimum) values among certain classes of graphs. Entringer et al. [7]

proved that among all connected graphs on n vertices, the Wiener index is maximized

by the path Pn, while minimized by the complete graph Kn. For trees of order n, the

maximum Wiener index is obtained by the path Pn, and the minimum for the star Sn

in [3]. Tang et al. [14] characterized the graphs with the first three maximum and min-

imum Wiener indices among all the unicyclic graphs of order n. Besides, the extremal

graphs that maximize or minimize the Wiener index among trees or unicyclic graphs with

prescribed maximum degree, diameter, matching and independence numbers, etc., have

been studied (see [2, 6, 8, 12, 13]).

Du [4] considered the Wiener indices of trees and unicyclic graphs with given biparti-

tion. He determined the smallest Wiener indices and characterized the corresponding ex-

tremal graphs. For two nonnegative integers p, q, we say a graph G has a (p, q)-bipartition,
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if G is a bipartite-graph with bipartition sizes p and q. Let H(r;x, y) be the tree obtained

by attaching x and y vertices, respectively, to the two end vertices of the path on r vertices,

where r ≥ 1, x ≥ y ≥ 0. We simply write T (p, q) for the graph H(2q−1; dp−q+1
2

e, bp−q+1
2

c),

as shown in Figure 1. For the largest Wiener index of trees, Du [4] got the following.

⌊

p−q+1

2

⌋

}....

.

.

⌈

p−q+1

2

⌉{
T (p, q)

v w

Figure 1. The graph T (p, q).

Theorem 1. [4] Let G be a tree with a (p, q)-bipartition, where p ≥ q ≥ 1. Then

W (G) ≤ pq(2q − 3) + p(p+ 1) + (q − 1)

[⌊
(p− q + 1)2

2

⌋
− 2

3
q(q − 2)

]
with equality if and only if G ∼= T (p, q).

However, the largest Wiener index of unicyclic graphs with given bipartition remains

open. Knor et al. [10] proposed the following problem.

Problem 1. [10] Find the largest Wiener index among unicyclic graphs on n vertices

with bipartition sizes p and q, where n = p+ q.

In this paper, we first identify the graphs whose Wiener index is second largest among

trees with given bipartition. Based on this result, the largest Wiener index of unicyclic

graphs with given bipartition is determined and the corresponding extremal graphs are

characterized, which completely solves Problem 1.

2 Second largest Wiener index of trees

Let G1, G2 be two nontrivial connected graphs with x ∈ V (G1) and y ∈ V (G2), to

identify x and y is to replace these vertices by a single vertex incident to all the edges

which were incident to either x in G1 or y in G2. The authors [4, 5] stated the following

three fundamental lemmas, which are very useful throughout this paper.

Lemma 3. [4] Let G,H be two nontrivial connected graphs with u, v ∈ V (G), w ∈ V (H).

Let GuH (GvH, respectively) be the graph obtained from G and H by identifying u(v,

respectively) with w. If DG(u) < DG(v), then W (GuH) < W (GvH).
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Lemma 4. [5] Let Q1 and Q2 be two vertex-disjoint connected graphs such that u ∈ V (Q1)

and v ∈ V (Q2). For integer j ≥ 1, let Gu(Gv, respectively) be the graph obtained by joining

u and v by a path of length j and attaching z pendant vertices to u (v, respectively). Then

W (Gv)−W (Gu) = jz(|V (Q1)| − |V (Q2)|).

Lemma 5. [4] Let t, a, b, p, q be positive integers. Let t ≥ 4 and q ≥ 2.

(1) If a ≥ b ≥ 2, then W (H(t; a− 1, b− 1)) > W (H(t− 2; a, b)).

(2) If p ≥ q + 1, then W (H(2q − 1; p− q, 1)) > W (H(2q − 2; p− q + 1, 1)).

(3) If a ≥ b+ 2, then W (H(2q − 1; a− 1, b+ 1)) > W (H(2q − 1; a, b)).

Let T ′(p, q) be the graph H(2q − 1; dp−q+1
2

e+ 1, bp−q+1
2

c − 1), and T ′′(p, q) the graph

obtained from H(2q−1; dp−q+1
2

e−1, bp−q+1
2

c) by adding some new pendent vertex as shown

in Figure 2. Obviously, T ′(p, q) and T ′′(p, q) are bipartite-graphs with a (p, q)-bipartition.

Inspired by the proof of Theorem 1 [4], we determine the second largest Wiener index of

trees with given bipartition.

