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Abstract

Triangular prism links, as mathematical models of DNA triangular prisms with
double-helix edges, have been constructed and classified into 366 link types in our
previous work [1]. In the present paper, the chirality of such links are identified
by firstly giving some invariants such as the component number, crossing number
and writhe number. Then, there are 77 link types of triangle prism links whose
lowest-degree terms of HOMFLY polynomials are given as some general formulas
by establishing a new algorithm. Also, there are 100 pairs of triangular prism links
such that these invariants of each pair have the same value respectively, due to each
pair of links having the symmetrical relationship disclosed in this paper. These
results altogether show that these triangular prism links are all chiral, which means
that the chirality of DNA triangular prisms can be determined by their topological
structures. Meanwhile, they also confirm that the synthesized DNA triangular
prism of five components is chiral. Hence our work provide a necessary theoretical
support for predicting and controlling the chiral structure of DNA Triangular Prism.

1 Introduction

Chirality is an essential feature of nature, and play the important role in physical and

chemical properties of biological molecules [2, 3]. In recent decades, DNA have became

an ideal building material for its well-defined secondary structure and excellent molecular

recognition [4, 5]. A variety of DNA molecules in polyhedral shape have been assembled

and commonly studied [6–17]. It is well-known that DNA is intrinsically chiral for its
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duplex structure [18]. However, the chirality of DNA nanostructures are not recognized

widely due to the complexity of the geometric folding and association of component DNA

molecules in the construction process. In 2005, Turberfield and coworkers synthesized

and confirmed a pair of chiral DNA tetrahedrons with a DNA duplex on each edge by

designing four component oligonucleotides [19]. More recently, Mao’s group construct a

serial of DNA octahedra and triangular prisms, each with two parallel DNA duplexes on

each edge, to investigate their chiral structures by designing three or four symmetrical

cross motif [20, 21]. However, these studies so far only exploit a small fraction on the
chirality of DNA nanomolecules. How to predict the chirality of DNA nanostructures

become a challenge work. Herein, we employ a theoretical method to determine the

chirality of DNA triangle prisms with double-helical edges [22, 23].

Oriented triangle prism links (OTP links) are interlocked and interlinked architectures

in triangle-prism shape such that each edge is two oriented and twisted strands with odd or

even crossings number. These links are further classified into 366 link types, which are used

to describe topological structures of DNA triangle prisms with a double-helix on each edge

[1]. To date, there are many researches devoted to calculating the chirality of polyhedral

links [25–37], particularly with even crossing number on each edge. These works are

mainly dependent on establishing the corresponding relationship between polyhedral links

and polyhedra to obtain the polynomial invariants such as Homfly polynomial and Jone

polynomial. However, this relationship will be not existing for the oriented polyhedral

links with edges of odd crossings number. In fact, there are very little work involved
in calculating the chirality of these oriented polyhedral links [24, 27, 37] owing to the

complexity of their structures. OTP links, as oriented polyhedral links, allow the edges

of odd crossing number as well as the edges of even crossing number, which make it more

difficult to determine their chirality. Thus, we must appeal to a new approach to giving

the chirality of OTP links.

Link invariants, as important tools in knot theory to determine whether two links are

equivalent, play the significant roles in identifying the chirality of links [38]. However,

there is no invariant which always work for all links. In the present paper, three link

invariants including component number, crossing number and HOMFLY polynomial are

calculated for OTP links. The component number of OTP links are completely depen-

dent on the building blocks on each edge, which are used to identify the chirality of links
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with even component number. The crossing number of OTP links, together with their

writhe number as a regular isotopy invariant of oriented link diagrams, are used to de-

termine the chirality of 111 link types of OTP links with odd component number. For

the remaining 77 link types of triangle prism links, we must resort to a more powerful

invariant of oriented links, Homfly polynomial [39, 40], which can distinguish many links

from their mirror images. Note that these OTP links each contain the crossing number

as a parameter. Hence there is no software package which can be used for computing

HOMFLY polynomials of such links as well as the lowest-degree terms of their HOMFLY

polynomials with respect to the variable z. Also, these links exhibit less regularity on the

change of their HOMFLY polynomials with the appearance of the edges of odd crossing

number. Hence a new algorithm is to supposed for establishing a general formula for the

lowest-degree terms of HOMFLY polynomial for each link type. In particular, the second

lowest-degree term of HOMFLY polynomial of the link D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)64 is given

separately. These polynomials are shown to be asymmetrical over the variant v, and hence

the remaining 77 OTP links are all chiral. Thus, our works show that the chirality of DNA

triangular prism with double-helix edges are determined by their topological structures,

which open a new door to predict and control the chiral structures of DNA Triangular

Prism from the theoretical viewpoint.

2 OTP link diagrams

The symmetry of link diagrams as a new definition and OTP link diagrams constructed

in reference [1] are introduced in this section.

Let L be a link, and D be a link diagram of L. L can be oriented by giving one of the

two directions along each component. L with the opposite orientation, denoted by −L, is

called the reverse of L. An oriented link L is called achiral if it is equivalent to its mirror

image L∗. Otherwise, it is called chiral. Similarly, D also can be oriented, and its reverse

and mirror image are denoted by −D and D∗ respectively.

The diagram Ds is called a symmetrical link diagram of D if it is obtained from −D∗

by switching the over and under-line position at each crossing. The link Ls corresponding

to Ds is called as a symmetrical link of L. According to this definition, we have the

following lemma.
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Figure 1. (a) Four orientations of T : α, −α, β, γ ; (b) Six oriented twist tangles
of T : aα2n, a−α

2n , aβ2n−1, bα2n, b−α
2n and bγ2n−1; (c) The construction of D(G)

and D(aα2n, 5b
α
2n, 3b

γ
2n−1).

A twist tangle T is two parallel strands twisted round each other, where T allows four

orientations α, β, γ and −α (Fig. 1(a)). Also, T has six oriented twist tangles denoted

by aα2n, a−α
2n , aβ2n−1, bα2n, b−α

2n and bγ2n−1 for n ∈ Z+ (Fig. 1(b)) . Let G be a plane graph of

a triangular prism, and let D(G) be an oriented triangular prism link diagram (OTP link

diagram) obtained from G by replacing each edge ei with an oriented twist tangle Ti for 1 ≤

i ≤ 9 (Fig. 1(c)). D(G) can be denoted as D(T1, T2, T3, T4, T5, T6, T7, T8, T9)n for 1 ≤ n ≤

366 by recording the twist tangle on each edge in a sequence from outside to inside and in

the clockwise direction, where the subscript n is the number labeling the OTP link diagram

[1]. And the orientation of D(G) is denoted accordingly by o(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9),

where τi ∈ {α,−α, β, γ} is the orientation of Ti for 1 ≤ i ≤ 9. The oriented triangular

prism link (OTP link) corresponding to D(G) is denoted by L(G) [1].

Lemma 2.1. There are 100 pairs of symmetrical links among 366 OTP links, as shown

in table 1.

This lemma can be directly obtained from the definition of symmetrical links and OTP

links, and the proof is left as an exercise for the reader. With some abuse of terminology

in this paper, the word ‘ link ’ is applied to mean a whole equivalence class (a knot type)

or a particular representative member.
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3 Chirality of OTP links
3.1 Component number of OTP link diagrams

In knot theory, component number µ(L) of the link L is defined as the number of compo-

nents of L. Similarly, a component of a link diagram D is plane projection of a component

of L. Evidently, µ(L) = µ(D). Component number is an invariant of links, and also can

be used to identify the chirality of some links.

Lemma 3.1. [41] All oriented alternating links with an even number of components are

chiral.

Each OTP link diagram is oriented and alternating, then we obtain the following

theorem.

Theorem 3.2. The component number of all OTP link diagrams are given in table 1

(Appendix A). There are 178 OTP link diagrams with an even number of components,

which are all chiral.

3.2 Crossing number and writhe number of OTP link diagrams

In knot theory, crossing number c(D) of a link L is the minimal number of crossings in any

link diagram for L. It is well-known that the number of crossings in a reduced alternating

link diagram of L is a topological invariant of L [42].

For any link diagram D, each crossing is given a sign of plus or minus according to

the conventions shown in Fig. 2. The writhe number ω(D) of a link diagram D is the sum

of the signs of all the crossings. As we known, writhe number is the simplest invariant

of regular isotopy for oriented diagrams. Since all OTP link diagrams we constructed are

all alternating, we obtain the following lemma (proof is omitted).

Lemma 3.3. Let D be an OTP link diagram. let xα, x−α, xβ and yγ be the number of

the twist tangles aα2n, a−α
2n , aβ2n−1 and bγ2n−1 in D respectively. Then

c(D(G)) = 18n− xβ − yγ (1)

and ω(D(G)) = 18n− 4n(xα + x−α)− (4n− 1)xβ − yγ. (2)

In terms of the crossing number and writhe number, the following inequality is intro-

duced to identify chiral links by Kauffman.
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Lemma 3.4. [42] Let D be a simple alternating diagram which is not the unknotted circle

diagram, and T (D) = |ω(D)|. If T (D) > c(D)
3

, then D is chiral.

Using the above two lemmas, we obtain the following theorem.

Theorem 3.5. Crossing number and writhe number of all OTP link diagrams are given

in table 1 (Appendix A). Then there are 111 OTP link diagrams with an odd number of

components (without the label ∗ in table 1), which are all chiral.

3.3 HOMFLY polynomials of OTP link diagrams

Let minzH denote the lowest-order term of z in the multi-variable polynomial f taken

over terms with non-zero coefficients. Our result begins with the definition of HOMFLY

polynomial [38–40].

Definition 3.6. The HOMFLY polynomial H(L) = H(L; v, z) ∈ Z[v, z] for an oriented

link L is defined by the following relationships:

(1) H(L; v, z) is invariant under ambient isotopy of L.

(2) If L is a trivial knot, then H(L; v, z) = 1.

(3) Suppose that three link diagrams L+, L− and L0 are different only on a local region,

as shown in Fig. 2, then v−1H(L+; v, z)− vH(L−; v, z) = zH(L0; v, z).

+ -
Figure 2. Three link diagrams are different from a local region, and each diagram

denotes its corresponding HOMFLY polynomial.

Let D be a link diagram of L. According to the above definition, to obtain the

HOMFLY polynomial of L, repeatedly applying the skein relation to the crossings of D

until each diagram Di obtained from D is trivial for 1 ≤ i ≤ n. In this process, we can

require that each crossing of D is switched or smoothed no more than once. Also, let

Pi(v, z) ∈ Z[v, z] be the product of all polynomials produced by switching or smoothing

the crossings of D for obtaining Di. Then

H(D) =
n∑

i=1

Pi(v, z)H(Di). (3)
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On the other hand, the HOMFLY polynomial also has the following properties:

(1) If L is the connected sum of L1 and L2, denoted by L1]L2, then

H(L) = H(L1)H(L2).

(2) If L is the disjoint union of L1 and L2, denoted by L1 ∪ L2, then

H(L) =

(
v−1 − v

z

)
H(L1)H(L2).

(3) If L is a link, then

H(L; v, z) = H(Ls; v, z) = H(L∗;−v−1, z).

