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Abstract

DNA triangular prisms with one helical turn on each edge has been realized
recently by one or five synthetic DNA single strands with rationally designed se-
quences. In the present paper, we determine all possible existing topological struc-
tures for DNA triangular prisms with such double-helical edges. Here triangular
prism links are assembled as the mathematical models for DNA triangular prisms
by using six oriented twist tangles as basic building blocks. In this process, we
firstly show that only 22 orientations are allowed to exist in triangular prism links.
Then there are 366 link types of triangular prism links identified from all generated
link diagrams by considering the symmetry of triangular prism. We note that each
type includes infinite triangular prism links by changing the number of building
blocks on each edge. Our work provides a list of candidates for further synthesized
DNA triangular prisms with required topological structures.

1 Introduction

DNA, as an information-coding polymer capable of programming nanostructure assem-
bly, has been programmed to assemble into a range of well-defined nanostructures [1-5].
Among these, hollow polyhedra [6-9] have attracted the attentions of many researchers
owing to their resemble natural structures such as viral capsids as well as tremendous po-
tential for scaffolding and encapsulating functional materials [10-16]. Triangular Prisms,
as the simplest prisms, have been assembled by deliberately designing different size and

component DNA strands or DNA titles [17-24]. More recently, DNA triangular prisms,
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with one helical turn on each edge, were assembled by one or five synthetic DNA sin-
gle strands with rationally designed sequences [25]. These two DNA prisms both have
nontrivial topological structures, which play the important roles on the control of the
size, the stability of structure and synthetic strategy for nanoparticles. For example, the
single-stranded DNA triangular prism has more compact structure than the five-stranded
one, and also is the smallest 3D DNA polyhedron (~ 3.4 nm) ever reported. However,
it is possible to synthesize a DNA triangular prism with a smaller size by reducing the

twist number of the single-stranded DNA knot from theoretical viewpoints. Thus, it is

natural to ask that which knots or links as the topological structures of DNA triangular

prisms are allowed to exist. The answer for this question has a fundamental impact on
the theoretical rules for the design and construction of a serial of DNA prism molecules.
We address it in the present paper.

Polyhedral links are the interlocked and interlinked architectures formed by treating
DNA as a thin strand, which are presented as mathematical models to explain the topo-
logical structures of DNA polyhedra [26-29]. To date, there are a lot of works devoted
to the research of polyhedra links, including the construction method and obtaining the
related link invariants [30-40]. In particular, some prism links with even crossing number
on each edge are constructed from prismatic plane graphs [41]. However, these works
are mainly used to characterize and explain the structures of the synthesized DNA poly-
hedra with complete helix turns on each edge. There are very little paper devoted to
the study of the ones with complete or incomplete helix turns on each edge due to their
unpredictable orientation [42,43]. Recently, a general method is supposed to assemble
DNA tetrahedra with such structures by constructing six twisted tangles as basic build-
ing blocks, where each tangle is oriented and composed of two twisted stands with odd or
even crossing number [44]. This work affords an expectation to solve the same problem
on DNA triangular prism.

In the present paper, six twisted tangles are taken as basic building blocks to assemble
triangular prism links. However, triangle prism have lower symmetry and more complex
structures than tetrahedra. Hence it becomes more difficult to determine the orientation
of triangular prism links and also to further identify the same link type in the construction
process. Here there are 22 different orientations identified from the initial 55 orientations

obtained by considering all possible orientations of each edge. And then there are trian-
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gular prism links of almost one thousand determined directly by these 22 orientations,
which are further classified into 366 link types under considering the same topological
structures produced by the construction method and symmetry of triangular prism. Our
research provide a general classification for the topological structures for triangle prism
links, and also can be served as a list of candidates for further synthesized DNA triangular

prisms with required topological structures.

2 The construction of triangular prism links

2.1 Graphs and link diagrams

Some notations and basic definitions [45,46] are introduced in this section.

In graph theory, a planar graph G is a graph that can be drawn in the plane with no
edge crossings. Such a drawing is called a plane graph of G. Since all convex polyhedrons
are 3-connected planar graphs, and each of them has an embedding on the plane. Such
an embedding is called a polyhedral graph.

A link L is a collection of circles which may be linked or knotted together without
intersections. A knot is taken as a special link only with a circle. A link can be oriented
by giving one of the two directions along each circle, and its reverse —L is formed by
reversing the orientation on each circle. A link diagram D of L is a regular projection
of L onto a plane such that the corresponding space curve crosses over or under at each
crossing is indicated by creating broken strands. Similarly, D also can be oriented, and
its reverse is denoted by —D.

Two links Ly and Ly are equivalent, denoted by L; = Lo, if there exists an ambient
isotopy that maps one to the other. It is well-known that ambient isotopy is an equivalence
relation on links. Each equivalence class of links is called a link type, and the link type of
a link diagram means the equivalence class of the link represented by this diagram.With
some abuse of terminology, the word ‘link’ is applied to mean a whole equivalence class

(a knot type) or a particular representative member.

2.2 The construction of triangular prism links

A twist tangle of length m, denoted by 7', is two parallel strands with m half-twists for
any positive integer m (Fig. 1(b)). Four endpoints of T" are marked by NW, NE, SW

and SE, as shown in Fig. 1(a). T allow four orientations «, §, v and —a« since the
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orientation —3 (or —v) overlaps the orientation S (or 7) for T by rotating it by 180
degrees in the plane. There are six types of oriented twist tangles such that each type has
an antiparallel orientation on its two strands, denoted by a$,, ay®, as, _,, b3, by® and
by,—1 (Fig. 1(b)). Here the twist tangle ay" (or by.) can be obtained from a$, (or b%,)
by reversing the orientations on two strands. In fact, any other oriented twist tangle with

such antiparallel orientation must be one of the mirror images of the above six types [44].