⌊

p−q+1

2

⌋

− 1}....
.
.

⌈

p−q+1

2

⌉

+ 1{
T ′(p, q)

⌊

p−q+1

2

⌋

}....
.
.

⌈

p−q+1

2

⌉

− 1{
T ′′(p, q)

Figure 2. The graphs T ′(p, q) and T ′′(p, q).

Theorem 2. Let G be a tree with a (p, q)-bipartition, where p ≥ q ≥ 3. Moreover,

G � T (p, q). Then

(1) for p− q odd,

W (G) ≤ pq(2q − 3) + p(p+ 1) + (q − 1)

[⌊
(p− q + 1)2

2

⌋
− 2

3
q(q − 2)− 2

]
with equality if and only if G ∼= T ′(p, q);

(2) for p− q even,

W (G) ≤ pq(2q − 3) + p(p+ 1) + (q − 1)

[⌊
(p− q + 1)2

2

⌋
− 2

3
q(q − 2)− 4

]
+ 4

with equality if and only if G ∼= T ′′(p, q).

To prove Theorem 2, we need the lemma below.
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Lemma 6. Let p ≥ q ≥ 3. Then

(1) for p− q odd, W (T (p, q))−W (T ′(p, q)) = 2q − 2;

(2) for p− q even, W (T (p, q))−W (T ′′(p, q)) = 4q − 8.

Proof. (1) Let p− q be odd. Set Q1 = S1+d p−q+1
2

e and Q2 = Sb p−q+1
2

c. Let u and v be the

centers of Q1 and Q2, respectively. Then the graph obtained by joining u and v by a path

of length j = 2q − 2 and attaching z = 1 pendant vertex to u (v, respectively) coincides

with T ′(p, q) (T (p, q), respectively). Then by Lemma 4,

W (T (p, q))−W (T ′(p, q)) = (2q − 2) · 1 ·
(
1 +

⌈
p− q + 1

2

⌉
−

⌊
p− q + 1

2

⌋)
= 2q − 2.

(2) Let p− q be even. Set Q1 = H(2q− 3; bp−q+1
2

c, 0) and Q2 = Sd p−q+1
2

e. Let u be the

leaf of Q1 such that its neighbor is of degree 2, and v be the center of Q2. Then the graph

obtained by joining u and v by a path of length j = 2 and attaching z = 1 pendant vertex

to u (v, respectively) coincides with T ′′(p, q) (T (p, q), respectively). Then by Lemma 4,

W (T (p, q))−W (T ′′(p, q)) = 2 · 1 ·
(
2q − 3 +

⌊
p− q + 1

2

⌋
−

⌈
p− q + 1

2

⌉)
= 4q − 8.

Proof of Theorem 2: Let G be a tree with a (p, q)-bipartition with the second largest

Wiener index. We may partition V (G) into two disjoint subsets V1(G) and V2(G), where

|V1(G)| = p and |V2(G)| = q. Let P = u1u2 . . . ut−1ut be a diametrical path of G. Note

that G is not a star (i.e. t ≥ 4). Assume that dG(u2) ≤ dG(ut−1).

(1) Let p− q be odd.

If G ∼= T ′(p, q), by Theorem 1 and Lemma 6, we have that

W (G) = W (T (p, q))− 2q + 2

= pq(2q − 3) + p(p+ 1) + (q − 1)

[⌊
(p− q + 1)2

2

⌋
− 2

3
q(q − 2)− 2

]
.

Next we suppose that G � T ′(p, q). In the following, under the assumption that p− q is

odd, the proof falls into three cases based on the number of vertices on P different from

u2, ut−1 with degree at least three.

Case 1.1 Suppose that there does not exist a vertex on P different from u2, ut−1 with

degree at least three, which means G ∼= H(t− 2; a, b) (a ≥ b ≥ 1, a+ b = p+ q − t+ 2).

If dG(u2, ut−1) is odd (i.e. t even), then u2 ∈ V1(G) and ut−1 ∈ V2(G). Furthermore, G

has a ( t−2
2

+ a, t−2
2

+ b)-bipartition, that is, p = t−2
2

+ a, q = t−2
2

+ b (a > b). Suppose that
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b ≥ 2. Clearly, H(t; a−1, b−1) � T (p, q) and H(t; a−1, b−1) has a (p, q)-bipartition. By

Lemma 5 and Theorem 1, W (G) = W (H(t−2; a, b)) < W (H(t; a−1, b−1)) < W (T (p, q)),

a contradiction. Now assume that b = 1, implying that t− 2 = 2q − 2 and a = p− q + 1,

that is, G ∼= H(2q−2; p−q+1, 1). Since G � T ′(p, q) and p−q is odd, we have p−q ≥ 3.