The following four lemmas are introduced for the HOMFLY polynomials of the link

diagram having a twist tangle aα2n, bα2n, bγ2n−1 or aβ2n−1. The first three lemmas have proved

in our previous works [24]. The proof of four lemma is similar to the lemma 3.9, and we

omitted it here.

Lemma 3.7. Let Dbα2n
be a link diagram with an edge bα2n for n ≥ 1. Let Dbα0

and Dbα∞

be two link diagrams obtained from Dbα2
by switching and smoothing a crossing of bα2

respectively. Then

H(Dbα2n
) = v2nH(Dbα0

) + vz
v2n − 1

v2 − 1
H(Dbα∞). (4)

Lemma 3.8. Let Daα2n
be a link diagram with an edge aα2n for n ≥ 1. Let Daα0

and Daα∞

be two link diagrams obtained from Daα2
by switching and smoothing a crossing of aα2

respectively. Then

H(Daα2n
) = v−2nH(Daα0

)− v−1z
v−2n − 1

v−2 − 1
H(Daα∞). (5)

Lemma 3.9. Let Dbγ2n−1
be a link diagram with an edge bγ2n−1 for n ≥ 1. Let Dbγ−1

and

Dbγ∞ be two link diagrams obtained from Dbγ1
by switching and smoothing a crossing of bγ1

respectively. Then

H(Dbγ2n−1
) = v2n−2H(Dbγ1

) + vz
v2n−2 − 1

v2 − 1
H(Dbγ∞); (6)

and H(Dbγ2n−1
) = v2nH(Dbγ−1

) + vz
v2n − 1

v2 − 1
H(Dbγ∞). (7)
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Lemma 3.10. Let Daβ2n−1
be a link diagram with a aβ2n−1 for n ≥ 1. Let Daβ−1

and Daβ∞

be two link diagrams obtained from Daβ1
by switching and smoothing a crossing of aβ1

respectively. Then

H(Daβ2n−1
) = v−(2n−2)H(Daβ1

)− v−1z
v−(2n−2) − 1

v−2 − 1
H(Daβ∞

); (8)

and H(Daβ2n−1
) = v−2nH(Daβ−1

)− v−1z
v−2n − 1

v−2 − 1
H(Daβ∞

). (9)

According to the skein relation of HOMFLY polynomial and the theorem 3 in refer-

ence [24], each lowest-order term of HOMFLY polynomial can be obtained by using the

following algorithm.

Algorithm 3.11.

Step 1. Switching some crossings enable D into a trivial link diagram DT
n (n ≥ 1). Output

PDT
n
H(DT

n ), where PDT
n

be the polynomial produced from D by switching and smoothing

crossings to obtain the trivial link diagram DT
n . Go to step 2.

Step 2. Among these crossings, if there exist m crossings numbered from 1 to m such

that each crossing belong to a component of D (m ≥ 1), go to step 3. Otherwise, this

loop is terminated.

Step 3. Smooth ith crossing and keep switching 1st, 2nd, ..., (i − 1)th crossings for i =

1, 2, ...,m. The resulting link diagrams are denoted by D′
1, D

′
2, ..., D

′
m. Replacing D′

i with

D, go to step 1.

The following lemma can be obtained directly from the above equation (3) and Algo-

rithm 3.11.

Theorem 3.12. Each PDT
n
H(DT

n ) is one lowest-order term of H(D). Then

minzH(D) =
∑
n

PDT
n
(v, z)H(DT

n ). (10)

By using the above lemmas, we obtain the following theorem.

Theorem 3.13. The lowest-order terms of HOMFLY polynomials of 77 OTP links are

given in table 2.
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D minzH(D)
D23 (6v6n + v−4+6n − 4v−2+6n − 4v2+6n + v4+6n)z−4

D25, D29, D31, D39 (−2v6n + 2v8n − 2v12n + v−2+6n + v2+6n − v−2+8n − v2+8n + v−2+12n + v2+12n)z−2

D27, D33, D37, D41, D47 (−2v12n + v−2+12n + v2+12n)z−2

D49, D51 (−2v4n + 2v6n − 2v12n + v−2+4n + v2+4n − v−2+6n − v2+6n + v−2+12n + v2+12n)z−2

D58, D66, D82 (v−2−4n + v2−4n − v−2−2n − v2−2n − 2v−4n + 2v−2n − 2v2n + v−2+2n + v2+2n)z−2

D60 2 + v−10n − 2v−6n + 2v−4n − v−2n − 2v2n + v8n

D62, D78 4 + v−10n − 3v−6n + 5v−4n − 5v−2n − v2n − v4n + v8n

D64 (−2 + v−2 + v2)z−2

D68 2 + v−10n − 2v−6n + 3v−4n − 3v−2n − v4n + v8n

D72 (−2v2n + v−2+2n + v2+2n)z−2

D74 2 + v−10n − 3v−6n + 5v−4n − 4v−2n − v4n + v8n

D76, D346, D364 (v−2−4n + v2−4n − 2v−4n)z−2

D80 (−2 + v−2 + v2 + v−2−4n + v2−4n − v−2−2n − v2−2n − 2v−4n + 2v−2n)z−2

D88 7 + v−10n − 5v−6n + 11v−4n − 12v−2n − 2v4n + v8n

D94 4 + v−10n − 4v−6n + 8v−4n − 8v−2n + v2n − 2v4n + v8n

D96 1 + v−10n − 3v−6n + 5v−4n − 4v−2n + 2v2n − 2v4n + v8n

D104 4 + v−10n − 3v−6n + 6v−4n − 7v−2n + v2n − 2v4n + v8n

D119, D125, D139 (v2n − 2v2+2n + v4+2n)z−2

D121 3v2 + 3v2−4n − 5v2−2n + v2n − v4n + v8n − v2+4n

D123, D131 2v2 + v2−4n − v2−2n + v8n − v2+2n − v2+4n

D127 v2 + 2v2−4n − 2v2−2n + v8n − v2+4n

D133 5v2 + 3v2−4n − 6v2−2n + v2n − v4n + v8n − v2+2n − v2+4n

D143, D199 (1− 2v2 + v4)z−2

D172 2v−2 − 3v−2−6n + 3v−2−4n − 2v−2−2n + v−10n

D174 (v−4−4n − 2v−2−4n + v−4n)z−2

D185 (3v4n − v6n + 3v−4+4n − 6v−2+4n − v−6+6n + v−4+6n + v−2+6n)z−2

D186 3v−2+4n − 3v−2+6n + 3v−2+10n − v−4+12n − v−2+12n

D187 2v−2 − 3v−2+2n + 5v−2+4n − v−4+6n − 5v−2+6n + v−4+8n

+v−2+8n + 3v−2+10n − v−4+12n − v−2+12n

D188 v−2 − v−2+2n + 2v−2+4n − 2v−2+6n + 3v−2+10n − v−4+12n − v−2+12n

D189 2v−2 − 4v−2+2n + 7v−2+4n − v−4+6n − 6v−2+6n + v−4+8n

+v−2+8n + 3v−2+10n − v−4+12n − v−2+12n

D190 (v4n + v−4+4n − 2v−2+4n)z−2

D197 4v2 + 3v2−4n − 5v2−2n + v2n − v4n + v8n − 2v2+2n

D201 2v2 + 2v2−4n − 2v2−2n + v8n − 2v2+2n

D209 (v2−4n − 2v4−4n + v6−4n − v2−2n + 2v4−2n − v6−2n + v2n − 2v2+2n + v4+2n)z−2

D214 v2 + 2v4−8n − 2v4−6n + v8n − v2+4n

D216 2v2 + v4−8n − 2v4−4n + v4−2n + v8n − v2+2n − v2+4n

D228 (v2−4n − 2v4−4n + v6−4n)z−2

D242 −(4v−4)− 5v−2−6n + 5v−2−4n + 2v−4−2n + v−10n + 2v−4+2n

D250 2v−2 − 2v−2+2n − 2v−4+4n + 3v−2+4n + 3v−4+6n − v−2+6n − 3v−4+8n + v−4+12n

D252 2v−2 − 2v−2+2n − v−4+4n + 3v−2+4n + v−4+6n − v−2+6n − 2v−4+8n + v−4+12n

D256 2v−2 + v−2+2n − 3v−4+4n − v−2+4n + 3v−4+6n − 2v−4+8n + v−4+12n

D258 (v−6+6n − 2v−4+6n + v−2+6n)z−2

D261 2v2 + v4 + v4−6n − v4−4n − v4−2n + v8n − 2v2+4n

D264 v2 + v4 + v4−8n − v4−4n − v4−2n + v8n + v2+2n − 2v2+4n

D272 (v2−4n − 2v4−4n + v6−4n − v2−2n + 2v4−2n − v6−2n + v2n − 2v2+2n + v4+2n)z−2

D284, D287 (v−6+4n − 2v−4+4n + v−2+4n)z−2

D293 v−2 − v−4+2n − v−4+4n + v−6+6n + 2v−4+6n − v−6+8n + 2v−4+8n − v−6+10n − v−4+10n

D297 v4 + 3v4−4n − 4v4−2n + v8n + 2v2+2n − 2v2+4n

D320 (v−2−2n + v2−2n − 2v−2n)z−2

D322 3− v2−4n − v−4n + 2v−2n − v2n − v−2+2n

D327 −v6−12n + 2v6−10n + v4−8n − 2v6−8n − v4−6n + v4−4n + v2−2n

D329 (v4−10n − 2v6−10n + v8−10n)z−2

D338 (v−8+8n − 2v−6+8n + v−4+8n)z−2

D348 (v−8+6n − 2v−6+6n + v−4+6n)z−2

D351 2− 3v−2+4n + v−4+6n + v−2+6n

D352 −v6−12n − 2v8−12n + 5v6−10n + v8−10n − 4v6−8n + 2v4−4n

D357 (−2v2−4n + v4−4n + v−4n)z−2

D358 v4−8n − 3v2−4n + v2−2n − v−4n + 3v−2n

D362 −4− 4v−2 + v2−6n − 3v2−4n + v−2−2n + v2−2n − 4v−4n + 11v−2n + 2v−2+2n

Table 2: The lowest-degree terms of z of HOMFLY polynomials of 77 OTP link
diagrams. Here each link diagram denote the link diagram with the same subscript
in table 1.

Proof. By using the definition (3) of HOMFLY polynomial, the 77 OTP link diagrams
cover nineteen types of orientations in table 2. Then the lowest-degree terms of HOM-
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FLY polynomials of these link diagrams can be divided into the following nineteen cases

according to their orientations. Also, the operation that switch n or n− 1 crossings of a

twist tangle aα2n, aβ2n−1, bα2n or bγ2n−1 is covered in the proof below, and hence we illustrate

it in Fig. 3.
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Figure 3. Each crossing switched or smoothed is bounded by a circle. (a) Switch-
ing n crossings of aα2n; (b) Switching n−1 or n crossings of aβ2n−1 respec-
tively; (c) Switching n crossings of bα2n; (d) Switching n−1 or n crossings
of bγ2n−1 respectively.