(b) A half-twist
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Figure 1. (a) Four orientations of twist tangle T: «, —a, S, v; (b) Four types of
oriented twist tangles: a$,,, agn_l, b3, and bj, ;; (¢) The construction
of D(G), D(a3,,5b3,,,3b3, ;) and L(a$,,, 565, 3b3,, ).

Let G be a plane graph of triangular prism P. An oriented link diagram D(G)
can be obtained from G by replacing each edge e; with an oriented twist tangle 7; for
1 < i < 9 and then connecting the endpoints of two twist tangles along the bound-
ary of each face (See Fig. 1(c)). This diagram D(G) is called an oriented triangular
prism link diagram or OTP link diagram. Here for convenience, D(G) is denoted as

D(Ty, Ty, T3, Ty, T5,T6, T7, Ts, Ty) by recording the twist tangle on each edge in a sequence
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from outside to inside and in the clockwise direction, and the orientation of D(G) is
denoted accordingly by o(71, 72, T3, T4, T5, T6, T7, Ts, To ), Where 7; € {a, —a, 3,7} is the ori-
entation of T; for 1 < ¢ < 9. The reverse of o(7y, 72, T3, T4, 75, T6, T7, T8, T9), denoted by
—o(T1, T2, T3, Tu, T5, T6, T1, T8, T9), is obtained by reversing the orientation of each 7; for
1 < i < 9. Each twist tangle T; is called a twist edge of D(G). In this paper, D(G)
corresponds to a triangular prism link L(Ty, Ty, T3, Ty, Ts, Ts, Ty, Ty, To) in R® by consid-
ering it as a spherical embedding of this link. This is illustrated in Fig. 1(c) by taking
D(a$,, 5b3,,,3b3,_;) for example.

Note. In this paper, all OTP link diagrams constructed by our method are all alter-
nating. In fact, these link diagram, their mirror images and reverse are composed of all

OTP link diagrams. Here we only consider these OTP link diagrams in the present paper.

3 Results

In this section, let G be a triangular prism graph with each edge labeled by e;, and D(G)
be any OTP link diagram obtained from G by replacing each edge e; with a twist tangle
T, oriented by 7; for 1 < i < 9 (Fig. 1(c)). In construction process of D(G), we must
keep a nonconflict orientation between any two adjacent twist tangles connected. Hence

all possible orientations of D(G) are determined in the following lemma.

Lemma 3.1. The OTP link diagram D(G) must has one of the 22 orientations described

in Fig. 2 and their reverses.

Proof. There are three cases we need to consider according to the orientation of D(G).

Case 1. At least one of three twist tangles 77, Ty and T3 has the orientation «. Without
loss of generality, assume that 7T} is oriented with «. Then the adjacent twist tangle T}
has three possible orientations «, § and v shown in Fig. 3(a). When T} is oriented with
a or (3, the adjacent twist tangle 75 is oriented with o or 5. When T} is oriented with -,
T, will be oriented with 7. Similarly, repeatedly consider the orientations of such twist
tangles adjacent to the oriented twist tangle until the orientation of D(G) is determined.
In this case, there are 29 orientations described from Fig. 3(a).

Case 2. At least one of Ty, Ty and T3 has the orientation §, but none of them is

oriented with . Without loss of generality, assume that 7} has the orientation /3, then
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o(a, 2B, 0, -0, 2a, 2B) o(2a, v, a, 4y, -a)

o(a, 2B, o, -a, 3B, -0) o(a, 3B, -a, o, B, -a, B) o(a, 2B, a, B, a, 37) o(a, 2B, a, 3B, a, B)

o(a, 4P, a, 2f, a) o(a, 3y, -a, vy, a, 2y) o(3a, 3B, 37y)

o(a, 5B, -a, 2B) o(a, 3B, -a, B, 37) o(a,3v,$,2v,2B)  o(2B,v,®. 27, 2B.7)  o(a, v, @, 2y, 2,7, B)

Figure 2. 22 orientations of OTP link diagrams.

T, has three possible orientations «, 8 and «y. Accordingly, T3 is oriented with S or 7, as
described in Fig. 3(b). Similarly, repeatedly consider the orientations of such adjacent
twist tangles until D(G) is oriented. In this case, there are 16 orientations described from
Fig. 3(b).

Case 3. Ty, T, and T3 are each oriented with «. Then Ty adjacent to T} and 75 only
has two possible orientations —« or (. Similarly, repeatedly consider the orientations of
the adjacent twist tangles until D(G) is oriented. In this case, there are 10 orientations
described from Fig. 3(c).