Then H(2q − 1; p − q, 1) � T (p, q) and it has a (p, q)-bipartition. By Lemma 5 and

Theorem 1, W (G) = W (H(2q − 2; p− q + 1, 1)) < W (H(2q − 1; p− q, 1)) < W (T (p, q)),

a contradiction.

If dG(u2, ut−1) is even (i.e. t odd), then u2, ut−1 ∈ V2(G). What’s more, we have

t− 2 = 2q − 1 and a+ b = p− q + 1 since G has a (p, q)-bipartition. Let a = dp−q+1
2

e+ s

and b = bp−q+1
2

c− s, where s ≥ 2. Then by a similar way of the proof in Lemma 6(1), we

have

W (T (p, q))−W (G) = (2q − 2) · s ·
[(

1 +

⌈
p− q + 1

2

⌉)
−

(⌊
p− q + 1

2

⌋
− s+ 1

)]
= (2q − 2)s2

However, we have W (T (p, q)) − W (T ′(p, q)) = 2q − 2 by Lemma 6. Hence, W (G) <

W (T ′(p, q)) < W (T (p, q)), a contradiction.

Case 1.2 Suppose that there exists exactly one vertex ui (3 ≤ i ≤ t − 2) on P

different from u2, ut−1 with degree at least three.

Let A = {v1, v2, . . . , vk} be the neighbors of ui in G different from ui−1, ui+1, where k =

dG(ui)−2 ≥ 1. Let H1 (H2, respectively) be the component of G−A (G−{ui−1ui, uiui+1},

respectively) containing ui. Then G can be obtained from H1 and H2 by identifying

ui ∈ V (H1) with ui ∈ V (H2). Next, we further divide our discussion into two subcases

based on whether H2 is a star.

Subcase 1.2.1 H2 is not a star.

(a) Suppose that dG(u2, ui) is even.

Let G1 be the tree obtained from H1 and H2 by identifying u2 ∈ V (H1) with ui ∈

V (H2). Obviously, G1 � T (p, q) and G1 has a (p, q)-bipartition. Let n1 be the number of
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vertices of the component of H1 − uiui+1 containing ui+1. We have

DH1(u2)−DH1(ui) =
∑

x∈V (H1)\{u2,u3,...,ui−1,ui}

[dH1(x, u2)− dH1(x, ui)]

= (i− 2)[n1 − (dH1(u2)− 1)]

≥ (i− 2)[dH1(ut−1)− (dH1(u2)− 1)]

= (i− 2)(dG(ut−1)− dG(u2) + 1) > 0,

and thus, DH1(u2) > DH1(ui). Now by Lemma 3 and Theorem 1, W (G) < W (G1) <

W (T (p, q)), a contradiction.

c}...

· · ·

u
1

u
2

ui ut−1

v
1

G(t; r, x, c)

}r

ut

︷︸︸︷

x

Figure 3. The graph G(t; r, x, c).

(b) Suppose that dG(u2, ui) is odd.

(b1) If H2
∼= H(r;x, 1) (r ≥ 2, x ≥ 1), set dG(ut−1) = c+1(≥ 2), then t+ r+x+ c =

p + q + 1 and G ∼= G(t; r, x, c) as shown in Figure 3. Let G2 be the tree obtained from

H3 = H1+uiv1 and H4 = H2−uiv1 by identifying u2 ∈ V (H3) with v1 ∈ V (H4). Clearly,

G2 � T (p, q) and G2 has a (p,q)-bipartition. Note that i ≥ r+2 ≥ 4 and t−i ≥ r+1 ≥ 3,

since P is a diametrical path of G. Furthermore, i− 2 is odd, which means i ≥ 5. Then

DH3(u2)−DH3(v1) =
∑

x∈V (H3)\{u2,u3,...,ui,v1}

[dH3(x, u2)− dH3(x, v1)]

= dH3(u1, u2)− dH3(u1, v1)+∑
x∈V (H3)\{u1,u2,...,ui,v1}

[dH3(x, u2)− dH3(x, v1)]

= 1− i+ (i− 3)(t− i+ c− 1) ≥ 2(i− 4) > 0.

Then by Lemma 3 and Theorem 1, W (G) < W (G2) < W (T (p, q)), a contradiction.