(1) There are 28 OTP link diagrams oriented with o(9α) in table 2, and the subscribes

of these link diagrams are numbered from 23 to 104.

For the OTP link diagram D23 = D(3aα2n, 6b
α
2n)23, there is only one lowest degree term

of z for H(D23). First, the link diagram D23 is changed into a trivial link diagram DT
1

with five components by switching n crossings of each for three aα2n and six bα2n (Fig. 3).

The resulting polynomial is denoted by PDT
1
(v, z). By using the lemmas 3.7 and 3.8, then

PDT
1
(v, z) = (v−2n)3 · (v2n)6 = v6n .

Also, using the property (3) of HOMFLY polynomial, we have

H(DT
1 ) =

(
v−1 − v

z

)4

.

Then

PDT
1
·H(DT

1 ) = v6n ·
(
v−1 − v

z

)4

= (6v6n + v−4+6n − 4v−2+6n − 4v2+6n + v4+6n)z−4 .

In addition, for the link diagram D, all twist tangles are each composed of two

different components. For each such twist tangle, smoothing its any crossing don’t result

in a lowest-order term of z for H(D) according to the algorithm 3.11. By using theorem

3.12, we have
minzH(D23) = (6v6n + v−4+6n − 4v−2+6n − 4v2+6n + v4+6n)z−4.
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Similarly, for the other link diagrams with the orientation o(9α), the lowest-order terms
of their HOMFLY polynomials can be given in table 2.

(2) There are nine OTP link diagrams oriented with o(4α, β, 2α, 2β) in table 2, and
the subscribes of these link diagrams are numbered from 119 to 143.

For the OTP link diagram D125 = D(aα2n, 3b
α
2n, a

β
2n−1, b

α
2n, a

α
2n, 2a

β
2n−1), it is changed

into a trivial link diagram DT
1 with three components by switching some crossings. In

this process, we switch n crossings of each for a aα2n, four bα2n and a aβ2n−1, and switch n−1

crossings of another aβ2n−1 (Fig. 3). By using the lemmas 3.7, 3.8, 3.10 and theorem 3.12,

then

minzH(D125) =PDT
1
·H(DT

1 )

=v−2n(v2n)4v−2nv−(2n−2) ·
(
v−1 − v

z

)2

=(v2n − 2v2+2n + v4+2n)z−2.

Similarly, for the other link diagrams with the orientation o(4α, β, 2α, 2β), the lowest-
order terms of their HOMFLY polynomials can be given in table 2.

(3) There are eight OTP link diagrams oriented with o(6α, 3γ) in table 2, and the

subscribes of these link diagrams are numbered from 172 to 190.

For the OTP link diagram D185 = D(3aα2n, 3b
α
2n, 3b

γ
2n−1), there are three trivial link

diagrams, which all together result in the lowest-degree term of z for H(D185). A trivial

link diagram DT
1 of three components is obtained from the diagram D185 by switching

some crossings. In this process, we switch n crossings of each for three aα2n, three bα2n and

a bγ2n−1, and switch n− 1 crossings of another bγ2n−1. By using the lemmas 3.7-3.9, then

PDT
1
·H(DT

1 ) = (v−2n)3(v2n)4v2n−2 ·
(
v−1 − v

z

)2

= (v4n + v−4+4n − 2v−2+4n)z−2.

Note that two bγ2n−1 in the above process are both on the same component of D.

Respectively smoothing the crossings of these two bγ2n−1.

First, we smooth n− 1 crossings of one bγ2n−1 to obtain the link diagram D′
1 from D.

Then D′
1 is further changed into a trivial link DT

2 by switching n crossings of each for

three aα2n, three bα2n and a bγ2n−1, and then switching n−1 crossings of the remaining bγ2n−1.

By using the lemmas 3.7-3.9, then

PDT
2
·H(DT

2 ) =vz
v2n−2 − 1

v2 − 1
(v−2n)3(v2n)4v2n−2 ·

(
v−1 − v

z

)3

=(v4n + v−4+4n − 2v−2+4n − v−6+6n + 2v−4+6n − v−2+6n)z−2.
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Second, we smooth n crossings of the other bγ2n−1, and keep switching n− 1 crossings

of the one bγ2n−1 to obtain the link diagram D′
2 from D. Then D′

2 is further changed into

a trivial link DT
3 by switching n crossings of each for three aα2n, three bα2n and a bγ2n−1. By

using the lemmas 3.7-3.9, then

PDT
3
·H(DT

3 ) =vz
v2n − 1

v2 − 1
(v−2n)3(v2n)4v2n−2 ·

(
v−1 − v

z

)3

=(v4n − v6n + v−4+4n − 2v−2+4n − v−4+6n + 2v−2+6n)z−2.

Hence the lowest-degree term of z for H(D185) only contains the above three cases.

By using theorem 3.12, then

minzH(D185)

=
3∑

n=1

PDT
n
(v, z)H(DT

n )

= (v4n + v−4+4n − 2v−2+4n)z−2 + (v4n + v−4+4n − 2v−2+4n − v−6+6n + 2v−4+6n

− v−2+6n)z−2 + (v4n − v6n + v−4+4n − 2v−2+4n − v−4+6n + 2v−2+6n)z−2

= (3v4n − v6n + 3v−4+4n − 6v−2+4n − v−6+6n + v−4+6n + v−2+6n)z−2.

Similarly, for the other link diagrams with the orientation o(6α, 3γ), the lowest-order

terms of their HOMFLY polynomials can be given in table 2.

(4) There are three OTP link diagrams oriented with o(3α, 3β, 3(−α)) in table 2, and

the subscribes of these link diagrams are numbered by 197, 199 and 201.

For D199 = D(aα2n, 2b
α
2n, 3a

β
2n−1, a

−α
2n , 2b

−α
2n ), there is only one lowest degree term of z for

H(D(aα2n, 2b
α
2n, 3a

β
2n−1, a

−α
2n , 2b

−α
2n )). First, the link diagram D199 is changed into a trivial

link diagram DT
1 with three components by switching some crossings. In this process, we

switch n crossings of each for a aα2n, a a−α
2n , two bα2n, two b−α

2n and a aβ2n−1, and switch n− 1

crossings of a aβ2n−1. By using the lemmas 3.7, 3.8, 3.10 and theorem 3.12, then

minzH(D199) = (v−2n)2(v2n)4v−2nv−(2n−2) ·
(
v−1 − v

z

)2

= (1− 2v2 + v4)z−2.

Similarly, for the other link diagrams with the orientation o(3α, 3β, 3(−α)), the lowest-

order terms of their HOMFLY polynomials can be given in table 2.

(5) There are four OTP link diagrams oriented with o(4α, 4β,−α) in table 2, and the

subscribes of these link diagrams are numbered by 209, 214, 216 and 228.

For the link diagram D228 = D(2bα2n, a
α
2n, b

α
2n, 4a

β
2n−1, b

−α
2n ), there is only one lowest

degree term of z for H(D228). First, the link diagram D228 is changed into a trivial link
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diagram DT
1 with three components by switching some crossings. In this process, we

switch n crossings of each for a aα2n, three bα2n and two aβ2n−1, and switch n−1 crossings of

each for the remaining two aβ2n−1. By using the lemmas 3.7, 3.8, 3.10 and theorem 3.12,

then

minzH(D228) = v−2n(v2n)3(v−2n)2(v−(2n−2))2 ·
(
v−1 − v

z

)2

= (v2−4n−2v4−4n+ v6−4n)z−2.

Similarly, for the other link diagrams with the orientation o(4α, 4β,−α), the lowest-order

terms of their HOMFLY polynomials can be given in table 2.

(6) There are five OTP link diagrams oriented with o(2α, γ, α, 2γ, 2α, γ) in table 2,

and the subscribes of these link diagrams are numbered by 242, 250, 252, 256 and 258.

For the link diagram D258 = D(bα2n, a
α
2n, b

γ
2n−1, a

α
2n, 2b

γ
2n−1, a

α
2n, b

α
2n, b

γ
2n−1)258, it is chan-

ged into a trivial link diagram DT
1 with three components by switching some crossings.

In this process, we switch n crossings of each for three aα2n, two bα2n and two bγ2n−1, and

switch n− 1 crossings of each for the remaining two bγ2n−1. By using the lemmas 3.7-3.9

and theorem 3.12, then

minzH(D258) = (v−2n)3(v2n)2(v2n)2(v2n−2)2·
(
v−1 − v

z

)2

= (v−6+6n−2v−4+6n+v−2+6n)z−2.

Similarly, for the other link diagrams with the orientation o(2α, γ, α, 2γ, 2α, γ), the

lowest-order terms of their HOMFLY polynomials can be given in table 2.

(7) There are three OTP link diagrams oriented with o(α, 2β, α,−α, 2α, 2β) in table

2, and the subscribes of these link diagrams are numbered by 261, 264 and 272.

For the link diagram D272 = D(bα2n, 2a
β
2n−1, b

α
2n, b

−α
2n , b

α
2n, a

α
2n, 2a

β
2n−1)272, there are two

trivial link diagrams, which both result in the lowest-degree term of z for H(D272). First,

the link diagram D272 is changed into a trivial link diagram DT
1 with three components

by switching some crossings. In this process, we switch n crossings of each for an aα2n,

three bα2n, a b−α
2n and an aβ2n−1, and switch n− 1 crossings of another aβ2n−1. By using the

lemmas 3.7, 3.8, 3.10, then

PDT
1
·H(DT

1 ) = v−2n(v2n)4v−2nv−(2n−2) ·
(
v−1 − v

z

)2

= (v2n − 2v2+2n + v4+2n)z−2.

Also, there is only one bα2n in the above process is on the same component of D. We

smooth n crossings of the bα2n to obtain the link diagram D′
1 from D. Then D′

1 is further

changed into a trivial link DT
2 by switching n crossings of each for a aα2n, two bα2n, a b−α

2n ,
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two aβ2n−1, and then switching n − 1 crossings of the remaining two aβ2n−1. By using the

lemmas 3.7, 3.8, 3.10, then

PDT
2
·H(DT

2 ) =vz
v2n − 1

v2 − 1
v−2n(v2n)3(v−2n)2(v−(2n−2))2 ·

(
v−1 − v

z

)3

=(v2−4n − 2v4−4n + v6−4n − v2−2n + 2v4−2n − v6−2n)z−2.

By using theorem 3.12, we have

minzH(D272)

= PDT
1
H(DT

1 ) + PDT
2
H(DT

2 )

= (v2n − 2v2+2n + v4+2n)z−2 + (v2−4n − 2v4−4n + v6−4n − v2−2n + 2v4−2n − v6−2n)z−2

= (v2−4n − 2v4−4n + v6−4n − v2−2n + 2v4−2n − v6−2n + v2n − 2v2+2n + v4+2n)z−2.

Similarly, for the other link diagrams with the orientation o(α, 2β, α,−α, 2α, 2β), the

lowest-order terms of their HOMFLY polynomials can be given in table 2.

