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Abstract

Let G be a connected graph of given order n and let µ(G) denote the average of
all the distances between any two distinct vertices in G. The connected hub number
hc(G) (resp., the connected domination number γc(G)) of G is the smallest order of
a connected subgraph S of G such that each pair of nonadjacent vertices outside S
are joined by a path with all internal vertices in S (resp., each vertex outside S is
adjacent to one vertex of S). It is easy to see that hc(G) 6 γc(G) 6 hc(G) + 1. In
view of the close relationship between the two invariants, we can partition connected
graphs into two classes and according to this partition, give sharp upper bounds on
µ(G) of the two classes of G in terms of hc(G), respectively, and further characterize
the extremal graphs. As a corollary, we give sharp upper bounds on µ(G) in terms of
γc(G), and characterize the extremal graphs. Since these graphs are trees, we further
address the problem about 2-connected graphs and give some initial properties and
results.

1 Introduction

Let G be a simple connected and finite graph with vertex set V (G) and edge set E(G).

The Wiener index of G, which is introduced originally for approximating the boiling points

of alkanes in 1947 by Wiener [25], is the sum of all distances in G:

W (G) :=
1

2

∑
u,v∈V (G)

dG(u, v) =
1

2

∑
u∈V (G)

σG(u),
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where dG(x, y) denotes the distance between x and y in G and σG(u) =
∑

v∈V (G) dG(u, v).

It is one of the most-known and well-studied topological indices that has numerous applica-

tions in analyzing problems in communication networks, geometry and physical chemistry.

For details, readers can refer to the recent survey papers [11, 12, 16, 17, 26, 27].

Like the Wiener index, the average distance (or mean distance) of G is defined to be

the average of all distances in G:

µ(G) :=
1

n(n− 1)

∑
x,y∈V (G)

dG(x, y).

The computer program GRAFFITI [13] made the attractive conjecture: µ(G) ≤ α(G),

where α(G) denotes the independence number of G. Chung [3] succeeded in proving

the conjecture. In [4] sharp upper and lower bounds for µ(G), depending as well on the

independence number as on the order, were given. Besides these, many efforts have

been made by several authors to give several upper or lower bounds on the average

distance in terms of other graph parameters, for example, diameter and radius [20], the

matching number [4], independence-related invariants [4,6,14], (edge-)connectivity [7–9],

the girth [1] and the chromatic number [22, 23].

Introduced by Walsh [24], a hub set in a connected graph G with vertex set V is a

subset U of V such that any two nonadjacent vertices outside U are connected by a path

with all internal vertices in U . If a hub set U induces a connected subgraph, then U is

called a connected hub set. The connected hub number hc(G) (resp. hub number h(G)) is

the minimum size of a connected hub set (resp. a hub set) in G. Likewise, a dominating

set in G [18] is a subset S of V such that every vertex outside S is adjacent to some

vertex in S. If a dominating set S induces a connected subgraph, then S is called a

connected dominating set. The connected domination number γc(G) (resp. domination

number γ(G)) is the minimum size of a connected dominating set (resp. a dominating

set) in G. There are close relationships between the parameters hc(G) and γc(G). In [19],

Johnson, Slater and Walsh gave an inequality about them as follows:

Theorem 1.1. [19] If G is connected, then hc(G) ≤ γc(G) ≤ hc(G) + 1.

Upper bounds on the average distance of a connected graph of given order in terms of

domination number and distance domination number are established by Dankelmann [5]

and Tian et al. [21], respectively. Here, we introduce Dankelmann’s result as follows:
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Theorem 1.2. [5] Let G be a connected graph of order n and domination number γ.
Then

µ(G) ≤


n+1
3 − (n−3γ)(n−3γ+2)(2n+3γ−7)

6n(n−1) , if γ ≤ n
3 and n− γ ≡ 0 (mod 2);

n+1
3 − (n−3γ)(n−3γ+2)(2n+3γ−7)−9(γ−1)

6n(n−1) , if γ ≤ n
3 and n− γ ≡ 1 (mod 2);

n+1
3 − (3γ−n)(3γ−n−2)(5n−6γ−4)

3n(n−1) , if γ ≥ n
3 and n− γ ≡ 0 (mod 2);

n+1
3 − (3γ−n−1)((3γ−n−3)(5n−6γ−2)+6(2n−3γ−1))

3n(n−1) , if γ ≥ n
3 and n− γ ≡ 1 (mod 2),

with equality holding if and only if G = Gn,γ. (The graph Gn,γ is showed in Figure 1.)

Figure 1. The graph Gn,γ in Theorem 1.2: (i) when γ ≤ n
3 ; (ii) when γ ≥ n

3 .