According to the above construction process, there are 55 possible orientations to exist
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Figure 3. The straight line between two twist tangles indicates their adjacent
relationship, and the equal sign means the twist tangle having the ori-
entation. (a) case 1; (b) case 2; (c) case 3.

in D(G). However, there are the same or reversed ones among these orientations when
D(G) is embedded into R® as an OTP link L(G). These cases are described in table 1.
These 17 different orientations in the table 1, together with the remaining five orientations
0(9a), 0(3a, 33, 3(—a)), o(a, 37, —a, v, a, 27), 0(37, 3(—a), 3y) and 0(3v, 35, 37), form 22
different orientations for D(G). Hence D(G) must have one of the above 22 orientations

or their reverses. | |
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o(D(Q)) The same orientations as o(D(G))

o(4a, B3, 2, 23) o(5a, 28, a, ), o(a, 283, a, 3, 4a), o(3e, 3, 2cx, 23, ), —0(23, —av, B, 5(—ax))

o(6a.37) ~o(37,6(—a))

o(4a, 48, —a) o(3a, 2B, a, B, —a, B), 0(3a, B, ar, B, —v, 2B3), 0(28, —av, 0, 28, 3ax), —o(av, 3B, —av, B, 3(—av))
o(2a,7, a, 27, 2a, ) o(a, v, o, 27, 2,7y, )

o(a, 28, o, —a, 2a, 23) —0(28, —a, o, 2(—a), 283, —a)

o(2a, 7, a, 4y, —a) o(a, v, o, 2y, a,7, —,7), —o(a, 3y, —a, 27, 2(—a))

o(c 28,0, —a,38,—a) | o(28, -, @, B, —a, B, @, B)
o(c,38, —a,, B, —a, B) | o(28, —a, @, —a, B, 28)

o(a, 28, a, B, , 37) —0(37y, —a, 8,2(—a),28), —0(37,2(—a), 28, —a, B), —o(37, 8,2(—a), 28, —a),
—o0(28, —a, 8,2(—a),3y)

o(a, 28, ,38,a, B) —o0(20, —«, 2, 2(—a),23)

o(a,48,a,28, a) —0(28, —a, B, —a, 283, —a, B)

o(3a, 38, 37) 0(3v, 38, 3a)

o(a, 58, —«, 283) 0(28, —, 58, )

o(a, 38, —, 8,37) o(3v, —a,4B,a), 0(37,28, —a, B, a, B), 0(37, 8, —a, B,a,28), —o(2B, —a, o, 23, 37)

o(a, 3, 8,2v,28) 0(28,7, 8,47, a), —o(8,7,8,27,8,7, —,7)

0(28,7,,27,28,7) —0(8,7,8,2v,—, 8,7, 5)

o(a, v, @, 27,28, 7, B) 0(2a,7, B,27,2B,7), 0(B,7, B, 27, B, a,7, @), —o(28,7, 8,27,2(=a),7)

Table 1. 17 different orientations of D(G).

Using the above lemma, we can obtain the following theorems.

Theorem 3.2. There are 104 link types of OTP link diagrams with the orientation o(9c),

which are numbered from 1 to 104 in table 2 (Appendiz A).

Proof. For the orientation o(9«), each twist tangle oriented with o must be a$, or 05,,,
then the number of the resulting OTP link diagrams can be calculated by the following
formula

2Cy 4 2C4 +2C§ + 2C§ + 2Cy = 512.

In fact, among these diagrams, many diagrams are equivalent since they are corre-
sponding to the same link in R®. Hence there are five cases to be considered in the
following.

Case 1. When all twist tangles of D(G) are all a3, or all b3,, two OTP link diagrams
D(9a3,) and D(9b3,) can be obtained.

Case 2. When a twist tangle of D(G) is a$, and the remaining twist tangles are all b3,
the resulting OTP link diagrams of Cj can be divided into two equivalence classes such
that all diagrams in each class are corresponding to the same link in R3. One class has six
members, including D(a$,,8b%,), D(b3,,as,,7b%,), D(2b3,,as,,60%,), D(6b3,,as,,2b3,),
D(7b3,,a5,,b5,) and D(8bS,,a3,), where each diagram has a a, as an edge of any tri-
angular face of D(G). The remaining link diagrams consist of the other class, including
D(3b3,,a3,,50%,), D(4b%,, a3,,4bs,) and D(5b3,,, a3, 3b3,), where each diagram has a a3,

as the lateral edge. Accordingly, we use D(a$,,8b5,) and D(3b3,, a3, 5b3,) to represent
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these two link types respectively. Similarly, when a and b are exchanged in the case 2, we
obtain two link types of OTP link diagrams D(b3,, 8a$,) and D(3a$,, b3, 5a3,,).

Case 3. When two twist tangles of D(G) are both a3, and the remaining twist tangles
are all b%,, the resulting OTP link diagrams of CZ can be divided into four subcases as
below.

Subcase 3.1. There are six OTP link diagrams such that each diagram has two
a3, as the edges of a triangular face of D(G). These diagrams include D(2a$,, 703,),
D(bs,,, 243, 6b5,,), D(a3,, b5, a5, 605, ), D(6bS,,, 243, b5, ), D(6b5,,, a3, b5, a5,,) and D(7
bs,,2as,). Since these six link diagrams are corresponding to the same OTP link in R?,
we use D(2a$,,7b%,) to denote this link type.

Subcase 3.2. There are nine OTP link diagrams such that each triangular face of each
diagram has a a$, as an edge. These diagrams are further identified as three equivalence
classes, and each class has three members. The first class includes D(a$,,, 5b3,, a5, 2b3,),
D(b3,,a5,,5b3,,as,,b3,) and D(2b3,, a3, 5b%,, a3,). The second class includes D(a$,,, 653,
ay,, vs.), D(b3,,as,,6b%,,as,) and D(208,,a3,, 305, a3,,205,). The third class includes
D(a3,, 705, a%,), D(1S,,as,,40s,, a3, 203,) and D(2b3,, a3, , 465, as,,b5,). Accordingly,
we use D(a3,, 505, ,a3,,205,), D(a3,, 603, a3, 0s,) and D(as3,, 763, as,,) to represent these
three link types respectively.