(8) There is three OTP link diagrams oriented with o(2α, γ, α, 4γ,−α) in table 2, and

the subscribes of these link diagrams are numbered by 284, 287 and 293. For the link

diagram D284 = D(2aα2n, b
γ
2n−1, a

α
2n, 4b

γ
2n−1, b

−α
2n )284, there is only one lowest degree term of

z for H(D284). First, the link diagram D284 is changed into a trivial link diagram DT
1 with

three components by switching some crossings. In this process, we switch n crossings of

each for three aα2n, a b−α
2n and two bγ2n−1, and switch n− 1 crossings of each for two bγ2n−1.

By using the lemmas 3.7-3.9 and theorem 3.12, then

minzH(D284) = (v−2n)3v2n(v2n)2(v2n−2)2 ·
(
v−1 − v

z

)2

= (v−6+4n−2v−4+4n+ v−2+4n)z−2.

Similarly, for the other link diagrams with the orientation o(2α, γ, α, 4γ,−α), the lowest-

order terms of their HOMFLY polynomials can be given in table 2.

(9) There is only one OTP link diagram D297 = D(bα2n, 2a
β
2n−1, b

α
2n, b

−α
2n , 3a

β
2n−1, b

−α
2n )297

oriented with o(α, 2β, α,−α, 3β,−α) in table 2. There are six trivial link diagrams, which

all together result in the lowest-degree term of z for H(D297). A trivial knot DT
1 is obtained

from the diagram D297 by switching n crossings of each for two bα2n and two b−α
2n . By using

lemma 3.7, then

PDT
1
·H(DT

1 ) = (v2n)4 · 1 = v8n.

Note that two bα2n and two b−α
2n in the above process are all on the same component of

D. Respectively smoothing the crossings of these four twist tangles.

-268-



First, we smooth n crossings of a bα2n to obtain the link diagram D′
1 from D. Then

D′
1 is further changed into a trivial link DT

2 by switching n crossings of each for two b−α
2n

and two aβ2n−1, and then switching n− 1 crossings of the remaining two aβ2n−1. By using

lemma 3.7 and 3.10, then

PDT
2
·H(DT

2 ) = vz
v2n − 1

v2 − 1
(v2n)2(v−2n)2(v−(2n−2))2 · v

−1 − v

z
= v4−4n − v4−2n.

Second, we smooth n crossings of the other bα2n and keep switching n crossings of the

one bα2n to obtain the link diagram D′
2 from D. Then D′

2 is further changed into a trivial

link DT
3 by switching n crossings of each for two b−α

2n and a aβ2n−1, and then switch n− 1

crossings of another aβ2n−1. By using the theorems 3.7 and 3.10, then

PDT
3
·H(DT

3 ) = vz
v2n − 1

v2 − 1
v2n(v2n)2v−2nv−(2n−2) · v

−1 − v

z
= v2+2n − v2+4n.

Also, there is a b−α
2n on the same component of the link diagram D′

2. We smooth n

crossings of the b−α
2n to obtain the link diagram D′′

1 from D′
2. Then D′′

1 is further changed

into a trivial link DT
4 by switching n crossings of each for a b−α

2n and two aβ2n−1, and then

switching n− 1 crossings of the remaining two aβ2n−1. Then

PDT
4
·H(DT

4 ) = vz
v2n − 1

v2 − 1
(v2n)2(v−2n)2(v−(2n−2))2vz

v2n − 1

v2 − 1
·
(
v−1 − v

z

)2

= v4 + v4−4n − 2v4−2n.

Third, we smooth n crossings of a b−α
2n and keep switching n crossings of each for two

bα2n to obtain the link diagram D′
3 from D. Then D′

3 is further changed into a trivial link
DT

5 by switching n crossings of each for two aβ2n−1, and switching n − 1 crossings of the

remaining two aβ2n−1. Then

PDT
5
·H(DT

5 ) = vz
v2n − 1

v2 − 1
(v2n)2(v−2n)2(v−(2n−2))2 · v

−1 − v

z
= v4−4n − v4−2n.

At last, we smooth n crossings of the remaining twist tangle b−α
2n and keep switching n

crossings of each for two bα2n and a b−α
2n to obtain the link diagram D′

4 from D. Then D′
4 is

further changed into a trivial link DT
6 by switching n crossings of a aβ2n−1, and switching

n− 1 crossings of another aβ2n−1. Then

PDT
6
·H(DT

6 ) = vz
v2n − 1

v2 − 1
(v2n)3v−2nv−(2n−2) · v

−1 − v

z
= v2+2n − v2+4n.

Hence the lowest-degree term of z for H(D(bα2n, 2a
β
2n−1, b

α
2n, b

−α
2n , 3a

β
2n−1, b

−α
2n )) only con-

tains the above six cases. According to the theorem 3.12, we have

minzH(D297) = v4 + 3v4−4n − 4v4−2n + v8n + 2v2+2n − 2v2+4n.
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(10) There are two OTP link diagrams oriented with o(α, 2β, α, β, α, 3γ) in table 2,
whose subscribes are numbered by 320 and 322.

For the link diagram D320 = D(bα2n, 2a
β
2n−1, a

α
2n, a

β
2n−1, a

α
2n, 3b

γ
2n−1)320, there is only one

lowest degree term of z for H(D320). First, the link diagram D320 is changed into a trivial

link diagram DT
1 with three components by switching the crossings of all oriented twist

tangles. In this process, we switch n crossings of each for two aα2n, a bα2n, two aβ2n−1 and

two bγ2n−1, and switch n − 1 crossings of each for the remaining a aβ2n−1 and a bγ2n−1. By

using the lemmas 3.7-3.10 and theorem 3.12, then

minzH(D320) = (v−2n)4(v2n)3v−(2n−2)v2n−2 ·
(
v−1 − v

z

)2

= (v−2−2n + v2−2n − 2v−2n)z−2.

Similarly, for the link diagram D322, the lowest-order terms of the HOMFLY polynomials

can be given in table 2.

(11) There are two OTP link diagrams oriented with o(α, 2β, α, 3β, α, β) in table 2,
whose subscribes are numbered by 327 and 329.

For the link diagram D329 = D(bα2n, 2a
β
2n−1, a

α
2n, 3a

β
2n−1, b

α
2n, a

β
2n−1)329, there is only one

lowest degree term of z for H(D329). First, the link diagram D329 is changed into a trivial

link diagram DT
1 with three components by switching some crossings. In this process, we

switch n crossings of each for a aα2n, two bα2n and three aβ2n−1, and switch n − 1 crossings

of each for the remaining three aβ2n−1. By using the lemmas 3.7, 3.8, 3.10 and theorem

3.12, then

minzH(D329) = v−2n(v2n)2(v−2n)3(v−(2n−2))3·
(
v−1 − v

z

)2

= (v4−10n−2v6−10n+v8−10n)z−2.

Similarly, for the link diagram D327, the lowest-order terms of the HOMFLY polynomials

can be given in table 2.

(12) There is only one OTP link diagram D338 = D(aα2n, 3b
γ
2n−1, a

−α
2n , b

γ
2n−1, a

α
2n, 2b

γ
2n−1

)338 oriented with o(α, 3γ,−α, γ, α, 2γ) in table 2. There is only one lowest degree term of

z for H(D338). First, the link diagram D338 is changed into a trivial link diagram DT
1 of

three components by switching the crossings of all oriented twist tangles except a a−α
2n . In

this process, we switch n crossings of each for two aα2n and three bγ2n−1, and switch n− 1

crossings of each for the remaining three bγ2n−1. By using the lemmas 3.8, 3.9 and theorem

3.12, then

minzH(D338) = (v−2n)2(v2n)3(v2n−2)3
(
v−1 − v

z

)2

= (v−8+8n − 2v−6+8n + v−4+8n)z−2.
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(13) There is only one OTP link diagram D346 = D(bα2n, 2a
α
2n, 3a

β
2n−1, 3b

γ
2n−1)346 ori-

ented with o(3α, 3β, 3γ) in table 2. There is only one lowest degree term of z for H(D346).
First, the link diagram D346 is changed into a trivial link diagram DT

1 with three compo-

nents by switching some crossings. In this process, we switch n crossings of each for two

aα2n, a bγ2n−1 and a aβ2n−1, and switch n − 1 crossings of each for the remaining two bγ2n−1

and two aβ2n−1. By using the lemmas 3.8-3.10 and theorem 3.12, then

minzH(D346)

= (v−2n)2v2nv−2n(v2n−2)2(v−(2n−2))2
(
v−1 − v

z

)2

= (v−2−4n + v2−4n − 2v−4n)z−2.

(14) There is only one OTP link diagram D348 = D(3bγ2n−1, 3a
−α
2n , 3b

γ
2n−1)348 oriented

with o(3γ, 3(−α), 3γ) in table 2. There is only one lowest degree term of z for H(D348).

First, the link diagram D348 is changed into a trivial link diagram DT
1 with three compo-

nents by switching some crossings. In this process, we switch n crossings of each for three

a−α
2n and three bγ2n−1, and switch n− 1 crossings of each for the remaining three bγ2n−1. By

using the lemmas 3.8, 3.9 and theorem 3.12, then

minzH(D348) = (v−2n)3(v2n)3(v2n−2)3 ·
(
v−1 − v

z

)2

= (v−8+6n − 2v−6+6n + v−4+6n)z−2.

(15) There is only one OTP link diagram D364 = D(aα2n, b
γ
2n−1, a

α
2n, 2b

γ
2n−1, 2a

β
2n−1,

bγ2n−1, a
β
2n−1)364 oriented with o(α, γ, α, 2γ, 2β, γ, β) in table 2. There is only one lowest

degree term of z for H(D364). First, the link diagram D364 is changed into a trivial link

diagram DT
1 with three components by switching some crossings. In this process, we

switch n crossings of each for two aα2n, a bγ2n−1 and a aβ2n−1, and switch n− 1 crossings of

each for two bγ2n−1 and two aβ2n−1. By using the lemmas 3.8-3.10, and theorem 3.12, then

minzH(D364) = (v−2n)2v2nv−2n(v2n−2)2(v−(2n−2))2
(
v−1 − v

z

)2

=
v−2−4n + v2−4n − 2v−4n

z2
.

(16) There is only one OTP link diagram D352 = D(bα2n, 5a
β
2n−1, b

−α
2n , 2a

β
2n−1)352 ori-

ented with o(α, 5β,−α, 2β) in table 2. There are thirteen trivial link diagrams, which all

together result in the lowest-degree term of z for H(D352). A trivial knot DT
1 is obtained

from the diagram D352 by switching some crossings. In this process, we switch n crossings

of each for a b−α
2n and three aβ2n−1, and switch n− 1 crossings of each for three aβ2n−1. By

using the lemmas 3.7 and 3.10, then

PDT
1
·H(DT

1 ) = v2n(v−2n)3(v−(2n−2))3 · 1 = v−10n+6.
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Note that six aβ2n−1 and a b−α
2n in the above process are all on the same component of

D. Respectively smoothing the crossings of these seven twist tangles.

First, we smooth n − 1 crossings of a aβ2n−1 to obtain the link diagram D′
1 from D.