In this paper, we are going to establish sharp upper bounds on the average distance

µ(G) of a connected graph G of given order n in terms of the connected domination

number γc(G) and the connected hub number hc(G), respectively. The rest sections are

organized as follows. Section 2 gives preliminary definitions, notations and known results,

including the results characterizing the connected graph G satisfying γc(G) = hc(G) + 1.

Section 3 gives sharp upper bounds on the average distance of the two classes of G in terms

of hc(G), respectively, where the classes are partitioned by the close relationship between

hc(G) and γc(G), and further characterize the extremal graphs. Section 4 shows that the

induced subgraph of any minimum connected dominating set U of an edge-minimal (with

regard to the two properties “2-connected” and “γ fixed”) graph G must be a tree and

G[V \U ] is an edge-nonempty forest, as well as obtain the sharp upper bound of µ(G) of

2-connected graphs G with γc(G) = 2 and further characterize the extremal graphs. We

end the paper with the concluding section.

2 Preliminaries

In this paper, we consider simple connected undirected graphs G with given order n. For

any subset X of V (G) or E(G), let G[X] denote the subgraph of G induced by X. For any

v ∈ V (G), denote by dG(v), NG(v) and NG[v] the degree, open neighborhood and closed
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neighborhood of v in G, respectively. Here, as elsewhere, we drop the index referring

to the underlying graph if the reference is clear. Furthermore, for any U ⊆ V (G), the

open and closed neighbourhood of U in G are defined as NG(U) =
⋃

v∈U NG(v) \ U and

NG[U ] = NG(U) ∪ U , respectively. For any two graphs G and H, we set their union

G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)).

A vertex v is called a leaf of G if dG(v) = 1. We call an edge uv of G as a chord of

a cycle C if u, v ∈ V (C) but uv /∈ E(C). For any X,Y ⊆ V (G), a path P = x1x2...xk

is said to be an (X,Y )-path of G, if V (P ) ∩X = x1 and V (P ) ∩ Y = xk. In particular,

if X = {x} or Y = {y}, then we write ({x}, Y )-path and ({x}, {y})-path as (x, Y )-path

and xy-path for short, respectively. G is called edge-minimal with a given graph property,

if G itself has the property but G− e does not, for every edge e ∈ E(G).

As shown in Theorem 1.1, Johnson et al. [19] gave the upper and lower bounds of γc(G)

by the functions of hc(G). Meanwhile, they further characterized the graphs attaining the

upper bound as follows. For subsets R,S ⊆ V , we say that S dominates R if NG[S] ⊇ R.

Figure 2. A schematic illustration of Lemma 2.1.

Lemma 2.1. [19] Let G be a connected graph with vertex set V , U any minimum

connected hub set. We denote T = V − NG[U ], S = NG(U). (Hence |U | = hc(G) and

V = U ∪S ∪T. See Figure 2.) Then γc(G) = hc(G)+ 1 if and only if one of the following

holds:

0. |U | = 0 and G is a clique.

1. |U | = 1, ∅ 6= T induces a clique in G, T and S are the parts of a complete bipartite

subgraph of G, and no vertex in S has degree |V | − 1.

2. |U | > 2 and U induces a path with end-vertices, say, u and v, in G; ∅ 6= T induces a

clique in G, and T and S are the parts of a complete bipartite subgraph of G. No vertex

-60-



of U other than u, v of the path G[U ] has neighbours in S, and the sets NG(u) ∩ S = A

and NG(v) ∩ S = B are nonempty and disjoint (see Figure 2).

(a) If |U | = 2 then no vertex of A dominates B, no vertex of B dominates A, and for

any edge ab ∈ E, a ∈ A, b ∈ B, {a, b} does not dominate A ∪B.

(b) If |U | = 3 then for any edge ab ∈ E, a ∈ A, b ∈ B, {a, b} dominates neither A nor

B.

(c) If |U | > 4 then there are no edges between A and B.

Given a graph G, we call a subgraph P ⊆ G an interior path of G if P is a path and

dG(v) > 2 for each v ∈ P . Let R(k, t, l) denote the binary star of order k + t + l, where

the maximal interior path has order t and there are k leaves on one side of the binary star

and l leaves on the other. Especially, denote by R(n, t) the binary star of order n > t+2,

where the maximal interior path has order t and the leaves are as balanced as possible on

each side of the binary star (see Figure 3). A trunk in a connected graph G is a sub-tree

(not necessarily induced) that contains the vertices of a dominating set of G. Obviously,

the vertex set of every trunk is a connected dominating set. Conversely, every connected

dominating set is exactly the vertex set of some trunk.