Subcase 3.3. There are 18 OTP link diagrams such that each diagram has one ag,
as the lateral edge and the other one a3, as an edge of a triangular face of D(G).
These diagrams are further identified as three equivalence classes, and each class has
six members. The first class includes D(a$,,203,,a3,,5b5,), D(bS,,as,, 263, a3, , 40%,),
D(2b5,, a5, 265, a3, 365,), D(365, a5, 365, a5,,,15,), D(485,. a3, 305, a3,) and D(5b5,,
2a3,,,203,). The second class includes D(b%,, a3, b3,,, a3, 50S.,), D(2b%,, a3, b3, a3, 40S,,),
D(a$,, 405, a%,,305,), D(3b3,,,as.,,2bS. . a5, 2b3.), D(4b3,, a3, 2b3,, a5, bs,) and D(5b3,,
ay,, 205, a3,). The third class includes D(2b5,,,2a3,,50%,), D(as,, 363, as,,, 4b5,), D(bS,,,
ay,, 303, a3, 30S.), D(3b3,,as,,4b3,,as,), D(45,,, a3, bs,, as,,2b5,) and D(508,,, a3, bs,,,
a3,,bs,). These three link types are represented respectively by D(a$,,2b5,,as,, 5b5,),
D(b3,,as,,0%,, a5, 503,) and D(2b3,,2as,,, 5b5.,).

Subcase 3.4. There are three OTP link diagrams such that each diagram has two a$,, as

the lateral edges. These diagrams includes D(3b3,,,a3,,b3,, a3,,30%,), D(3b3,,2a3,,403,,)

2n )

and D(4b5,, 2a3,, 3b3.,), which are corresponding to the same OTP link in R®. Hence we
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use D(3b3,, a3, bs,,, a3, 3b3,) to represent this link type.

Similarly, when a and b are exchanged in the case 3, the resulting OTP link diagrams
of CZ can be identified into eight equivalence classes, that are represented by the link
diagrams numbered by 8,10, ...,22 in table 2.

Case 4. When three twist tangles of D(G) are all a3, and the remaining twist tangles
are all b5, the resulting OTP link diagrams of C§ are divided into six subcases as below.

Subcase 4.1. There are two OTP link diagrams D(3a$,,603,) and D(603,, 3a3,) such
that a triangular face of each diagram is composed by three a3,. Since these two link

diagrams are corresponding to the same link in R?, we use D(3a3,, 6b3,) to represent this
link type.

Subcase 4.2. There are 18 OTP link diagrams such that each diagram has a a3,
as an edge of one triangular face and has two a3, as the edges of the other triangular
face. These diagrams are further identified as three equivalence classes, and each class
has six members. The first class includes D(a$,,508,,2a5.,,0%.,), D(b5,,as,,5bs,,2a3,),
D(205,, 5, 315, a5, 15, a3,), D(aS,,, b8, a5, 35, a5, 265,), D(2a5,. 515, a5, b5,) and
D(b3,,2a3.,,5b5%,, as,). The second class includes D(a$,,, 5b%,, a3, b3, a3,,), D(bS,,, as,,, 4b5,,,
2a5,,05.), D(208,,a3,,405,,2a3,), D(2a3,,40S,, a3, 203.), D(S,,,2a3,,4bS, , a3, bs,) and

D(a3,,b3,, a3, 5b3,, a3,). The third class includes D(a$,,,6b3,,2a3,), D(bS,

2n) 2n 2n)

b(2!n7 agn)? D(ngnﬂ agn' 3b(2¥n7 2(13”. b;ﬂ)7 D(2a(21n7 6bu a[é!7l)7 D(a[;ﬂﬂ bgrn a(2¥n7 4b‘1

2n> 2n>

a5, 415, S,
ag,,bs,) and
D(b%,,2a3,,3b%,, as,,203,). Accordingly, we use D(a$,,5b%,,2a3,,03,), D(a$,,5b5,,as,,

b3, as,) and D(a$,, 6b3,,2a3,) to represent these three link types respectively.

Subcase 4.3. There are 18 OTP link diagrams such that each diagram has one

a3, as the lateral edge and two aj, as the edges of a triangular face. These diagrams

are identified as three equivalent classes, and each class has six members. The first

class includes D(305,, a3, 205, 2as,,,b5,), D(4b3,, a3, 2b3,,2a%,), D(2a3,,b5,,as,,5b5,),

2n 2n 2n)

D(508,,,2a3,,05,,a3,), D(bS,,2a3,,,b5,,as,,4b5,) and D(a$,,b3,, a3, 2b%,, a3, 3b3,). The
second class includes D(308,,, a3,,, 205, a3, b3, a3,), D(4b3,, a3, b3, 2a3,,, bs.,), D(5b5,,, a3,

.. 2as,), D(bS,, 3as,, 508, D(a$,,, b3, as,, bs,,, as,, 4b3,) and D(2a3,,, 3bS,,, a3, 3bS.,). The
third class includes D(3b3,,, a$,,, 3b3%.,, 2a3,,), D(4b3,,, a$.,,bs,,, a5, 0S.., a3,), D(2as,,, 2b3,,, as.,,
4b3.), D(5b%,,,3a5,,0%,), D(as,,b3,,2as,,5b%,) and D(b3,, 243, 2b%,, a3, 3b%,). Accord-

ingly, we use D(3b3,, a3, ,2b3,,2a3,,,b5,), D(35,,, a3, 205, a3, bs

a ., (] «
2n 2n 11’271) and D(3b2nv Aop,

3b3%,, 2a3,) to represent these three link types respectively.
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Subcase 4.4. There are 27 OTP link diagrams such that each diagram has one

as, as the lateral edge and each triangular face has a a$, as an edge. These dia-

grams are identified as six equivalent classes. The first class has six members, including
(&3 (e} « (e} « o (el « (e} « o « (e} (e} « (e% «