Then D′
1 is further changed into a trivial link DT

2 by switching n crossings of each for a

bα2n, a b−α
2n and two aβ2n−1, and then switching n − 1 crossings of two aβ2n−1. By using the

lemmas 3.7 and 3.10, then

PDT
2
·H(DT

2 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
(v2n)2(v−2n)2(v−(2n−2))2 · v

−1 − v

z
= −v6−6n+v4−4n.

Also, there is only one b−α
2n on the same component of D′

1. We smooth n crossings of

the b−α
2n to obtain the link diagram D′′

1 from D′
1. Then D′′

1 is further changed into a trivial

link DT
3 by switching n crossings of each for a bα2n and three aβ2n−1, and then switching

n− 1 crossings of the remaining three aβ2n−1. Then

PDT
3
·H(DT

3 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
v2n(v−2n)3(v−(2n−2))3 ·

(
v−1 − v

z

)2

=− v8−12n + v6−10n + v8−10n − v6−8n.

Second, we smooth n crossings of a b−α
2n and keep switching n− 1 crossings of a aβ2n−1

to obtain the link diagram D′
2 from D. Then D′

2 is further changed into a trivial link

DT
4 by switching n crossings of each for a bα2n and three aβ2n−1, and then switching n − 1

crossings of two aβ2n−1. Then

PDT
4
·H(DT

4 ) = vz
v2n − 1

v2 − 1
v2n(v−2n)3(v−(2n−2))3

v−1 − v

z
= v6−10n − v6−8n.

Also, there is a aβ2n−1 and a bα2n in the above process on the same component of D′
2.

Respectively smoothing the crossings of these two twist tangles. On the one hand, we

smooth n crossings of the aβ2n−1 to obtain the link diagram D′′
1 from D′

2. Then D′′
1 is

further changed into a trivial link DT
5 by switching n crossings of each for a bα2n and

three aβ2n−1, and then switching n− 1 crossings of the remaining two aβ2n−1. By using the

theorems 3.7 and 3.10, then

PDT
5
·H(DT

5 ) = vz
v2n − 1

v2 − 1

(
−v−1z

v−2n − 1

v−2 − 1

)
v2n(v−2n)3(v−(2n−2))3 ·

(
v−1 − v

z

)2

= −v6−12n + 2v6−10n − v6−8n.

On the other hand, we smooth n crossings of the bα2n and keep switching n crossings

of the aβ2n−1 to obtain the link diagram D′′
2 from D′

2. Then D′′
2 is further changed into a
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trivial link DT
6 by switching n crossings of each for two aβ2n−1, and then switching n − 1

crossings of two aβ2n−1. Then

PDT
6
·H(DT

6 ) =

(
vz

v2n − 1

v2 − 1

)2

(v−2n)3(v−(2n−2))3 ·
(
v−1 − v

z

)2

= v6−12n−2v6−10n+v6−8n.

Third, we smooth n crossings of another twist tangle aβ2n−1, and keep switching n

crossings of a b−α
2n and then switching n−1 crossings of a aβ2n−1 to obtain the link diagram

D′
3 from D. Then D′

3 is further changed into a trivial link DT
7 by switching n crossings

of each for a bα2n and two aβ2n−1, and then switching n− 1 crossings of another two aβ2n−1.

Then

PDT
7
·H(DT

7 ) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)2(v−2n)2(v−(2n−2))3 · v

−1 − v

z
= v6−6n − v6−8n.

Fourth, we smooth n− 1 crossings of the third twist tangle aβ2n−1 and keep switching
n crossings of each for a b−α

2n and a aβ2n−1 and then switching n− 1 crossings of a aβ2n−1 to

obtain the link diagram D′
4 from D. Then D′

4 is further changed into a trivial link DT
8 by

switching n crossings of each for a bα2n and two aβ2n−1, and then switch n− 1 crossings of

each for the remaining two aβ2n−1. Then

PDT
8
·H(DT

8 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
(v2n)2(v−2n)3(v−(2n−2))3 · v

−1 − v

z
= v6−8n − v8−10n.

Also, there is only one bα2n on the same component of D′
4. We smooth n crossings of

the bα2n to obtain the link diagram D′′
1 from D′

4. Then D′′
1 is further changed into a trivial

link DT
9 by switching n crossings of each for two aβ2n−1, and then switching n−1 crossings

of each for the remaining two aβ2n−1. Then

PDT
9
·H(DT

9 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
v2n(v−2n)3(v−(2n−2))3 ·

(
v−1 − v

z

)2

= −v8−12n + v6−10n + v8−10n − v6−8n.

Fifth, we smooth n crossings of the fourth twist tangle aβ2n−1 and keep switching n

crossings of each for a b−α
2n and a aβ2n−1 and then switching n− 1 crossings of each for two

aβ2n−1 to obtain the link diagram D′
5 from D. Then D′

5 is further changed into a trivial

link DT
10 by switching n crossings of each for a bα2n and a aβ2n−1. Then

PDT
10
·H(DT

10) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)2(v−2n)2(v−(2n−2))2 · v

−1 − v

z
= −v4−6n + v4−4n.

Also, there is only one bα2n on the same component of D′
5. We smooth n crossings of

the bα2n to obtain the link diagram D′′
1 from D′

5. Then D′′
1 is further changed into a trivial
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link DT
11 by switching n crossings of each for two aβ2n−1, and then switch n − 1 crossings

of the remaining aβ2n−1. Then

PDT
11
·H(DT

11) =

(
−v−1z

v−2n − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
v2n(v−2n)3(v−(2n−2))3 ·

(
v−1 − v

z

)2

=− v6−12n + 2v6−10n − v6−8n.

Sixth, we smooth n − 1 crossings of the fifth twist tangle aβ2n−1 and keep switching

n crossings of each for a b−α
2n and two aβ2n−1 and then switching n − 1 crossings of each

for two aβ2n−1 to obtain the link diagram D′
6 from D. Then D′

6 is further changed into a

trivial link DT
12 by switching n crossings of each for a bα2n and a aβ2n−1. Then

PDT
12
·H(DT

12) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
(v2n)2 (v−2n)3(v−(2n−2))2 · v

−1 − v

z
= v4−6n−v6−8n.

At last, we smooth n crossings of the sixth twist tangle aβ2n−1 and keep switching n

crossings of each for a b−α
2n and two aβ2n−1 and then switching n − 1 crossings of each for

three aβ2n−1 to obtain the link diagram D′
7 from D. Then D′

7 is further changed into a

trivial link DT
13 by switching n crossings of each for a bα2n and a aβ2n−1. Then

PDT
13
·H(DT

13) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)2(v−2n)3(v−(2n−2))3 · v

−1 − v

z
= v6−8n − v6−10n.

Hence the lowest-degree term of z for H(D(bα2n, 5a
β
2n−1, b

−α
2n , 2a

β
2n−1)) only contains the

above thirteen cases. According to the theorem 3.12, we have

minzH(D352) = −v6−12n − 2v8−12n + 5v6−10n + v8−10n − 4v6−8n + 2v4−4n.

(17) There are two OTP link diagrams oriented with o(α, 3β,−α, β, 3γ) in table 2,

whose subscribes are numbered respectively by 357 and 358.

For the link diagram D(aα2n, 3a
β
2n−1, b

−α
2n , a

β
2n−1, 3b

γ
2n−1)357, there is only one lowest de-

gree term of z for H(D357). First, the link diagram D357 is changed into a trivial link

diagram DT
1 with three components by switching some crossings. In this process, we

switch n crossings of each for a aα2n, a b−α
2n , a bγ2n−1 and two aβ2n−1, and switch n− 1 cross-

ings of each for a bγ2n−1 and the remaining two aβ2n−1. By using the lemmas 3.7-3.10 and

theorem 3.12, then

minzH(D357) = v−2nv2nv2n(v−2n)2v2n−2(v−(2n−2))2
(
v−1 − v

z

)2

=
−2v2−4n + v4−4n + v−4n

z2
.

Similarly, for the other link diagram D358, the lowest-order term of the HOMFLY poly-

nomials can be given in table 2.
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(18) There is only one OTP link diagram D362 = D(2aβ2n−1, b
γ
2n−1, a

α
2n, 2b

γ
2n−1, 2a

β
2n−1,

bγ2n−1)362 oriented with o(2β, γ, α, 2γ, 2β, γ) in table 2. There are twelve trivial link dia-

grams, which all together result in the lowest-degree term of z for H(D362). A trivial knot

DT
1 is obtained from the diagram D362 by switching some crossings. In this process, we

switch n crossings of each for a bγ2n−1 and two aβ2n−1, and switch n − 1 crossings of each

for a bγ2n−1 and two aβ2n−1. By using the lemmas 3.9 and 3.10, then

PDT
1
·H(DT

1 ) = v2n(v−2n)2v2n−2(v−(2n−2))2 · 1 = v−4n+2.

Note that two bγ2n−1 and four aβ2n−1 in the above process are all on the same component

of D. Respectively smoothing the crossings of these six twist tangles.

First, we smooth n − 1 crossings of a bγ2n−1 to obtain the link diagram D′
1 from D.

Then D′
1 is further changed into a trivial link DT

2 by switching n crossings of each for a

a−α
2n , a bγ2n−1 and two aβ2n−1, and then switching n − 1 crossings of each for a bγ2n−1 and

two aβ2n−1. By using the lemmas 3.8-3.10, then

PDT
2
·H(DT

2 ) = vz
v2n−2 − 1

v2 − 1
v2n(v−2n)3v2n−2(v−(2n−2))2 · v

−1 − v

z
= v2−6n − v−4n.

Also, there are two aβ2n−1 in the above process on the same component of D′
1. Respec-

tively smoothing the crossings of these two aβ2n−1. On the one hand, we smooth n − 1

crossings of a aβ2n−1 to obtain the link diagram D′′
1 from D′

1. Then D′′
1 is further changed

into a trivial link DT
3 by switching n crossings of each for a a−α

2n , a bγ2n−1 and a aβ2n−1, and

then switching n − 1 crossings of each for the remaining two bγ2n−1 and two aβ2n−1. By

using the theorems 3.8-3.10, then

PDT
3
·H(DT

3 ) =vz
v2n−2 − 1

v2 − 1

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
v2n(v−2n)2(v2n−2)2

(v−(2n−2))2
(
v−1 − v

z

)2

= −v−2 − v2−4n + 2v−2n.

On the other hand, we smooth n crossings of the other aβ2n−1 and keep switching n−1

crossings of a aβ2n−1 to obtain the link diagram D′′
2 from D′

1. Then D′′
2 is further changed

into a trivial link DT
4 by switching n crossings of each for a a−α

2n , a bγ2n−1 and a aβ2n−1, and

then switching n− 1 crossings of each for the remaining two bγ2n−1 and a aβ2n−1. Then

PDT
4
·H(DT

4 ) =vz
v2n−2 − 1

v2 − 1

(
−v−1z

v−2n − 1

v−2 − 1

)
v2n(v−2n)2(v2n−2)2(v−(2n−2))2

(
v−1 − v

z

)2

=− v−2 + v−2−2n − v−4n + v−2n.
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Second, we smooth n crossings of a aβ2n−1 and keep switching n−1 crossings of a bγ2n−1

to obtain the link diagram D′
2 from D. Then D′

2 is further changed into a trivial link

DT
5 by switching n crossings of each for a a−α

2n , two bγ2n−1 and a aβ2n−1, and then switching

n− 1 crossings of each for a bγ2n−1 and a aβ2n−1. Then

PDT
5
·H(DT

5 ) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)2(v−2n)2(v2n−2)2v−(2n−2)v

−1 − v

z

= −v−2 + v−2+2n.