Figure 3. Binary star R(n, t)

Lemma 2.2. [10] Let G be a connected graph with a trunk of order t > 1 (or, equivalently,

γc(G) 6 t). Then

µ(G) 6 µ(R(n, t)),

with equality holding if and only if G = R(n, t).

From Lemma 2.2, we readily obtain (note that γc(R(n, t)) = t)

Lemma 2.3. Let G be a connected graph with γc(G) > 1. Then

µ(G) 6 µ(R(n, γc(G))),

with equality holding if and only if G = R(n, γc(G)).
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3 Upper bounds of µ(G) in terms of hc

By Theorem 1.1, we can divide connected graphs G into two classes, one for G with

γc = hc+1 and the other for G with γc = hc. In view of these classes, we give sharp upper

bounds on µ(G) of the connected graphs G of given order in terms of hc, respectively.

Theorem 3.1. Let G be a connected graph of given order n with connected hub number

hc(> 1) and connected domination number γc. Then we have

If γc = hc + 1, then

µ(G) 6

{
−h3

c+(2n−1)h2
c+(−4n+13)hc+8n2−22n+21

4n(n−1)
, if hc is odd;

−h3
c+(2n−1)h2

c+(−4n+14)hc+8n2−24n+24
4n(n−1)

, if hc is even,
(1)

with equality holding if and only if G is shown as Figure 2 with |U | > 1, |T | = 1, |S| > 2

and no edges in G[S].

If γc = hc, then

µ(G) 6

{
−h3

c+3h2
c+(3n2−12n+7)hc+9n2−12n+3

6n(n−1)
, if n− hc is odd;

−h3
c+3h2

c+(3n2−12n+10)hc+9n2−12n
6n(n−1)

, if n− hc is even,
(2)

with equality holding if and only if G = R(n, hc).

Proof. For convenience, we may assume that G is a graph such that µ(G) attains the

maximum value under the conditions of this theorem. Note that W (G) = 1
2
n(n−1)µ(G).

We just need to compute the maximum value of the Wiener index W (G) for G.

Case 1. γc = hc + 1.

Let a ∈ S. Since γc = hc + 1 and |U | = hc > 1, it follows from Results 1 and 2 of

Lemma 2.1 that U ∪{a} is a minimum connected dominating set of G. If there is an edge

e ∈ E(G) connecting two vertices of S, then G − e is a connected graph with U being

a minimum hub set and U ∪ {a} being a minimum connected dominating set of it. So

γc(G − e) = hc(G − e) + 1. But W (G − e) > W (G), contradicting to our assumption of

G. Thus, we assume that G[S] consists of isolated vertices.

Denote by WU the sum of distances over pairs of vertices in U , WUS the sum of

distances between a vertex in U and a vertex in S. Similarly, we can define WS, WT ,

WST , WUT . Then W (G) can be written as

W (G) = WU +WS +WT +WUS +WST +WUT . (3)

Note that, from Lemma 2.1, it is deduced that |S| > 2.
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Let |T | = t. It is easily obtained that

WT =
t(t− 1)

2
, (4)

WS = (n− hc − t)(n− hc − t− 1), (5)

WST = t(n− hc − t). (6)

It follows from Lemma 2.1 and the assumption for S that in the case hc > 2, all vertices

in U , a vertex a in S adjacent to u, a vertex b(6= a) in S adjacent to v and a vertex w

in T form an induced cycle C of length hc + 3; in the case hc = 1, C consists of the only

vertex in U , two vertices in S and a vertex w in T . And the distance between two vertices

of C in G is exactly the distance between them in C. Thus the sum WaU (resp. WwU) of

distances between a (resp. w) and all vertices in U is

WaU =

{
2(1 + 2 + ...+ hc+1

2
) + hc+3

2
− (1 + 2), if hc is odd;

2(1 + 2 + ...+ hc+2
2

)− (1 + 2), if hc is even. (7)

WwU =

{
2(1 + 2 + ...+ hc+1

2
) + hc+3

2
− 2× 1, if hc is odd;

2(1 + 2 + ...+ hc+2
2

)− 2× 1, if hc is even. (8)

Thus,

WUS = (n− hc − t)WaU =

{
(n− hc − t)((hc+3

2
)2 − 3), if hc is odd;

(n− hc − t)((hc+2
2

)2 + hc

2
− 2), if hc is even. (9)

WUT = tWwU =

{
t(h2

c+6hc+1)
4

, if hc is odd;
t(h2

c+6hc)
4

, if hc is even.
(10)

By simple computation, we get

W (Chc+3) =

{
1
8
(hc + 3)3, if hc is odd;

1
8
(hc + 3)3 − hc+3

8
, if hc is even. (11)

Since

WU = W (Chc+3)− 2WaU −WwU − 4, (12)

substituting Eqs. (11), (7) and (8) for Eq. (12), we get

WU =

{
h3
c+3h2

c−9hc+5
8

, if hc is odd;
h3
c+3h2

c−10hc+8
8

, if hc is even.
(13)

Substituting Eqs. (4)-(6), (9), (10) and (13) for (3), and then tidying up, we get
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W (G) =

{
−h3

c+(2n−1)h2
c+(−4n+8t+5)hc+8n2−2(4t+7)n+4t2+12t+5

8
, if hc is odd;

−h3
c+(2n−1)h2

c+(−4n+8t+6)hc+8n2−8(t+2)n+4t2+12t+8
8

, if hc is even.