D(a’2n7 2b2n7 QAops 2b2n7 Aop, 2b2n)7 D(b2n7 Ao,y 2b2n7 Aop, 2b2n7 Aops b2n)7 D(2b2n7 QAop, 2b2nv Aops

(a3 [e3 (a3 [e3 (a3 [e3 (a3 [e3 (a3 « (a3 « (e} < (e3 @ (a3
205, as,,), D( a$,, b5y, 5,5 3b5,,, a5, 05), D(as,, 465, 2a5,,, 2b5,,) and D(2b5,, a5, bs,,,

2n) 2n)

ag,,3b%,,a3,). The second class has six members, including D(a$,,20%,, a3,,403,, as,),

D(ngﬂJ 2{1/377,7 31)37’17 a‘gn/ bgn)7 D(bgn7 a;ﬂ,? ngTH a;ﬂ7 baﬂﬁ a;n? 2b;ﬂ)7 D(ngTH a;ﬂ7 2b37l7

a3, bs,), D(as,,3bS,,a3,, 365, a3,) and D(bS,,as,, 3b%,,2a3,,2b3,). The third class has

2n) 2n)

« (a3
A2p s b2n7
1 1 1 (e3 [e3 (a3 (&3 (e3 o (a3 o (e3 [e3 (&3 [e3 (e3

six members, including D(b5,,as,, b3, a3,, 4b%,, a3,), D(2b3,,as,,bs.,, a3, b5, as,, 2b5.,),
o o a  pa a  po o o o a ] o o o (] a  pa

D(a2n7 4b2n7 Aap,» b2n* A2p,» b2n)7 D(2b2n‘r 2a2n7 2b2n’ Aap,» 2b2n)7 D(a2n7 3b2n7 Aap,» 2b2n7 Aap,» bZn)

o o (et « ]

and D(b2n7 Ao 3b2n7 QAops 2b2'm

o a o a  pa o o (et a (] a ] a o a o
2b2n7 Ao 3b2n7 Ao b2n)7 D(b2n7 Ao 2b2n7 QA5 3b2n’ a’Zn) and D(2b2n7 ) 2b2n7 2a2n7 2b2n) T-

he fifth class has three members, including D(b5,,, a$.,, b3, a3,,, 203, a3, 2b3..), D(2b5,,, a$,,,

a$,). The fourth class has three members, including D(a$,,,

bs,, as,, 2b%,, a3, bs,) and D(a$,, 403, a3, 23, as,). The sixth class has three members,
including D(2b%,, 243,465, as.), D(as,, 365, as.,, b3, a5, 2b%,) and D(b3,, s, 3b%,, a3,

b3, as,,b3,). These six link types are represented respectively by D(a$,, 205, , a3, , 205, , a3,
2b3,), D(a$,, 203, a3, 403, as,), D(bS,,,as,, bs,, a3, 465, as,), D(a$,, 203, a3, 303, a3,

b3.), D(b3,,as,,b3,,as,, 2b3,., as,, 2b3,) and D(2b3,,2a3,, ,4b%,, as,,).

Subcase 4.5. There are 18 OTP link diagrams such that each diagram has two a$, as
the lateral edges and a a§, as an edge of a triangular face. These diagrams are identi-
fied as three equivalent classes, and each class has six members. The first class includes
D(a3,, 265, a3, b5, a5, 305, ), D(b3,,, a3,,, 05, 25, 405, ), D(2b5,,, a3, b,,, 243, 3b5,,), D(3
bs,, as,, b3, 2a3,,2b%,), D(3b5,,2a5,,2b5,, a5, b%,) and D(4b%,,2a5,,2b5,,a3,). The sec-
ond class includes D (b3, a5,,, b3, a%,, b3, a3, 3b3.,), D(208,,, 3a3,,, 43,), D(as,, 3bS,,, 2a3,,, 3

%.), D(3b%,,as,,b%,, a3, 2%, as,), D(30S,,,2a5,,bS,,, a5, 2b3,) and D(4b3,, 243,03, as,,,
%.). The third class includes D(2b5,,2a3,, 5, a3, 3b5,.), D(a$,,, 2b%,, 2as,,, 4b5.,), D(bS,,,
ay,, 208, 2as,,, 3b3,), D(3b3,,, as.,, bS,., a3, bs,,, a3, bs,.), D(3b5,,, 2a3,, 303, a3,,) and D(4b5,,,
3as,, 2b3,). Accordingly, we use D(a$,, 205, , a3, b5, a3, 3b5,.), D(bS,,, a3, b3, a3, b%,, as,,,
3bg,) and D(2b5,,2a3,, bs,,,

Subcase 4.6. There is only one OTP link diagram D(30$,, 3a3,,, 3b%,) which has three

ay,,3b3,) to represent these three link types respectively.

a3, as the lateral edges.

Similarly, when a and b are exchanged in the case 4, the resulting OTP link diagrams
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of C3 can be identified into 17 equivalence classes. These 17 link types are represented
by the link diagrams numbered by 24,26, ..., 56 in table 2.