Also, there is only one bγ2n−1 on the same component of D′
2. We smooth n crossings

of the bγ2n−1 to obtain the link diagram D′′
1 from D′

2. Then D′′
1 is further changed into a

trivial link DT
6 by switching n crossings of each for a a−α

2n , a bγ2n−1 and a aβ2n−1, and then

switching n− 1 crossings of each for the remaining a bγ2n−1 and two aβ2n−1. Then

PDT
6
·H(DT

6 ) =

(
−v−1z

v−2n − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
v2n(v−2n)2(v2n−2)2(v−(2n−2))2 ·

(
v−1 − v

z

)2

=− 1− v−4n + 2v−2n.

Third, we smooth n− 1 crossings of another aβ2n−1 and keep switching n crossings of

a aβ2n−1 and n− 1 crossings of a bγ2n−1 to obtain the link diagram D′
3 from D. Then D′

3 is

further changed into a trivial link DT
7 by switching n crossings of each for a a−α

2n and two

bγ2n−1, and then switching n− 1 crossings of each for a bγ2n−1 and a aβ2n−1. Then

PDT
7
·H(DT

7 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
(v2n)2(v−2n)2(v2n−2)2v−(2n−2) · v

−1 − v

z

= −1 + v−2+2n.

Also, there are two bγ2n−1 in the above process on the same component of D′
3. Respec-

tively smoothing the crossings of these two bγ2n−1. On the one hand, we smooth n − 1

crossings of a bγ2n−1 to obtain the link diagram D′′
1 from D′

3. Then D′′
1 is further changed

into a trivial link DT
8 by switching n crossings of each for a a−α

2n and a bγ2n−1, and then

switching n− 1 crossings of each for the remaining a bγ2n−1 and two aβ2n−1. Then

PDT
8
·H(DT

8 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
vz

v2n−2 − 1

v2 − 1
v2n(v−2n)2(v2n−2)2(v−(2n−2))2

·
(
v−1 − v

z

)2

− v−2 − v2−4n + 2v−2n.

On the other hand, we smooth n crossings of the other bγ2n−1 and keep switching n− 1

crossings of a bγ2n−1 to obtain the link diagram D′′
2 from D′

3. Then D′′
2 is further changed
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into a trivial link DT
9 by switching n crossings of each for a a−α

2n and a bγ2n−1, and then

switching n− 1 crossings of each for the remaining two aβ2n−1. Then

PDT
9
·H(DT

9 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
vz

v2n − 1

v2 − 1
v2n(v−2n)2(v2n−2)2(v−(2n−2))2

·
(
v−1 − v

z

)2

= −1− v2−4n + v2−2n + v−2n.

Fourth, we smooth n crossings of the other bγ2n−1 and keep switching n crossings of a

aβ2n−1 and then switching n− 1 crossings of each for a bγ2n−1 and a aβ2n−1 to obtain the link

diagram D′
4 from D. Then D′

4 is further changed into a trivial link DT
10 by switching n

crossings of each for a a−α
2n and a bγ2n−1, and then switching n − 1 crossings of each for a

bγ2n−1 and a aβ2n−1. Then

PDT
10
·H(DT

10) = vz
v2n − 1

v2 − 1
v2n(v−2n)2(v2n−2)2(v−(2n−2))2 · v

−1 − v

z
= v−2n − 1.

Fifth, we smooth n− 1 crossings of the third twist tangle aβ2n−1 and keep switching n

crossings of each for a bγ2n−1 and a aβ2n−1 and then switching n− 1 crossings of each for a

bγ2n−1 and a aβ2n−1 to obtain the link diagram D′
5 from D. Then D′

5 is further changed into

a trivial link DT
11 by switching n crossings of each for a a−α

2n , a bγ2n−1 and a aβ2n−1. Then

PDT
11
·H(DT

11) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
(v2n)2(v−2n)3v2n−2v−(2n−2)v

−1 − v

z
= v−2n− v2−4n.

At last, we smooth n crossings of the remaining twist tangle aβ2n−1 and keep switching

n crossings of each for a bγ2n−1 and a aβ2n−1 and then switching n− 1 crossings of each for

a bγ2n−1 and two aβ2n−1 to obtain the link diagram D′
6 from D. Then D′

6 is further changed

into a trivial link DT
12 by switching n crossings of a a−α

2n and then switching n−1 crossings

of a bγ2n−1. Then

PDT
12
·H(DT

12) =

(
−v−1z

v−2n − 1

v−2 − 1

)
v2n(v−2n)2(v2n−2)2(v−(2n−2))2

v−1 − v

z
= v−2n − v−4n.

Hence the lowest-degree term of z for H(D(2aβ2n−1, b
γ
2n−1, a

α
2n, 2b

γ
2n−1, 2a

β
2n−1, b

γ
2n−1))

only contains the above twelve cases. According to the theorem 3.12, we have

minzH(D362)

= −4− 4v−2 + v2−6n − 3v2−4n + v−2−2n + v2−2n − 4v−4n + 11v−2n + 2v−2+2n.

(19) There is only one triangle link diagram D351 = D(3bγ2n−1, 3a
β
2n−1, 3b

γ
2n−1)351 ori-

ented with o(3γ, 3β, 3γ) in table 2. There are thirteen trivial link diagrams, which all
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together result in the lowest-degree term of z for H(D351). A trivial knot DT
1 is obtained

from the diagram D351 by switching some crossings. In this process, we switch n crossings

of each for three bγ2n−1 and a aβ2n−1, and switch n− 1 crossings of each for two bγ2n−1 and

a aβ2n−1. By using the lemmas 3.9 and 3.10, then

PDT
1
·H(DT

1 ) = (v2n)3v−2n(v2n−2)2v−(2n−2) · 1 = v6n−2.

Note that five bγ2n−1 and two aβ2n−1 in the above process are all on the same component

of D. Respectively smoothing the crossings of these seven twist tangles.

First, we smooth n − 1 crossings of a bγ2n−1 to obtain the link diagram D′
1 from D.

Then D′
1 is further changed into a trivial link DT

2 by switching n crossings of each for two

bγ2n−1 and a aβ2n−1, and then switching n − 1 crossings of each for two bγ2n−1 and a aβ2n−1.

Then

PDT
2
·H(DT

2 ) = vz
v2n−2 − 1

v2 − 1
(v2n)2v−2n(v2n−2)2v−(2n−2) · v

−1 − v

z
= v−2+4n − v−4+6n.

Also, there are two bγ2n−1 in the above process on the same component of D′
1. Respec-

tively smoothing the crossings of these two bγ2n−1. On the one hand, we smooth n − 1

crossings of a bγ2n−1 to obtain the link diagram D′′
1 from D′

1. Then D′′
1 is further changed

into a trivial link DT
3 by switching n crossings of each for a bγ2n−1 and a aβ2n−1, and then

switching n− 1 crossings of each for two bγ2n−1 and two aβ2n−1. Then

PDT
3
·H(DT

3 ) =

(
vz

v2n−2 − 1

v2 − 1

)2

v2nv−2n(v2n−2)2(v−(2n−2))2(
v−1 − v

z

)2

= 1− 2v−2+2n + v−4+4n.

On the other hand, we smooth n crossings of the other bγ2n−1 and keep switching n− 1

crossings of a bγ2n−1 to obtain the link diagram D′′
2 from D′

1. Then D′′
2 is further changed

into a trivial link DT
4 by switching n crossings of each for a bγ2n−1 and a aβ2n−1, and then

switching n− 1 crossings of each for the remaining two bγ2n−1 and two aβ2n−1. Then

PDT
4
·H(DT

4 ) =vz
v2n−2 − 1

v2 − 1
vz

v2n − 1

v2 − 1
v2nv−2n(v2n−2)3(v−(2n−2))2 ·

(
v−1 − v

z

)2

=v−2+2n − v−4+4n − v−2+4n + v−4+6n.

Second, we smooth n crossings of another bγ2n−1 and keep switching n− 1 crossings of

a bγ2n−1 to obtain the link diagram D′
2 from D. Then D′

2 is further changed into a trivial
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link DT
5 by switching n crossings of each for two bγ2n−1 and a aβ2n−1, and then switching

n− 1 crossings of each for a bγ2n−1 and a aβ2n−1. Then

PDT
5
·H(DT

5 ) = vz
v2n − 1

v2 − 1
(v2n)2v−2n(v2n−2)2v−(2n−2) · v

−1 − v

z
= v−2+4n − v−2+6n.

Also, there is only one bγ2n−1 on the same component of D′
2. We smooth n crossings

of the bγ2n−1 to obtain the link diagram D′′
1 from D′

2. Then D′′
1 is further changed into a

trivial link DT
6 by switching n crossings of each for a bγ2n−1 and a aβ2n−1, and then switching

n− 1 crossings of each for the remaining two bγ2n−1 and two aβ2n−1. Then

PDT
6
·H(DT

6 ) = (vz
v2n − 1

v2 − 1
)2v2nv−2n(v2n−2)3(v−(2n−2))2

(
v−1 − v

z

)2

=v−2+2n − 2v−2+4n + v−2+6n.

Third, we smooth n − 1 crossings of a aβ2n−1 and keep switching n crossings of a bγ2n−1

and n− 1 crossings of a bγ2n−1 to obtain the link diagram D′
3 from D. Then D′

3 is further

changed into a trivial link DT
7 by switching n crossings of each for a bγ2n−1 and a aβ2n−1,

and then switching n− 1 crossings of each for two bγ2n−1 and a aβ2n−1. Then

PDT
7
·H(DT

7 ) =

(
−v−1z

v−(2n−2) − 1

v−2 − 1

)
(v2n)2v−2n(v2n−2)3v−(2n−2)v

−1 − v

z

= v−4+6n − v−2+4n.

Fourth, we smooth n crossings of the third twist tangle bγ2n−1 and keep switching n

crossings of a bγ2n−1 and then switching n− 1 crossings of each for a bγ2n−1 and a aβ2n−1 to

obtain the link diagram D′
4 from D. Then D′

4 is further changed into a trivial link DT
8 by

switching n crossings of each for a bγ2n−1 and a aβ2n−1, and then switching n− 1 crossings

of a bγ2n−1. Then

PDT
8
·H(DT

8 ) = vz
v2n − 1

v2 − 1
(v2n)2v−2n(v2n−2)2v−(2n−2) · v

−1 − v

z
= v−2+4n − v−2+6n.