As W (G) is a quadratic function in t and a strictly decreasing function for 1 6 t 6

n− hc − 2, W (G) attains the maximum value at t = 1. Therefor

W (G) 6

{
−h3

c+(2n−1)h2
c+(−4n+13)hc+8n2−22n+21

8
, if hc is odd;

−h3
c+(2n−1)h2

c+(−4n+14)hc+8n2−24n+24
8

, if hc is even,
(14)

with equality holding if and only if G is shown as Figure 2 with |U | > 1, |T | = 1, |S| > 2

and no edges in G[S].

Case 2. γc = hc.

Since hc(R(n, γc)) = γc(R(n, γc)) and by Lemma 2.3, W (G) for G of given order n

with γc = hc attains the maximum value whenever G = R(n, γc). By simple computation,

we have

W (G) 6 W (R(n, γc)) =

{
−h3

c+3h2
c+(3n2−12n+7)hc+9n2−12n+3

12
, if n− hc is odd;

−h3
c+3h2

c+(3n2−12n+10)hc+9n2−12n
12

, if n− hc is even,
(15)

with equality holding if and only if G = R(n, hc).

Again combining µ(G) = 2W (G)
n(n−1)

with (14) and (15), we get our proof.

Note that the right-hand side of Ineq. (1) is smaller than that of Ineq. (2). From

Theorem 3.1, we can get the upper bound of the average distance of connected graphs G

of given order in terms of γc(G) or hc(G) as follows.

Corollary 3.2. Let m(> 1) be the connected domination number γc(G) or the connected

hub number hc(G) of a connected graph G of given order n. Then

µ(G) 6

{
−m3+3m2+(3n2−12n+7)m+9n2−12n+3

6n(n−1)
, if n−m is odd;

−m3+3m2+(3n2−12n+10)m+3n(3n−4)
6n(n−1)

, if n−m is even,
(16)

with equality holding if and only if G = R(n,m).

Since the right-hand sides of Ineq. (16) are both strictly increasing functions of n

(n > 1) and the limits of them as n approaches infinity both equal m+3
2

, it follows that
m+3
2

is the supremum of µ(G). From this, we get the following Corollary 3.3, which is a

result obtained by DeLaViña, Pepper and Waller in [10].
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Corollary 3.3. Let m(> 1) be the connected domination number γc(G) or the connected

hub number hc(G) of a non-clique connected graph G of given order n. Then

m > 2µ(G)− 3.

Moreover, this inequality is best possible.

4 Upper bounds of µ(G) of 2-connected graphs G

In the previous section, we get the upper bounds of µ(G) when G is connected. In this

section, we further restrict the graph G to be 2-connected, in which way the extremal

graphs whose average distances achieve sharp upper bounds will not be trees.

4.1 The analysis for the construction of edge-minimal graphs G

It’s easily seen that for a graph G of given order n and connected domination number

γc, if the average distance µ(G) is maximum, then G is edge-minimal. Firstly, we show

the structure of G where G is edge-minimal with given order and connected domination

number.

Lemma 4.1. [2] Let G be a k-connected graph, x ∈ V (G) and Y ⊆ V (G) − {x} with

|Y | ≥ k. Then there exist k internally disjoint (x, Y )-paths in G whose terminal vertices

in Y are distinct.

Lemma 4.2. Let G be an edge-minimally 2-connected graph. Then every cycle of G is

indeed an induced cycle of G.

Proof. To the contrary suppose that there exists a cycle C of G and e0 = uv ∈ E(G) is

a chord of C. Since G is an edge-minimally 2-connected, it follows that G − uv is not

2-connected. Thus there exists a cut-vertex x of G−uv. Then u and v are respectively in

two distinct components of (G− uv)− x, for otherwise x is also a cut-vertex of G, which

contradicts to the 2-connectivity of G. So each uv-path in G− uv must pass x. However,

C is also a cycle of G − uv, resulting that there exist two internally disjoint uv-paths in

G− uv, a contradiction.