(b2) Otherwise, let G3 be the tree obtained from H1 and H2 by identifying u1 ∈ V (H1)

with ui ∈ V (H2). Obviously, G3 � T (p, q) and G3 has a (p, q)-bipartition. Note that

DH1(u1) − DH1(u2) = |V (H1)| − 2 > 0. Together with the fact DH1(u2) > DH1(ui) in
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Subcase 1.2.1(a), we get that DH1(u1) > DH1(ui). Now by Lemma 3 and Theorem 1,

W (T (p, q)) > W (G3) > W (G), a contradiction.

Subcase 1.2.2 H2 is a star.

(a) Suppose that dG(u2, ui) is even. Hence i ≥ 4. If ui is the center of H2, dG(u2) =

bp−q+1
2

c − k + 1 and t = 2q + 1, then dG(ut−1) = dp−q+1
2

e + 1. Assume that k = 1. Note

that T ′(p, q) (G, respectively) can be obtained from G − v1 by attaching z = 1 pendant

vertex to ut−1 (ui, respectively). Then it follows from Lemma 4 that

W (G)−W (T ′(p, q)) = (t− 1− i) · 1 ·
[(⌈

p− q + 1

2

⌉
+ 1

)
−
(⌊

p− q + 1

2

⌋
− 1 + i− 1

)]
= (t− 1− i)(3− i) < 0.

So we have W (G) < W (T ′(p, q)) < W (T (p, q)), a contradiction.

Now assume that k ≥ 2. Then G can be obtained from H5 = H1 + uivk and H6 =

H2−uivk by identifying ui ∈ V (H5) with ui ∈ V (H6). Let G4 be the graph obtained from

H5 and H6 by identifying u2 ∈ V (H5) with ui ∈ V (H6). Clearly, G4 � T (p, q) and G4 has a

(p, q)-bipartition. By directly calculating, DH5(u2)−DH5(ui) = (i−2)(t−i+k) > 0. Then

by Lemma 3 and Theorem 1, we have W (G) < W (G4) < W (T (p, q)), a contradiction.

For the other cases, we can get a contradiction by a similar discussion to Subcase

1.2.1(a).

(b) Suppose that dG(u2, ui) is odd. If ui is a leaf of H2, dG(u2) = 2, dG(ut−1) =

dp−q+1
2

e+1 and t = 2q−1, then G ∼= G(2q−1; 1, bp−q+1
2

c, dp−q+1
2

e). In a similar discussion

to Subcase 1.2.1(b1), we can obtain a contradiction.

If ui is the center of H2, dG(u2) = 2, dG(ut−1) = dp−q+1
2

e + 1 and t = 2q, then

k = bp−q+1
2

c. We can deduce a contradiction whether k = 1 or k ≥ 2 in a similar

discussion to Subcase 1.2.2(a).

For the other cases, similarly to Subcase 1.2.1(b2), we can reach a contradiction.

Case 1.3 Suppose that there exist at least two vertices on P different from u2, ut−1

with degree at least three. Let ui (3 ≤ i ≤ t− 2) be such a vertex satisfying dG(u2, ui) is

as small as possible. We may deduce a contradiction whether dG(u2, ui) is even or odd in

a similar discussion of Subcase 1.2.1.

(2) Let p− q be even.

-84-



If G ∼= T ′′(p, q), by Theorem 1 and Lemma 6,

W (G) = W (T (p, q))− 4q + 8

= pq(2q − 3) + p(p+ 1) + (q − 1)

[⌊
(p− q + 1)2

2

⌋
− 2

3
q(q − 2)− 4

]
+ 4.

Next we suppose that G � T ′′(p, q). Similarly, we can divide our proof into three cases.

Case 2.1 Suppose that there does not exist a vertex on P different from u2, ut−1 with

degree at least three, which means G ∼= H(t− 2; a, b) (a ≥ b ≥ 1, a+ b = p+ q − t+ 2).

(a) If dG(u2, ut−1) is odd (i.e. t even), then u2 ∈ V1(G) and ut−1 ∈ V2(G). Further-

more, G has a ( t−2
2
+a, t−2

2
+ b)-bipartition, that is, p = t−2

2
+a, q = t−2

2
+ b. Suppose that

b ≥ 2. If a = b = 2, then W (T (p, q)) −W (G) = 2(2q − 3) > W (T (p, q)) −W (T ′′(p, q)).