Also, there are two bγ2n−1 in the above process on the same component of D′
4. Respec-

tively smoothing the crossings of these two bγ2n−1. On the one hand, we smooth n − 1

crossings of a bγ2n−1 to obtain the link diagram D′′
1 from D′

4. Then D′′
1 is further changed

into a trivial link DT
9 by switching n crossings of a aβ2n−1, and then switching n−1 crossings

of each for a bγ2n−1 and a aβ2n−1. Then

PDT
9
·H(DT

9 ) =vz
v2n − 1

v2 − 1
vz

v2n−2 − 1

v2 − 1
v2nv−2n(v2n−2)2(v−(2n−2))2

(
v−1 − v

z

)2

=1− v2n − v−2+2n + v−2+4n.
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On the other hand, we smooth n crossings of the other bγ2n−1 and keep switching n− 1

crossings of a bγ2n−1 to obtain the link diagram D′′
2 from D′

4. Then D′′
2 is further changed

into a trivial link DT
10 by switching n crossings of a aβ2n−1, and then switching n − 1

crossings of each for the remaining a bγ2n−1 and a aβ2n−1. Then

PDT
10
·H(DT

10) =

(
vz

v2n − 1

v2 − 1

)2

v2nv−2n(v2n−2)3(v−(2n−2))2 ·
(
v−1 − v

z

)2

= v−2+2n − 2v−2+4n + v−2+6n.

Fifth, we smooth n− 1 crossings of the fourth twist tangle bγ2n−1 and keep switching n

crossings of each for two bγ2n−1 and then switching n− 1 crossings of each for a bγ2n−1 and

a aβ2n−1 to obtain the link diagram D′
5 from D. Then D′

5 is further changed into a trivial

link DT
11 by switching n crossings of a aβ2n−1 and then switching n − 1 crossings of each

for a bγ2n−1 and a aβ2n−1. Then

PDT
11
·H(DT

11) = vz
v2n−2 − 1

v2 − 1
(v2n)2v−2n(v2n−2)2(v−(2n−2))2

v−1 − v

z
= v2n − v−2+4n.

Sixth, we smooth n crossings of the other aβ2n−1 and keep switching n crossings of each

for two bγ2n−1 and then switching n − 1 crossings of each for two bγ2n−1 and a aβ2n−1 to

obtain the link diagram D′
6 from D. Then D′

6 is further changed into a trivial link DT
12

by switching n crossings of each for a bγ2n−1 and a aβ2n−1. Then

PDT
12
·H(DT

12) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)3v−2n(v2n−2)2v−(2n−2)v

−1 − v

z

= −v−2+4n + v−2+6n.

At last, we smooth n crossings of the remaining twist tangle bγ2n−1 and keep switching

n crossings of each for two bγ2n−1 and a aβ2n−1 and then switching n−1 crossings of each for

two bγ2n−1 and a aβ2n−1 to obtain the link diagram D′
7 from D. Then D′

7 is further changed

into a trivial link DT
13 by switching n crossings of each for the remaining a bγ2n−1 and a

aβ2n−1. Then

PDT
13
·H(DT

13) = vz
v2n − 1

v2 − 1
(v2n)3(v−2n)2(v2n−2)2v−(2n−2)v

−1 − v

z
= v−2+4n − v−2+6n.

Hence the lowest-degree term of z for H(D(3bγ2n−1, 3a
β
2n−1, 3b

γ
2n−1)) only contains the

above thirteen cases. According to the theorem 3.12, we have

minzH(D351) = 2− 3v−2+4n + v−4+6n + v−2+6n.

�
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Theorem 3.14. Let sminzH(D) be the second lowest degree term of z in H(D(2bα2n, 4a
α
2n,

2bα2n, a
α
2n)64). Then

sminzH(D64) = −3 + v−10n − 2v−6n + 2v−4n + v−2n + v8n.

Proof. There is only one lowest-degree term of z in H(D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)64). First,

the link diagram D64 = D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)64 is changed into a trivial link diagram

DT
0 of three components by switching the crossings of all oriented twist tangles except a

aα2n. In this process, we switch n crossings of each for four aα2n and four bα2n. By using the

lemmas 3.7 and 3.8, then

PDT
0
·H(DT

0 ) = (v−2n)4(v2n)4 ·
(
v−1 − v

z

)2

= (−2 + v−2 + v2)z−2.

In addition, for the link diagram D, all twist tangles except an unused aα2n are composed

of two different components. For each such twist tangle, smoothing its any crossing don’t

result in a lowest-degree term of z in H(D). By using theorem 3.12, we have

minzH(D64) = (−2 + v−2 + v2)z−2.

In the following, the second lowest-degree of z in H(D64) are calculated. Let c1 be a

crossing of D. Without loss of generality, we assume s(c1) = +1. Smoothing the crossing

c1 will produce a term vz. In the meantime, if the crossing c1 is composed of two different

components of D, smoothing it will enable the original component number to decrease by

one. Hence the degree of z is two higher than the degree of z in minzH(D). Hence the

second lowest-degree term of z in H(D) can be produced by firstly smoothing a crossing

of a twist tangle on two different components and then switching some of the remaining

crossings of D.

There are eleven trivial link diagrams, which all together result in the second lowest-

degree term of z in H(D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)). For the link diagram D64 = D(2bα2n, 4a

α
2n,

2bα2n, a
α
2n)64, we note that four bα2n and four aα2n are composed of two different components.

For each such twist tangle, smoothing its crossings only once will result in a second

lowest-order term of z in H(D).

First, we smooth n crossings of a bα2n to obtain the link diagram D′
1 from D. Then D′

1

is further changed into a trivial link DT
1 by switching n crossings of each twist tangle aα2n.

By using the lemmas 3.7 and 3.8, then

PDT
1
·H(DT

1 ) = vz
v2n − 1

v2 − 1
(v−2n)5 · v

−1 − v

z
= v−10n − v−8n.
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Also, there is only one aα2n on the same component of D′
1. We smooth n crossings of

the aα2n to obtain the link diagram D′′
1 from D′

1. Then D′′
1 is further changed into a trivial

link DT
2 by switching n crossings of each for two bα2n and four aα2n. Then

PDT
2
·H(DT

2 ) = vz
v2n − 1

v2 − 1

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)2(v−2n)4

(
v−1 − v

z

)2

= −v−6n + 2v−4n − v−2n.

Second, we smooth n crossings of another bα2n and keep switching n crossings of a bα2n

to obtain the link diagram D′
2 from D. Then D′

2 is further changed into a trivial link DT
3

by switching n crossings of each for a bα2n and four aα2n. Then

PDT
3
·H(DT

3 ) = vz
v2n − 1

v2 − 1
(v2n)2(v−2n)4 · v

−1 − v

z
= v−4n − v−2n.

Also, there is only one bα2n on the same component of D′
2. We smooth n crossings of

the bα2n to obtain the link diagram D′′
1 from D′

2. Then D′′
1 is further changed into a trivial

link DT
4 by switching n crossings of each twist tangle aα2n. Then

PDT
4
·H(DT

4 ) =

(
vz

v2n − 1

v2 − 1

)2

v2n(v−2n)5 ·
(
v−1 − v

z

)2

= v−8n − 2v−6n + v−4n.

Third, we smooth n crossings of the third twist tangle bα2n and keep switching n

crossings of each for two bα2n to obtain the link diagram D′
3 from D. Then D′

3 is further

changed into a trivial link DT
5 by switching n crossings of each for a bα2n and four aα2n.

Then

PDT
5
·H(DT

5 ) = vz
v2n − 1

v2 − 1
(v2n)3(v−2n)4 · v

−1 − v

z
= −1 + v−2n.

Also, there is only one bα2n on the same component of D′
3. We smooth n crossings of

the bα2n to obtain the link diagram D′′
1 from D′

3. Then D′′
1 is further changed into a trivial

link DT
6 by switching n crossings of each twist tangle aα2n. Then

PDT
6
·H(DT

6 ) =

(
vz

v2n − 1

v2 − 1

)2

(v2n)2(v−2n)5 ·
(
v−1 − v

z

)2

= v−6n − 2v−4n + v−2n.

Fourth, we smooth n crossings of the other bα2n and keep switching n crossings of each

for three bα2n to obtain the link diagram D′
4 from D. Then D′

4 is further changed into a

trivial link DT
7 by switching n crossings of each for four aα2n. Then

PDT
7
·H(DT

7 ) = vz
v2n − 1

v2 − 1
(v2n)3(v−2n)4 · v

−1 − v

z
= −1 + v−2n.
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Fifth, we smooth n crossings of a aα2n and keep switching n crossings of each twist

tangle bα2n to obtain the trivial link diagram DT
8 from D. Then

PDT
8
·H(DT

8 ) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)4 · v

−1 − v

z
= −v6n + v8n.

Sixth, we smooth n crossings of another aα2n and keep switching n crossings of each

twist tangle bα2n and a aα2n to obtain the trivial link diagram DT
9 from D. Then

PDT
9
·H(DT

9 ) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)4v−2n · v

−1 − v

z
= −v4n + v6n.

Seventh, we smooth n crossings of the third twist tangle aα2n and keep switching n

crossings of each for four bα2n and two aα2n to obtain the trivial link diagram DT
10 from D.

Then

PDT
10
·H(DT

10) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)4(v−2n)2 · v

−1 − v

z
= −v2n + v4n.

At last, we smooth n crossings of the remaining twist tangle aα2n and keep switching

n crossings of each for four bα2n and three aα2n to obtain the trivial link diagram DT
11 from

D. Then

PDT
11
·H(DT

11) =

(
−v−1z

v−2n − 1

v−2 − 1

)
(v2n)4(v−2n)3 · v

−1 − v

z
= −1 + v2n.

Hence the second lowest-degree term of z in H(D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)) only contains

the above eleven cases, hence we have

sminzH(D64) = −3 + v−10n − 2v−6n + 2v−4n + v−2n + v8n.

�

Theorem 3.15. The OTP link diagrams of 366 link types shown in Table 1 (Appendix

A) are all chiral.

Proof. By using theorem 3.2 and 3.5, we only need to proof that 77 OTP links are

chiral, which are indicated by ‘ ∗ ’ in Table 1 (Appendix A). The lowest-degree term or

second lowest-degree term of HOMFLY polynomials of these 77 OTP links are given by

the theorems 3.13 and 3.14. Hence for the link D(3aα2n, 6b
α
2n)23, we have

minzH(D23) = (6v6n + v−4+6n − 4v−2+6n − 4v2+6n + v4+6n)z−4.

-283-



By using the definition (3) of HOMFLY polynomial, we obtain

minzH(D∗
23) = minzH(D23)(−v−1, z)

= (6v−6n + v4−6n − 4v2−6n − 4v−2−6n + v−4−6n)z−4.

If D23 is achiral, we have

minzH(D∗
23) = minzH(D23).

But we have

minzH(D23) 6= minzH(D23)(−v−1, z).

Clearly, D23 must be chiral link. Similarly, we can show that the remaining 76 links are all

chiral by using the lowest-degree terms or second lowest-degree terms of their HOMFLY

polynomials. �

4 Conclusion

In the present paper, we show that 366 OTP links are all chiral by calculating their

invariants such as component number, crossing number, writhe number and HOMFLY

polynomial. Among these links, there are 100 pair of systemical links have the same

values for the above invariants. Moreover, there are 178 OTP links with even number of

components, which include one link with six components, 25 links with four components,

and 152 links with two components. The chirality of these links are determined by their

component number. For the remaining 188 links with odd number of components, they

include 4 link with five components, 94 links with three components, and 90 links with

one component. Evidently, the links with two components have the most links than the

other ones. Moreover, these results show that for any i (1 ≤ i ≤ 6), there exists at least

an oriented triangle link with i components such that each edge consist of two twisted

strands in antiparallel orientation.