Theorem 4.3. Let G be a 2-connected graph with vertex set V of given order, and U be

a minimum connected dominating set of G. If G is 2-connected with γc(G) = γc being

fixed, and G is edge-minimal with regard to these two properties, then G[U ] is a tree and

G− U is an edge-nonempty forest.
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Proof. Firstly, we prove that G[U ] is a tree. To the contrary suppose that G[U ] contains

a cycle C. C must be an induced cycle of G because of Lemma 4.2 as well as that deleting

any chord of C does not increase the connected domination number of G. For simplicity,

in this proof, we call a non-trivial path P a C-path if V (P ) ∩ V (C) contains exactly the

two end-vertices of P .

Claim 1. For any u ∈ V (C), dG(u) > 3.

Otherwise, if there exists a vertex v ∈ V (C) such that dG(v) = 2, then U ′ = U − {v}

is still a connected dominating set of G, which implies that γc(G) ≤ |U ′| = γc − 1, a

contradiction.

Claim 2. For any u ∈ V (C), there exists a C-path P of G connecting u and another

vertex v of C such that v /∈ NC(u).

By Claim 1 and C being an induced cycle of G, there exists a vertex w ∈ V (G)−V (C)

such that uw ∈ E(G). Since C is a cycle, we have |V (C)| > 3. Since G is 2-connected,

there exist two internally disjoint (w, V (C))-paths P1 and P2 such that V (P1) ∩ V (P2) =

{w} by Lemma 4.1. Without loss of generality, suppose that u /∈ V (P1), and let V (C) ∩

V (P1) = {v}. Then we must have v /∈ NC(u), for otherwise P1 ∪ (C − uv) ∪ {uw} is a

cycle of G containing a chord uv, resulting that G−uv is still 2-connected by Lemma 4.2

with U its minimum connected dominating set, contradicting to the edge-minimality of

G. Let P be the path such that E(P ) = {uw}∪E(P1), then P is a C-path of G satisfying

the requirement of Claim 2.

Every C-path P divides the cycle C into two paths P1 and P2 (note that both contain

the end-vertices of P ). Now find a C-path P ∗ such that one of the two lengths of P ∗
1 , P

∗
2

is the shortest among all the paths of divisions of the C-paths. Without loss of generality,

say it as P ∗
1 . That is,

|E(P ∗
1 )| = min{|E(P1)|, |E(P2)| : P is a C-path}.

Let V (P ∗) ∩ V (C) = {u, v}, and NC(u) ∩ V (P ∗
1 ) = {u′}. By Claim 2, there exists a

C-path P ′ and v′ ∈ V (C) such that V (C) ∩ V (P ′) = {u′, v′}. From the selection of P ∗,

we know that v′ /∈ V (P ∗
1 ).
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v v

Figure 4. A schematic illustration of Proof of Theorem 4.3.

For any path P = x1x2 · · · xt, denote by P (xi, xj) the sub-path of P from xi to xj,

where 1 ≤ i, j ≤ t. If P ∗∩P ′ = ∅, then P ′∪P ∗
2 (v

′, u)∪P ∗∪P ∗
1 (v, u

′) is a cycle and uu′ is

a chord of it (see Figure 4 (i)). However, G′ = G−uu′ is still 2-connected by Lemma 4.2,

with U its minimum connected dominating set, which contradicts to the edge-minimality

of G. If P ∗ ∩ P ′ 6= ∅, then starting at u, find along P ∗ the first vertex w such that

w ∈ P ∗ ∩ P ′. Then (C − uu′) ∪ P ∗(u,w) ∪ P ′(w, u′) is a cycle and uu′ is a chord of it.

Similarly, G′ = G− uu′ contradicts to the edge-minimality of G (see Figure 4 (ii)). Thus

G[U ] contains no cycles, and so it is a tree.

Secondly, we prove that G[V \ U ] is a forest. To the contrary suppose that G[V \ U ]

contains some cycle C, and pick any edge e = uv ∈ C. Since U is a dominating set of

G, there exist a vertex u′ ∈ U and a vertex v′ ∈ U such that uu′, vv′ ∈ E(G). Since

G[U ] is a tree, there exists a unique path P in G[U ] connecting u′ and v′ (note that

P might be a single vertex in the case when u′ = v′). Then e is a chord of the cycle

(C − e) ∪ P ∪ {uu′, vv′}, and G′ = G− e is still a 2-connected graph by Lemma 4.2 with

U its connected dominating set. Thus γc ≥ γc(G
′) ≥ γc(G) = γc, that is, γc(G′) = γc,

contradicting to the edge-minimality of G. Thus G[V \ U ] is a forest.