Hence W (G) < W (T ′′(p, q)) < W (T (p, q)), a contradiction. If a > b ≥ 2 or a = b ≥ 3,

then H(t; a− 1, b− 1) � T (p, q) and H(t; a− 1, b− 1) has a (p, q)-bipartition. By Lemma

5 and Theorem 1, W (G) = W (H(t − 2; a, b)) < W (H(t; a − 1, b − 1)) < W (T (p, q)), a

contradiction.

Now assume that b = 1, implying that t − 2 = 2q − 2 and a = p − q + 1, that

is, G ∼= H(2q − 2; p − q + 1, 1). Since G � T (p, q), we have p − q ≥ 2. If p − q =

2, W (T (p, q)) − W (G) = 2(2q − 2) and W (T (p, q)) − W (T ′′(p, q)) = 2(2q − 4), which

means W (G) < W (T ′′(p, q)) < W (T (p, q)), a contradiction. Suppose p − q ≥ 3, then

H(2q− 1; p− q, 1) � T (p, q) and it has a (p, q)-bipartition. By Lemma 5 and Theorem 1,

W (G) = W (H(2q−2; p−q+1, 1)) < W (H(2q−1; p−q, 1)) < W (T (p, q)), a contradiction.

(b) If dG(u2, ut−1) is even, then u2, ut−1 ∈ V2(G) and t−2 = 2q−1. Let a = dp−q+1
2

e+s

and b = bp−q+1
2

c − s, where s ≥ 1. Then with a proof similar to Lemma 6(1), we have

that

W (T (p, q))−W (G) = (2q − 2) · s · (s+ 1) > W (T (p, q))−W (T ′′(p, q)) = 2(2q − 4).

Thus, W (G) < W (T ′′(p, q)) < W (T (p, q)), a contradiction.

Case 2.2 Suppose that there exists exactly one vertex ui (3 ≤ i ≤ t − 2) on P

different from u2, ut−1 with degree at least three.

Let A = {v1, v2, . . . , vk} be the neighbors of ui in G different from ui−1, ui+1, where k =

dG(ui)−2 ≥ 1. Let H1 (H2, respectively) be the component of G−A (G−{ui−1ui, uiui+1},

respectively) containing ui. If H2 is not a star, we can get a contradiction similar to

Subcase 1.2.1. Assume that H2 is a star.
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(a) Suppose that dG(u2, ui) is even.

Observe that i ≥ 4. If ui is the center of H2, dG(u2) = bp−q+1
2

c− k+1 and t = 2q+1,

then dG(ut−1) = dp−q+1
2

e + 1. Suppose that k = 1. Then, G can be obtained from

H7 = G − ut−1ut and H8 = ut−1ut by identifying ut−1 ∈ V (H7) with ut−1 ∈ V (H8). Let

G5 be the graph obtained from H7 and H8 by identifying u2 ∈ V (H7) with ut−1 ∈ V (H8).

Clearly, G5 � T (p, q) and G5 has a (p, q)-bipartition. Moreover, DH7(u2) −DH7(ut−1) =

(i − 1 + t − 2) − (t − i + 1) = 2i − 4 > 0. By Lemma 3 and and Theorem 1, we have

W (G) < W (G5) < W (T (p, q)), a contradiction. For the case that k ≥ 2, we can obtain a

contradiction in a similar discussion to Subcase 1.2.2(a).

If ui is the center of H2, dG(u2) = dp−q+1
2

e − k + 1 and t = 2q + 1, then dG(ut−1) =

bp−q+1
2

c + 1. Suppose that k = 1. Note that T ′′(p, q) (G, respectively) can be obtained

from G− v1 by attaching z = 1 pendant vertex to u4 (ui, respectively). Then

W (T ′′(p, q))−W (G) = (i− 4)

[⌊
p− q + 1

2

⌋
+ t− i−

(⌈
p− q + 1

2

⌉
− 1 + 3

)]
= (i− 4)(t− i− 3).

Since G � T ′′(p, q), we get that i > 4 and t + 1 − i > 4. Now we have W (G) <

W (T ′′(p, q)) < W (T (p, q)), a contradiction. Suppose k ≥ 2. We can deduce a contradic-

tion in a similar discussion to Subcase 1.2.2(a).

For the other cases, we can get a contradiction similar to Subcase 1.2.2(a).

(b) Suppose that dG(u2, ui) is odd.

We can always find a graph G′ such that G′ has a (p, q)-bipartition and W (G) <

W (G′) < W (T (p, q)) by a similar way to Subcase 1.2.2(b), which is impossible.