Case 5. When four twist tangles of D(G) are all a3, and the remaining tangles are all
b3, the resulting OTP link diagrams of Cg can be divided into seven subcases as below.

Subcase 5.1. There are six OTP link diagrams such that each diagram has three a3,
as the edges of a triangular face and a a3, as an edge of the other triangular face. These
six link diagrams include D(3a3,, 305, a3, 20%.,,), D(3a$,,, 463, a3, b%,), D(3a3,,, 505, a3,),
D(a3,, 58, 3as,), D(b3,, a3, 4b%,, 3a3,,) and D(2b%,, a3, 33, 3as,, ), which are correspond-

ing to the same OTP link in R3. Then we use D(3a$,,3b3,,as,,2bS,) to represent this
link type.

Subcase 5.2. There are nine OTP link diagrams such that each triangular face of each
diagram has two af, as the edges. These diagrams are identified into three equivalent
classes, and each class has three members. The first class includes D(2a$,, 405,243, b5,,),
D(vs,,,

D(2a5,,,4b5,, a3,,, b5, as,), D(b3,, 2a3,, 305, 2a5,,b3,) and D(as,,, b3, a3,,, 405, 2a5,). The

third class includes D(2a$,,, 5b%,,, 2a3.,), D(bS,,, 2a5.,, 3b3,,, a5, b3, as,) and D(a$,, b5, as,,

2a3.,,40%,,2a3,) and D(a$,,b3,, a3, 33, a3, b5, a5,). The second class includes

363, 2a3,,,b5,). Accordingly, these three link types are represented by D(2a$,, 405, ,2a3,,,
b3.), D(2a3,,4b3,, as,, bs,, a3,) and D(2a3,, 503, 2a3.,).

Subcase 5.3. There are six OTP link diagrams such that each diagram has three a3,
as the edges of a triangular face and a a$, as the lateral edge. These diagrams include
D(4as,,5b%,), D(3a3,,0S,,,as,,4b%.), D(3as,,, 203, a3, 30S,), D(30S,, a3, 205, 3as,,), D(4
bs,, as,, b3, 3a3,) and D(5b%,,4a3,), which are corresponding to the same OTP link in
R3. Hence we use D(4a$,,5b%,) to represent this link type.

Subcase 5.4. There are 54 OTP link diagrams such that each diagram has one a3, as

the lateral edge, one a5, as an edge of the one triangular face and two a$;, as the edges of
the other triangular face. These diagrams are identified as nine equivalence classes, and
each class has six members. The first class includes D(a$,, 203, a3, 203, as,,, b5, as.,),
D(b3,, a5, 2b3,, a5, b3, 2a3,,b3,.), D(20S,,, a3, 203, , as,, Vs, 2as.,), D(2a3,, 303, 2a5,,, 203,

(] @ o a  pa a  pa a  pa « (] a 5 aqg 1
)7 D( 30‘211.7 3b2n7 Ao b2n) and D(a2n7 b21L7 Aops b2n7 A9n5 3b2n7 a2n)' The second class in-

2n
) o a o a o a o @ (] @ (] « (] a  pa «a
cludes D(me QAop s Do s Aop,» 3b2n7 2(]’271)7 D(b2n7 2a2n7 2b2m Aops 2b2n7 (LZn)v D(2b2n7 A2p bZ'm Aap,»
(] a  pa a « (] a pa « (] a (] a  pa a  pa
me Qg b?m (I’Zn)v D(”‘Zn? 41)2717 3”’2117 b2n)7 D(Z(I’an 20 Qg 2b Agp,» bZn) and D(”’va b2n7 2

2n) 2n>
ay,, 203, a3, 205 ). The third class includes D(a$,, 205, a3, 265, , 2a3,,b5,), D(S,,, a3, 2

2n)
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bg’n7 a’g’nﬂ 2bg77,7 2agn)) D(2bgn7 a;’fl,7 2bg’ﬂ7 20/;”’, bgn7 agn)7 D(2agn7 bg’ﬂ7 ag’n7 3bgﬂ7 agn7 bg’ﬂ)’ D(bg'n,)
2a3,, b5, a%,, 3b5,,a%,) and D(a$,,b3,, a3, 203, 2a3,, 2b3,). The fourth class includes D(

2n

bg'ﬂ.7 agTL7 l)g‘TL7 a/(2171,7 2b(21717 20/(21717 g7l)7 D(ag7l7 4bng7 2ag7l7 (Z)CTL7 ag'ﬂ.)7 D(ngnﬁ agTL" (2171..‘ a/(2171,7 2b(21717 20/(2171)7
D(2a3,,05.,, a3, 205, a3, 203,), D(bS,,, 2a3,, VS, a3, 205, a3, bs,) and D(a$,,, bs,,, as.,, 23,
ay,, 205, a3,). The fifth class includes D(a$,,, 2b3,, a3.,, 3b%,, 2a3,,), D(0S,,, as.,, 2b3,,, a5, bS,,,
agn? b;7l7 a;’ll)7 D(2b3n7 a’;’ﬂﬂ Qb()/ 30’;”17 bg’ﬂ)7 D(“;’I’Iﬂ bgn7 2”’377,7 31)3”7 a‘gn/ bg’ll)7 D(2a3n7 2b(5n7 a‘gn?