Finally, we prove that G[V \U ] contains at least one edge. To the contrary suppose that

G[V \U ] consists of isolated vertices. Pick any leaf l ∈ G[U ], l must dominate some vertex

in V \ U , and any vertex in V \ U dominated by l in G is also dominated by some other

vertex in U because of the 2-connectivity of G. Thus U− l is still a connected dominating

set of G, contradicting to the minimality of U . Thus G[V \U ] is an edge-nonempty forest.
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4.2 Upper bound of µ(G) of a 2-connected graph G
with γc(G) = 2

Note that it is more difficult for the case that G is 2-connected where the extremal graphs

whose average distances achieve sharp upper bounds will not be trees. So we restrict that

γc(G) = 2, and then give the sharp upper bound of µ(G) and characterize the extremal

graphs. Before we offer this result, we need to define a graph class Γn,2.

Definition 4.4. Define that G ∈ Γn,2 (n ≥ 4) if and only if G has the following structure:

1. If n is even, then G is the union of n−2
2

C4’s, where the C4’s join exactly one common

edge, as shown in Figure 5 (i);

2. If n is odd, then G is the union of n−3
2

C4’s and one C3, where the C4’s join exactly

one common edge, and the C3 joins one edge with some C4 satisfying that the edge

is adjacent to that common edge, as shown in Figure 5 (ii).

Figure 5. The graph G ∈ Γn,2: (i) when n is even; (ii) when n is odd.

Lemma 4.5. Let G be a 2-connected graph of given order with γc(G) = 2 and U = {x, y}

be a minimum connected dominating set of G. If µ(G) attains the maximum value, then

G[V \ U ] is a forest containing at most one isolated vertex.

Proof. Since µ(G) attains the maximum value, G must be edge-minimal under the condi-

tions of this lemma. By Theorem 4.3, G[V \U ] is a forest and can’t be an isolated vertex

set.

Suppose to the contrary that G[V \U ] contains two isolated vertices u and v. Since G

is 2-connected, each of u and v is adjacent to both x and y in G. That is, ux, uy, vx, vy ∈

E(G). Construct a new graph G′ satisfying V (G′) = V (G) and E(G′) = (E(G) −

{uy, vx}) ∪ {uv}. Then G′ is 2-connected and γc(G
′) = γc(G) = 2.
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Now we compare W (G) and W (G′). Note that dG(r, s) = dG′(r, s) for any r, s ∈

V (G − u − v). So it remains to compare σG(u) + σG(v) and σG′(u) + σG′(v). For any

w ∈ V (G− {x, y, u, v}), it holds that

dG′(u,w) ≥ dG(u,w);

dG′(v, w) ≥ dG(v, w);

7 =
∑

m∈{u,v}
n∈{x,y}

dG′(m,n) + dG′(u, v) >
∑

m∈{u,v}
n∈{x,y}

dG(m,n) + dG(u, v) = 6.

From the above three inequalities, we can see that W (G′) > W (G), contradicting to the

maximality of µ(G).

In fact, the induced subgraph G[V \U ] in Lemma 4.5 contains no isolated vertex except

for one simple case. In the following theorem, we will show it in two cases according to

the parity of n.

Theorem 4.6. Let G be a 2-connected graph with |V (G)| = n and γc(G) = 2. Then

µ(G) ≤

{
5n2−16n+16

2n(n−1)
, if n is even;

5n2−16n+11
2n(n−1)

, if n is odd,

with equality holding if and only if G ∈ Γn,2.

Proof. For convenience, we may assume that G is such a graph that µ(G) attains the

maximum value under the conditions of this theorem. Let U = {x, y} be a minimum

connected dominating set of G. By Lemma 4.5, G[V \U ] is a forest and contains at most

one isolated vertex.

Claim 1. For each u ∈ V \ U with u being not an isolated vertex of G[V \ U ], u is

adjacent to exactly one vertex of {x, y} in G.

Otherwise, if there exists a component B of G[V \U ] with |V (B)| ≥ 2 which contains a

vertex u such that ux, uy ∈ E(G). Choose another vertex v ∈ V (B) such that uv ∈ E(G).

Since U = {x, y} is a dominating set of G, v is adjacent to at least one of x and y in

G. Without loss of generality, assume that vx ∈ E(G), then ux is a chord of the cycle

xyuv. Then G′ = G− ux is still a 2-connected graph by Lemma 4.2 with U its connected

dominating set, contradicting to the maximality of µ(G).

Case 1. n is even.
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Firstly, we show that G[V \ U ] contains no isolated vertex. It’s easy to see that G is
exactly Γ4,2 in the case when n = 4. So we suppose that n ≥ 6. To the contrary suppose

that G[V \ U ] contains an isolated vertex u.