Case 2.3. Suppose that there exist at least two vertices on P different from u2, ut−1

with degree at least three. We can deduce a contradiction in a similar way of Case 1.3.

Therefore, the proof is complete.

Theorem 3. Let G be a tree with a (p, q)-bipartition, where p ≥ q = 2. Moreover,

G � T (p, 2). Then W (G) ≤ p2+3p+b (p−1)2

2
c−2 with equality if and only if G ∼= T ′(p, 2).

Proof. If G ∼= T ′(p, 2), then W (G) = W (T ′(p, 2)) = p2 + 3p+ b (p−1)2

2
c − 2.

Let G � T ′(p, 2) and let P = u1u2 . . . ut−1ut (4 ≤ t ≤ 5) be a diametrical path of G.

Suppose that dG(u2) ≤ dG(ut−1). Note that there does not exist a vertex on P different

from u2, ut−1 of degree at least three. If u2 and ut−1 are in the same vertex class, it follows
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that W (G) < W (T ′(p, 2)) in a discussion similar to Case 1.1 in Theorem 2. Otherwise,

t = 4 and dG(u2) = 2. Since G � T (p, 2) and G � T ′(p, 2), we have p ≥ 5. Then

W (T ′(p, 2))−W (G) = 2 · (p− bp−1
2
c) · (bp−1

2
c − 1) > 0. Therefore, W (G) < W (T ′(p, 2)).

3 Largest Wiener index of unicyclic graphs

Let G be a unicyclic graph of order n with its unique cycle Cγ = u1u2 . . . uγu1. For

1 ≤ i ≤ γ, we use Ti to denote the component containing ui in the subgraph G− E(Cγ).

Such a unicyclic graph is denoted by Cγ(T1, T2, . . . , Tγ). Let `i = |Ti| − 1, i = 1, 2, . . . , γ.

Then
∑γ

i=1 `i = n− γ.

With a proof similar to [14], we give the following formula for calculating the Wiener

index of unicyclic graphs.

Theorem 4. Let G = Cγ(T1, T2, . . . , Tγ) be a unicyclic graph. Then

W (G) =W (Cγ) +

γ∑
i=1

`iDCγ (ui) +

γ∑
i=1

W (Ti)

+

γ−1∑
i=1

γ∑
j=i+1

(`iωj + `i`jdCγ (ui, uj) + `jωi), (1)

where ωi = DTi
(ui).

We use U(p, q) to denote the unicyclic graph obtained from T (p, q) by adding some

edge, that is, the first graph as shown in Figure 4. Now, we determine the largest Wiener

index of unicyclic graphs with given bipartition.
⌊

p−q+1
2

⌋

}....
.
.

⌈

p−q+1
2

⌉

− 1{ }....
.
.{ ba

H(a, b)U(p, q)

Figure 4. The graphs U(p, q) and H(a, b).

Theorem 5. Let G be a bipartite unicyclic graph with a (p, q)-bipartition, where p ≥ q ≥ 2.

Then

W (G) ≤pq(2q − 1) + p(p− 3) + (q − 1)

[⌊
(p− q + 1)2

2

⌋
− 2

3
q(q + 1)

]
− 2(2q − 3)

⌊
p− q + 1

2

⌋
+ 2

with equality if and only if G ∼= U(p, q).
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Proof. Note that when q = 2, G ∼= H(a, b), where H(a, b) is the graph in Figure 4 with

a ≥ b ≥ 0 and a + b = p − 2. By direct calculation, we have W (G) = W (H(a, b)) =

p2 + 3p − 2 + 2ab. Under the condition that a + b = p − 2, W (H(a, b)) attains the

maximum value if a =
⌈
p−2
2

⌉
=

⌊
p−1
2

⌋
and b =

⌊
p−2
2

⌋
=

⌈
p−1
2

⌉
− 1, which means G ∼=

H(
⌈
p−2
2

⌉
,
⌊
p−2
2

⌋
) ∼= U(p, 2). In the following, we assume that q ≥ 3.

Let G = Cγ(T1, T2, . . . , Tγ) be a unicyclic graph with a (p, q)-bipartition and `1 ≥ `i

for each 2 ≤ i ≤ γ. Then
∑γ

i=1 `i = p+ q − γ, `1 ≥
⌈
p+q−γ

γ

⌉
, 4 ≤ γ ≤ 2q and γ is even.