Furthermore, for these 366 links, the largest number of crossings is 18n and there

are 104 such links. This means that these links have at least a complete twist on each

edge. On the other hand, the smallest number of crossings is 18n − 9 and there is only

one link D(3bγ2n−1, 3a
β
2n−1, 3b

γ
2n−1)351. This means the link has at least half twist on each

edge. These results provide a possibility to adjust the length of DNA triangle links by

considering their twist number. Also, the writhe number of oriented triangle link diagrams
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are given in table 1, which, together with the crossing number, identify the chirality of

111 triangle links.

There are 77 oriented triangle links whose lowest-degree terms of HOMFLY polyno-

mials are given as a general formula in term of the twist number n in table 2. Also,

for each link type, there exists an infinite family of OTP links obtained by changing the

crossing number on each edge. Hence these polynomials also give a general formula for

the lowest-degree terms of the HOMFLY polynomials for each family of links. In special,

there is an OTP link D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)64 whose second lowest-degree term of HOM-

FLY polynomial is also given. These results show that these links are all chiral by using

the asymmetry of these polynomials over v. Here we note that the lowest-degree terms

of HOMFLY polynomials of some OTP links have the same polynomials. However, this

does not means that these links have the same HOMFLY polynomials, or belongs to the

same link type.

Thus, our results show that the chirality of triangle prism molecules with DNA double

edges can be determined by the 366 topological structures whether each building block is

symmetry. Also, they confirms that the synthesized DNA triangle prism with one or two

components are both chiral without considering the twist number on each edge [22, 23].

Our work provide a theoretical approach to synthesizing, control and study the chiral

structures of DNA triangle prisms.

Acknowledgments: This work was supported by a grant from the National Natural Science

Foundation of China (No. 11501454).

Appendix A The crossing number, component num-
ber and writhe number of 366 OT-link
diagrams

D c(D) u(D) w(D) Ds

D(9bα2n)1 18n 6 18n
D(9aα2n)2 5 -18n
D(aα2n, 8b

α
2n)3 5 14n

D(3bα2n, a
α
2n, 5b

α
2n)5 5 14n

D(3aα2n, 6b
α
2n)23 ∗ 5 6n

D(bα2n, 8a
α
2n)4 4 -14n

D(3aα2n, b
α
2n, 5a

α
2n)6 4 -14n

D(2aα2n, 7b
α
2n)7 4 10n

D(aα2n, 7b
α
2n, a

α
2n)9 4 10n D(aα2n, 6b

α
2n, a

α
2n, b

α
2n)13

D(2bα2n, 2a
α
2n, 5b

α
2n)11 4 10n

D(aα2n, 5b
α
2n, a

α
2n, 2b

α
2n)15 4 10n

D(aα2n, 2b
α
2n, a

α
2n, 5b

α
2n)17 4 10n D(bα2n, a

α
2n, b

α
2n, a

α
2n, 5b

α
2n)19

D(3bα2n, a
α
2n, b

α
2n, a

α
2n, 3b

α
2n)21 4 10n

-285-



D(3aα2n, 3b
α
2n, 3a

α
2n)28 4 -6n

D(3aα2n, b
α
2n, 2a

α
2n, 2b

α
2n, a

α
2n)40 4 -6n

D(4aα2n, 5b
α
2n)57 4 2n

D(3aα2n, 3b
α
2n, a

α
2n, 2b

α
2n)61 4 2n

D(aα2n, 2b
α
2n, a

α
2n, b

α
2n, 2a

α
2n, 2b

α
2n)87 4 2n

D(2bα2n, 7a
α
2n)8 3 -10n

D(2aα2n, 2b
α
2n, 5a

α
2n)12 3 -10n

D(bα2n, 6a
α
2n, b

α
2n, a

α
2n)14 3 -10n D(bα2n, 7a

α
2n, b

α
2n)10

D(bα2n, 5a
α
2n, b

α
2n, 2a

α
2n)16 3 -10n

D(bα2n, 2a
α
2n, b

α
2n, 5a

α
2n)18 3 -10n D(aα2n, b

α
2n, a

α
2n, b

α
2n, 5a

α
2n)20

D(3aα2n, b
α
2n, a

α
2n, b

α
2n, 3a

α
2n)22 3 -10n

D(aα2n, 6b
α
2n, 2a

α
2n)25 ∗ 3 6n

D(3bα2n, 3a
α
2n, 3b

α
2n)27 ∗ 3 6n

D(aα2n, 5b
α
2n, 2a

α
2n, b

α
2n)29 ∗ 3 6n D(aα2n, 5b

α
2n, a

α
2n, b

α
2n, a

α
2n)35

D(3bα2n, a
α
2n, 3b

α
2n, 2a

α
2n)31 ∗ 3 6n D(3bα2n, a

α
2n, 2b

α
2n, a

α
2n, b

α
2n, a

α
2n)45

D(2bα2n, 2a
α
2n, 4b

α
2n, a

α
2n)33 ∗ 3 6n

D(aα2n, 2b
α
2n, a

α
2n, 4b

α
2n, a

α
2n)37 ∗ 3 6n D(bα2n, a

α
2n, b

α
2n, a

α
2n, 4b

α
2n, a

α
2n)43

D(3bα2n, a
α
2n, 2b

α
2n, 2a

α
2n, b

α
2n)39 ∗ 3 6n

D(2bα2n, 2a
α
2n, b

α
2n, a

α
2n, 3b

α
2n)41 ∗ 3 6n D(bα2n, a

α
2n, b

α
2n, a

α
2n, b

α
2n, a

α
2n, 3b

α
2n)53

D(aα2n, 2b
α
2n, a

α
2n, 3b

α
2n, a

α
2n, b

α
2n)47 ∗ 3 6n D(bα2n, a

α
2n, b

α
2n, a

α
2n, 2b

α
2n, a

α
2n, 2b

α
2n)55

D(aα2n, 2b
α
2n, a

α
2n, b

α
2n, a

α
2n, 3b

α
2n)49 ∗ 3 6n

D(aα2n, 2b
α
2n, a

α
2n, 2b

α
2n, a

α
2n, 2b

α
2n)51 ∗ 3 6n

D(4bα2n, 5a
α
2n)58 ∗ 3 -2n

D(2bα2n, 4a
α
2n, 2b

α
2n, a

α
2n)64 ∗ 3 -2n

D(bα2n, 2a
α
2n, 3b

α
2n, 3a

α
2n)66 ∗ 3 -2n

D(aα2n, 3b
α
2n, a

α
2n, b

α
2n, 3a

α
2n)72 ∗ 3 -2n

D(2aα2n, 2b
α
2n, 2a

α
2n, 2b

α
2n, a

α
2n)76 ∗ 3 -2n

D(bα2n, 2a
α
2n, b

α
2n, 2a

α
2n, 2b

α
2n, a

α
2n)80 ∗ 3 -2n D(aα2n, b

α
2n, a

α
2n, b

α
2n, 2a

α
2n, 2b

α
2n, a

α
2n)92

D(2bα2n, a
α
2n, b

α
2n, a

α
2n, b

α
2n, 3a

α
2n)82 ∗ 3 -2n D(bα2n, a

α
2n, 2b

α
2n, a

α
2n, b

α
2n, 3a

α
2n)84

D(3bα2n, 6a
α
2n)24 2 -6n

D(bα2n, 6a
α
2n, 2b

α
2n)26 2 -6n

D(bα2n, 5a
α
2n, 2b

α
2n, a

α
2n)30 2 -6n D(bα2n, 5a

α
2n, b

α
2n, a

α
2n, b

α
2n)36

D(3aα2n, b
α
2n, 3a

α
2n, 2b

α
2n)32 2 -6n D(3aα2n, b

α
2n, 2a

α
2n, b

α
2n, a

α
2n, b

α
2n)46

D(2aα2n, 2b
α
2n, 4a

α
2n, b

α
2n)34 2 -6n

D(bα2n, 2a
α
2n, b

α
2n, 4a

α
2n, b

α
2n)38 2 -6n D(aα2n, b

α
2n, a

α
2n, b

α
2n, 4a

α
2n, b

α
2n)44

D(2aα2n, 2b
α
2n, a

α
2n, b

α
2n, 3a

α
2n)42 2 -6n D(aα2n, b

α
2n, a

α
2n, b

α
2n, a

α
2n, b

α
2n, 3a

α
2n)54

D(bα2n, 2a
α
2n, b

α
2n, 3a

α
2n, b

α
2n, a

α
2n)48 2 -6n D(aα2n, b

α
2n, a

α
2n, b

α
2n, 2a

α
2n, b

α
2n, 2a

α
2n)56

D(bα2n, 2a
α
2n, b

α
2n, a

α
2n, b

α
2n, 3a

α
2n)50 2 -6n

D(bα2n, 2a
α
2n, b

α
2n, 2a

α
2n, b

α
2n, 2a

α
2n)52 2 -6n

D(2aα2n, 5b
α
2n, 2a

α
2n)59 2 2n D(2aα2n, 4b

α
2n, a

α
2n, b

α
2n, a

α
2n)69

D(2aα2n, 4b
α
2n, 2a

α
2n, b

α
2n)63 2 2n

D(aα2n, 2b
α
2n, 3a

α
2n, 3b

α
2n)65 2 2n

D(2bα2n, 2a
α
2n, 3b

α
2n, 2a

α
2n)67 2 2n D(2bα2n, 2a

α
2n, 2b

α
2n, a

α
2n, b

α
2n, a

α
2n)85

D(bα2n, 3a
α
2n, b

α
2n, a

α
2n, 3b
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D(bα2n, b
γ
2n−1, b

α
2n, 2b

γ
2n−1, 2a

β
2n−1, b

γ
2n−1, a

β
2n−1)363 1 6n-1

D(aα2n, 3b
γ
2n−1, a

β
2n−1, 2b

γ
2n−1, 2a

β
2n−1)360 18n-8 2 2n-2

D(2aβ2n−1, b
γ
2n−1, b

α
2n, 2b

γ
2n−1, 2a

β
2n−1, b

γ
2n−1)361 2 2n

D(bα2n, 3b
γ
2n−1, a

β
2n−1, 2b

γ
2n−1, 2a

β
2n−1)359 1 6n-2

D(2aβ2n−1, b
γ
2n−1, a

α
2n, 2b

γ
2n−1, 2a

β
2n−1, b

γ
2n−1)362 ∗ 1 -2n

D(3bγ2n−1, 3a
β
2n−1, 3b

γ
2n−1)351 ∗ 18n-9 1 6n-3

Table 1: ‘ ∗ ’ are used to indicate these link diagrams whose the lowest-degree terms
of HOMFLY polynomials over z are given in table 2.
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