Since n− 2 is even, there exists a component C of G[V \U ] with odd order at least 3.
Since C is a tree, C contains at least 2 leaves, say l and r. Combining these with Claim

1 as well as the condition that G is 2-connected, we must have that one of l and r, say l,

satisfies that

NG(x) ∩ {V (C − l)} 6= ∅ and NG(y) ∩ {V (C − l)} 6= ∅.

Suppose without loss of generality that l ∈ NG(x), and let v ∈ NC(l). Construct a

new graph G′ from G′′ = G− l by removing the edge ux, and adding the vertex l and the

edges ul and xl. Observing that G′′ is 2-connected by considering the pair x and l (or v

and l) as well as using the same method in the proof of Lemma 4.2. Since G′ is obtained

by increasing a G′′-path to G′′, G′ is also 2-connected (here, the notation “G′′-path” is

used hereditarily in the proof of Theorem 4.3). It holds also that γc(G
′) = γc(G) = 2.

Now we compare W (G) and W (G′). It is not hard to check that dG(r, s) = dG′(r, s)

for any r, s ∈ V (G− l−u), so we just need to compare σG(u)+σG(l) and σG′(u)+σG′(l).

For any w ∈ V (G) \ {x, y, u, l}, it holds that

dG′(u,w) ≥ dG(u,w),

dG′(l, w) ≥ dG(l, w),

dG′(l, v) ≥ 2 > 1 = dG(l, v),∑
m∈{u,l}
n∈{x,y}

dG′(m,n) + dG′(u, l) =
∑

m∈{u,l}
n∈{x,y}

dG(m,n) + dG(u, l) = 7.

From the above formulas, we deduce that W (G′) > W (G), contradicting to the maximal-

ity of µ(G). Thus G[V \ U ] contains no isolated vertex.

Next, we continue the calculation for µ(G). By Claim 1, we have NG(x) ∩NG(y) = ∅.

Denote

WG(U) =
∑

{u,v}⊆U

dG(u, v),

WG(V \U) =
∑

{u,v}⊆V \U

dG(u, v),

WG(U, V \ U) =
∑

u∈U,v∈V \U

dG(u, v).
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Then
W (G) = WG(U) +WG(U, V \ U) +WG(V \ U), (17)

where

WG(U) = 1, (18)

WG(U, V \ U) = d(x)− 1 + 2(d(y)− 1) + d(y)− 1 + 2(d(x)− 1) = 3(n− 2). (19)

Since both WG(U) and WG(U, V \U) are constants, we just need to compute WG(V \U).
For G[V \ U ], denote by c the number of its components, c ′ the number of components

of order at least 3. Consider the distances between vertices of V \ U in G.

Since G[V \ U ] is a forest, the number of pairs whose distance is 1 equals n − 2 − c.

In every component in G[V \ U ], pick the pairs of vertices such that one vertex is in

N(x) \ {y} and the other in N(y) \ {x}. It’s easy to see that among these pairs, there

exists at least one pair whose distance is 1 in each component of G[V \ U ], and at least
one pair whose distance is 2 in each component of G[V \U ] with order at least 3. Besides,

the distance between any two vertices in V \U is at most 3, and between any two vertices
in N(x) \ {y} or in N(y) \ {x} is at most 2, thus

WG(V \ U) ≤ n− 2− c+ 2(

(
n− 2

2

)
− (n− 2− c)− ((d(x)− 1)(d(y)− 1)− c− c ′))

+ 3((d(x)− 1)(d(y)− 1)− c− c ′)

= 2

(
n− 2

2

)
− (n− 2) + (d(x)− 1)(d(y)− 1)− c ′

≤ 2

(
n− 2

2

)
− (n− 2) + (d(x)− 1)(d(y)− 1),

with equality holding if and only if c ′ = 0.

Denote n0 = d(x)− 1. Then d(y)− 1 = n− d(x)− 1 = n− 2− n0 and

n0(n− 2− n0) = −(n0 −
n− 2

2
)2 + (

n− 2

2
)2 ≤ (n− 2)2

4
,

with equality holding if and only if n0 =
n−2
2

. Thus

WG(V \ U) ≤ 2

(
n− 2

2

)
− (n− 2) +

(n− 2)2

4
. (20)

Combining (17)-(20), we obtain that
W (G) = WG(U) +WG(U, V \ U) +WG(V \ U)

≤ 1 + 3(n− 2) + 2

(
n− 2

2

)
− (n− 2) +

(n− 2)2

4

= 2

(
n− 2

2

)
+ 2(n− 2) +

(n− 2)2

4
+ 1, (21)
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with equality holding if and only if d(x) − 1 = d(y) − 1 = n−2
2

and c ′ = 0. That is,

G ∈ Γn,2.