We calculate the Wiener index of the graph G − u1uγ with a similar formula to the

equality (1) as follows:

W (G− u1uγ) =W (Pγ) +

γ∑
i=1

`iDPγ (ui) +

γ∑
i=1

W (Ti)

+

γ−1∑
i=1

γ∑
j=i+1

(`iωj + `i`jdPγ (ui, uj) + `jωi), (2)

where ωi = DTi
(ui).

(1)− (2), one gets

W (G− u1uγ)−W (G) =W (Pγ)−W (Cγ) +

γ∑
i=1

`i(DPγ (ui)−DCγ (ui))+

+

γ−1∑
i=1

γ∑
j=i+1

`i`j(dPγ (ui, uj)− dCγ (ui, uj)). (3)

By direct calculation, for 1 ≤ i ≤ γ
2
,

DPγ (ui)−DCγ (ui) = DPγ (uγ+1−i)−DCγ (uγ+1−i) =
(γ
2
+ 1− i

)(γ
2
− i

)
. (4)

We should point out that W (U(p, q)) = W1 − (2 + 2`11), where W1 = W (T (p, q)) and

`11 = 2q − 4 +
⌊
p−q+1

2

⌋
. Note that 2 + 2`11 ≤ p + 3q − 5. We use W2 to denote the value

of the second largest Wiener index of trees with a given (p, q)-bipartition. Since q ≥ 3, it

follows from Lemma 6, Theorem 1 and Theorem 2 that

W1 −W2 ≥ 2q − 2. (5)

We proceed to show W (G) < W (U(p, q) = W1 − (2 + 2`11) if G � U(p, q).

Case 1. 6 ≤ γ ≤ 2q and γ is even.

(i) If G − u1uγ
∼= T (p, q), we have W (G − u1uγ) = W1. Let v, w denote the two

vertices in T (p, q) as shown in Figure 1. Then there are at most two ways to get G
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from T (p, q): (I) both u1 and uγ are on the path Pvw, in which case by (3) and (4) we

have W (G− u1uγ)−W (G) = W (Pγ)−W (Cγ) + `1(DPγ (u1)−DCγ (u1)) + `γ(DPγ (uγ)−

DCγ (uγ))+ `1`γ(dPγ (u1, uγ)−dCγ (u1, uγ)) =
(
γ+1
3

)
− γ3

8
+ γ

2
(γ
2
−1)(p+ q−γ)+(γ−2)`1`γ;

(II) only one of u1 and uγ is on the path Pvw, in which case by (3) and (4) we similarly

have W (G−u1uγ)−W (G) =
(
γ+1
3

)
− γ3

8
+(γ

2
−1)(γ

2
−2)(p+q−γ)+2(γ

2
−1)`1+(γ−4)`1`γ−1.

No matter which case happens, we always have

W (G− u1uγ)−W (G) >

(
γ + 1

3

)
− γ3

8
+ (

γ

2
− 1)(

γ

2
− 2)(p+ q − γ)

= − 5

24
γ3 + (

3

2
+

p+ q

4
)γ2 −

[
13

6
+

3(p+ q)

2

]
γ + 2(p+ q). (6)

Set g(γ) = − 5
24
γ3 + (3

2
+ p+q

4
)γ2 −

[
13
6
+ 3(p+q)

2

]
γ + 2(p + q). Then we have g′(γ) ≥

min{g′(6), g′(2q)} since g′′(6) = p+q+1
2

> 0. And g(γ) ≥ min{g(6), g(2q)} because g′(6) >

0 (p ≥ q ≥ 3). Since g(2q)− g(6) = p(q2 − 3q)− 2
3
q3 + 3q2 − 13

3
q + 4 ≥ 1

3
q(q2 − 13) + 4 ≥

1
3
× 3× (32 − 13) + 4 = 0, we get g(γ) ≥ g(6). We continue the inequality (6) and obtain

W (G− u1uγ)−W (G) > g(6) = 2(p+ q)− 4

≥ p− q + 1 + (2 + 2`11)

> 2 + 2`11.

Thus, we have W (G) < W1 − (2 + 2`11) = W (U(p, q)) in this case.