2n)

308,,a3,) and D(b3,,2a3,, 2b3,,2a3,, 2b3,,). The sixth class includes D (b3,

2n>

b;w a%ﬁ bLZLn? aLQMn)‘r D(2b§ln7 (lgn, b‘Zer a‘Z"n? bgn7 2a§!n7 b(ZXn)7 D(agn7 4b£2¥n7 CL%” bgn’ 2(1121”)7 D(b(ZXn 3
050288, 5,,208,), D(aS,, 85,03, 3, 3, 208, a3, 08,) and D(2a, 385, 263, a3, ).
The seventh class includes D(2b%,, 2a5,, 2b5.,, a3, b3, a3,,), D(as,, 303, a3, b, 2a3.,, b5,,),
D(bg'n,7 a%’ﬂ7 3b(21’n,7 agﬂ7 b%’n,7 20{‘;”)7 D(2agn7 3bgn7 Cl‘zlrl/7 bgn7 ag’nﬂ bg’n,)7 D(a%ﬂ/7 bgn7 agn7 bg’n,’ a%’n,7 b[2¥77/7
ay,,20s.) and D(bS,,3as,,, 465, as,). The eighth class includes D(20%,, 2a3,, 303, 2a5.,),
D(ag7l7 3bgﬂ.7 a’;‘n? bg7l7 ag7l7 bgTH agﬂ) ’ D( 871.7 agTL7 3b(2171,7 z;(lStTL7 bgTL) ’ D (agn7 g‘ﬂ.7 2ag7l’ 4bgﬂ.7 a’(;n) 7

D(2a$,, 203, , a3, 0S.,, a3, 205, ) and D(b5,,, 2a3,, 203, , a3, bs,,, a3, bs,,). The ninth class in-

cludes D(ngnv Q(J’gm ngm 2@37,” gn)v D(agm 3bgm agnv Qb%za 2agn)7 D( gm agnv Sbgnv QGgm bgnv

[e3 (a3 «
Ao, b2n> A2p, 2

« (a3 « (e3 [e3 (a3 [e3 (e3 [e3 (a3 (a3 (e3 [e3 (a3 (a3 (e3 o
a2n)7 D(b2n7 20‘2717 b2n7 Aap,» b2n7 Ao, 2b2n)7 D((J’Zm b2n7 Aap,» 2b2n7 Qg b2n7 Qap,» b?n) and D(2a2n7
(e3 [e3 (e3 « 1 « (o3 [e3 (e3 « (o3 [e3 (e3 @ (a3
b2n7 Aops 4b2n’ aZn)' Accordlngly, we use D(O‘Zn? 2b2n7 Aops 2b2n7 ) b2n7 a2n)> D(b2n7 ) b2n7

« (a3 « [e3 (e3 [e3 (a3 [e3 (&3 (e3 [e3 (a3 o (e3 (o3 (63 (o3
A2p, 3b2n7 2a2n)7 D(a2n7 2b2n7 Aap, 2b2n7 2a2n7 b2n)7 D(an’ A2, bZn? Qap,» 2b2n’ 20’2717 b2n)7 D(G’Zn?
] o (] o o o pa o o o pa o ] a ] o pa a
2b2n7 Ao, 3b2n7 2(12"), D(b2n7 A2y, b2n’ Aap,» 2b2n7 Aap,» b2n’ a2n)‘r D(2b2n7 20’271’ 2b2n7 A2y, b2'm a?n)7

D(208,,,2a3,,,3b3,,, 2a3,) and D(2b5

%, 205, 25, 2a5,, b%,) to represent the nine link types.

Subcase 5.5. There are 18 OTP link diagrams such that each diagram has two a5, as
the lateral edges and two a$, as the edges of a triangular face of D(G). These diagrams
are further identified as three equivalent classes, and each class has six members. The first
class includes D(2a$,,b3,, a3, bs.,, as,, 3b5,.), D(bs,,4as,,4b5,), D(as,, b3, as,, b3, 2a3,, 3
bs,), D(3b%,, a3, b3, 2a3,,b3.,, as,), D(3b5,,,2a3,,, b5, 2a5,,,b%,) and D(43.,, 2a3,, bs,,, 2a3,,).
The second class includes D(a$,, b5, 2a3,, b5, a3, 3b5,), D(2a3,,b%,, 2a3,,,4b5.,), D(b5,,, 2
ay,, b5, 2a%,,30s.), D(3b3,,as.,,bs,,,3as,,0s,), D(3b3,,2a3,,,2b5,,2a3,) and D(4b3,,3as,,,

.5 a5,). The third class includes D(b$,,, 3a3,, b5, a3,, 30%.,), D(as,,b3,, 3as,,,4b%,), D(2

@ (e} « (e} (e} (o) (o3 « (e} (e} (e} « (e3 @ (e} [e]
Aop, 2b2n7 2a2n7 3b2n)7 D(3b2n7 Qan» Va5 Qops Doy, 2a2n)7 D(3b2n7 2(1’2717 2ns A2n me a2n) and D(4
b(l

2n 4a(21'ﬂ/7 bgn)' Accordlng1y7 we use D(2a;7l7 bgn/ ag'ﬂ/7 bS”L’ agn7 3b[2]7’l/)7 D(agn7 bgn7 2“;’”7 bgn7 a;n’
3b8,) and D(b3,, 3as,,, b3, a3,, 3b3,) to represent these three link types.