Case 2. n is odd. When n = 5, it’s easy to see that the extremal graph achieving

the maximum average distance is exactly Γ5,2, in which case the minimum connected

dominating set U can be chosen as the two end-vertices of the common edge joined by

the triangle and the C4, resulting that G[V \ U ] contains one isolated vertex. Consider

the case when n ≥ 7 below.

First we show that G[V \ U ] contains no isolated vertex. By Lemma 4.5, G[V \ U ]

contains at most one isolated vertex. So we can suppose to the contrary that there exists

a vertex w ∈ V \ U , such that w is an isolated vertex of G[V \ U ].

Note that the distance between w and each vertex in G is constant:

d(w, x) = d(w, y) = 1,

d(w, u) = 2, ∀u ∈ V \ {x, y},

and deleting w doesn’t change the distances of pairs of other vertices of G. Thus G− w

is a graph such that W (G− w) is maximum over all the graphs of order n− 1 satisfying

that G − w is 2-connected and γc(G − w) = 2. Therefor G − w ∈ Γn−1,2 by case 1. So

G has the construction depicted in Figure 6 (i). However, if we construct a graph G′

from G by removing the edge wy as well as adding a new edge incident with w which is

shown in Figure 6 (ii)(remark that G′ is just the graph depicted in Figure 5 (ii)), then

σG(w) < σG′(w), which implies that W (G) < W (G′), contradicting to the choice of G.

Figure 6. (i) The graph G; (ii) The graph G′.

Now we obtain that G[V \U ] contains no isolated vertex. Since n− 2 is odd, G[V \U ]

contains at least one component of order at least 3. Here we still use the notations c, c ′
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in case 1, where c ′ ≥ 1 is restricted. Similarly, we obtain that

WG(V \ U) ≤ n− 2− c+ 2(

(
n− 2

2

)
− (n− 2− c)− ((d(x)− 1)(d(y)− 1)− c− c ′))

+ 3((d(x)− 1)(d(y)− 1)− c− c ′)

= 2

(
n− 2

2

)
− (n− 2) + (d(x)− 1)(d(y)− 1)− c ′

≤ 2

(
n− 2

2

)
− n+ 1 + (d(x)− 1)(d(y)− 1),

with equality holding if and only if c ′ = 1, and because of the first inequality, the order

of the component of order at least 3 is exactly 3.

Denote n0 = d(x)− 1. Then d(y)− 1 = n− d(x)− 1 = n− 2− n0 and

n0(n− 2− n0) = −(n0 −
n− 2

2
)2 + (

n− 2

2
)2 ≤ (n− 2)2 − 1

4
,

with equality holding if and only if n0 =
n−1
2

or n−3
2

. Thus

WG(V \ U) ≤ 2

(
n− 2

2

)
− n+ 1 +

(n− 2)2 − 1

4
. (22)

Combining (17)-(19) and (22), we obtain that

W (G) = WG(U) +WG(U, V \ U) +WG(V \ U)

≤ 1 + 3(n− 2) + 2

(
n− 2

2

)
− n+ 1 +

(n− 2)2 − 1

4

= 2

(
n− 2

2

)
+ 2(n− 2) +

(n− 2)2 − 1

4
, (23)

with equality holding if and only if d(x)− 1 = n−1
2

or n−3
2

, and G[V \U ] contains exactly

one component of order 3 and all the others of order 2. That is, G ∈ Γn,2.

In summary, combining (21), (23) and µ(G) = 2W (G)
n(n−1)

, we obtain that

µ(G) ≤

{
5n2−16n+16

2n(n−1)
, if n is even;

5n2−16n+11
2n(n−1)

, if n is odd,

with equality holding if and only if G ∈ Γn,2, as required.

5 Conclusions
In this paper we focus on the connected hub number hc, recently introduced by Walsh [24],

and the connected domination number γc. In view of the close relationship between these

two variables, we divide connected graphs into two classes, and, respectively, establish
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sharp upper bounds on the average distances of each class of graphs of given order in

terms of hc and also characterize the extremal graphs, one class containing cycles and the

other class being trees. But from the global point of view, the extremal graphs are trees,

like the previous results [5, 21]. Thus we restrict graphs to be 2-connected and obtain

that for a 2-connected graph G with given order n and connected domination number γc,

if G is edge-minimal and U is a minimum connected dominating set of G, then G[U ] is a

tree and G[V \ U ] is an edge-nonempty forest. Further, we restrict that γc = 2, and give

sharp upper bounds of µ(G) and characterize the extremal graphs. One open problem is

that what the results are if γc is not restricted for 2-connected graphs. Of course, another

future work can be considered: establishing sharp upper bounds of the average distance

of a connected graph of given order in terms of the hub number.
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