(ii) If G−u1uγ � T (p, q), we have W (G−u1uγ) ≤ W2. Recall that `1 ≥
⌈
p+q−γ

γ

⌉
. By

(3) and (4), we get

W (G− u1uγ)−W (G) = W (Pγ)−W (Cγ) +

γ∑
i=1

`i(DPγ (ui)−DCγ (ui))+

+

γ−1∑
i=1

γ∑
j=i+1

`i`j(dPγ (ui, uj)− dCγ (ui, uj))

≥
(
γ + 1

3

)
− γ3

8
+

γ

2
(
γ

2
− 1)`1

≥
(
γ + 1

3

)
− γ3

8
+

γ

2
(
γ

2
− 1)

⌈
p+ q − γ

γ

⌉
≥ γ3

24
− γ2

4
+ (

1

3
+

p+ q

4
)γ − p+ q

2

≥ 63

24
− 62

4
+ (

1

3
+

p+ q

4
) · 6− p+ q

2

= p+ q + 2. (7)

-89-



From (5) and (7), we obtain

W (G) ≤ W (G− u1uγ)− (p+ q + 2)

≤ W2 − (p+ q + 2)

≤ W1 − (p+ 3q)

< W1 − (2 + 2`11).

Thus, we have W (G) < W (U(p, q)) in this case.

Case 2. γ = 4 and `4 6= 0.

By (3) and (4), we have W (G− u1u4)−W (G) = 2 + 2(`1 + `4) + 2`1`4.

(i) If G− u1u4
∼= T (p, q), we have W (G− u1u4) = W1 and `1 + `4 = p+ q − 4. Then

W (G − u1u4) −W (G) = 2 + 2(`1 + `4) + 2`1`4 ≥ 2 + 2(p + q − 4) + 2 = 2(p + q) − 4 ≥

p− q + 1 + (2 + 2`11). Thus, we have W (G) < W1 − (2 + 2`11) = W (U(p, q)) in this case.

(ii) If G− u1u4 � T (p, q), we have W (G− u1u4) ≤ W2. Recall that `1 ≥
⌈
p+q−4

4

⌉
. So

we have W (G− u1u4)−W (G) = 2+ 2(`1 + `4) + 2`1`4 ≥ 4`1 + 4 ≥ p+ q. Then with (5),

we get

W (G) ≤ W (G− u1u4)− (p+ q)

≤ W2 − (p+ q)

≤ W1 − (p+ 3q − 2)

< W1 − (2 + 2`11).

Thus, we have W (G) < W (U(p, q)) in this case.

Case 3. γ = 4 and `4 = 0.

By (3) and (4), we have W (G− u1u4)−W (G) = 2 + 2`1.

(i) If G− u1u4
∼= T (p, q) and G � U(p, q), then we have p− q is even and p− q > 0.

And in this case, we have `1 = 2q − 4 +
⌈
p−q+1

2

⌉
, `2 = `4 = 0, `3 = bp−q+1

2
c − 1, which

means W (G− u1u4) = W1 and `1 > `11. Thus, we get W (G) < W (U(p, q)) in this case.

(ii) If G− u1u4 � T (p, q), we have W (G− u1u4) ≤ W2.

First, we suppose one of `2 and `3 equals 0, say `2 = 0. Then we have `1 ≥
⌈
p+q−4

2

⌉
,
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otherwise
∑4

i=1 `i < p+ q − 4, a contradiction. Then together with (5), we obtain

W (G) = W (G− u1u4)− (2 + 2`1)

≤ W2 − (p+ q − 2)

≤ W1 − (p+ 3q − 4)

< W1 − (2 + 2`11).

Thus, we have W (G) < W (U(p, q)) in this case.

Now, we consider the subcase that `2 ≥ 1 and `3 ≥ 1. Set G1 = G − u1u4. Let

H1 denote the graph G − (V (T2) \ {u2}). Then G1 can be obtained from H1 and T2 by

identifying u2 ∈ V (H1) and u2 ∈ V (T2). Let G2 be the tree obtained from H1 and T2

by identifying u4 ∈ V (H1) and u2 ∈ V (T2). Clearly, G ∼= G1 + u1u4
∼= G2 + u1u4. So

W (G) = W (G1)− (2 + 2`1) = W (G2)− [2 + 2(`1 + `2) + 2`1`2] by (3) and (4). Moreover,

W (G2) ≤ W2 and `1 + `2 ≥
⌈
p+q−4

2

⌉
(otherwise,

∑4
i=1 `i < p + q − 4, a contradiction).

Hence, with (5), we have

W (G) = W (G2)− [2 + 2(`1 + `2) + 2`1`2]

≤ W2 − [4 + 2(`1 + `2)]

≤ W2 − (p+ q)

≤ W1 − (p+ 3q − 2)

< W1 − (2 + 2`11).

Thus, we have W (G) < W (U(p, q)) in this case.

Our proof is thus complete.
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