Subcase 5.6. There are 27 OTP link diagrams such that each diagram has two a3, as
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the lateral edges and also its each triangular face has a a3, as an edge. These diagrams are
further identified into six equivalence classes. The first class has three members, including

[e3 (o3 « (e3 (o] (e3 (o3 « (e3 (o] (e3 [¢3 (e} (e3 [e3 (e}
D(“Qnr 21)2n7 Qap,» b2n7 20’2n7 2b2n)7 D(b2n7 Qan,» b2n7 2(1’2n7 2b2n7 Aap,» bZn) and D(2b2n7 Ao, b2n7 2

ay,, 203, a3,). The second class has six members, including D(a$,, 205, a3, b,

as,,b3,), D(b3,,as,,b5,,2as.,, 308, as,), D(2b%,, a3, 5., 3as,,,203,), D(as,,2b3,,2as,,2
bs,,a%,,0%.), D(b3,,as,, 208,243,203, a3,) and D(2b3,,2a3,, b3, 2a%,, 2b%,). The third
class has six members, including D(a$,, 2b5,, a$,, b3, as,,, 203, as.), D(b5,,, a5, b%,, 2a5.,,
b, ag,, 263 ), D(208,, as,, b3, 2a3,

2n 2n) bgn? agn! bgn)7 D(Zbgtn/ 3agn7 2bgn7 agn! bgn)7 D(agnT 3b§nl

[e3 (%
Qg bZn )

2as,,2b3. ,as,) and D(b3,, as,, b3, a5, b3, 2a5,, 2b%,). The fourth class has six members,
including D(b3,, a3, b3, a3, b3, a5, b3, a5, bs.), D(2b3,,3a$,, 365, a3,), D(as,,3b3,,3
ay,,205.), D(bS,,as,, 2b3,,,2a3,,03,,, a5, b3 ), D(2b3,,2a3,,,b%,, a3, 2b%,, as,) and D(ag,,2
b3, 2as,,b%,, a3, 2b%.). The fifth class has 3 members, including D(b5,,, a3, bS.,, a3, b3,
ay,, 208, a%,), D(2b3,,3a3,,0%,,,as,,2b3,) and D(a$,,3b3,,2a3,,b%,,as,,03,). The sixth

2a3,,3
b3, as,) and D(b5,,, as,, 205, 3as,,, 205,). Accordingly, we use D(as,, 2b3,,, a5,,, b5,, 2a5,, 2
b;’ﬂ)" D(aéy'ﬂ’ 2bt2!'ﬂ7 a(217L7 b;’ﬂ’ aéy'ﬂ’ b‘;n’ a(an‘r bg'ﬂ)’ D(agn’ 2b(2!'ﬂ7 a‘;n’ bg'ﬂ/’ agln7 2b(217L7 a‘;n)’ D(b(;’/l.' a;‘n’

(] ] (] a (] a (] (] a (] « (o] « (] ] (] ] (]
b2n7 Aops b2n7 Aops b2n7 ) b2n)7 D(b2n$ QA5 b2n7 Ao bZn? Aops 2b2n7 a‘271,) and D(2b2n7 20‘271,7 b2n7

[e3 (e3 « (e3 « (a3 « (o3
2a2n7 b?m A2p, b2n7 Qg b2n)7 D(a2n7 2b

class has three members, including D(2b8, -

2n)

ag,, b3, a3,,bs,) to represent these six link types.

Subcase 5.7. There are six OT-link diagrams such that each diagram has three a$,
as the lateral edges and one a3, as an edge of a triangular face. These diagrams include
D(a3,, 208, 3as,,3b3,), D(bS,,as,, s, 3as,, 3b3.,), D(2b3,,4a3,,3b%,), D(3b3,,4as, . 2b5.),
D(3b3,,3a3,,, b5, a3, b3,) and D(3b5,,, 3a3,, 205, a3, ), which are corresponding to the same
OTP link in R3. Hence we use D(as,, 2b%,, 3as,,, 3b%,) to represent this link type.

Similarly, when a and b are exchanged in the case 5, the resulting OTP link diagrams

of C§ can be identified into 24 equivalence classes. These link types are represented by

24 link diagrams numbered by 58,60, ..., 104 in table 2. |

Theorem 3.3. There are 64 link types of OTP link diagrams with the orientation
o(4a, B, 2, 28), which are numbered from 105 to 168 in table 2 (Appendiz A).

Proof. For the orientation o(4a, 3,2a,203), each twist tangle oriented with 8 must be

aﬁn,l, and each twist tangle oriented with o will be a$, or b5, then the number of the
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resulting OTP link diagrams can be calculated by the following formula
20§ + 2G5 +2C% + Cf = 64.

We have four cases by only considering six twist tangles oriented with « as below.

Case 1. When all twist tangles oriented with « are all a3, or all b3, two OTP link
diagrams D(4a$,, a5, ,,2aS,,2a5, ) and D(40S,, a5, |, 2b%,,2a5 ) can be obtained.

Case 2. When a twist tangle is a3, and the remaining twist tangles are all b3,, the
resulting OTP link diagrams of C¢ are divided into two subcases as below.

Subcase 2.1. There are four link types of OTP link diagrams such that each diagram
has a a$,, as an edge of triangular faces. These diagrams include D(20%,, a3, b5, afjn,l, 2b3,,,
208 ), D(bS,,ag,, 208 al 265, 2d5 ), D(as,,3b3, a1, 265, 2a5 ) and D(4b3,
A3yt 03r 05, 205, )-

Subcase 2.2. There are two link types of OTP link diagrams D(4bg,, a5 |, a3, b5, 2
a. ) and D(3bg,,ag,, a5 1,208, 2a5, ) such that each diagram has a a$, as the lateral
edge.

Similarly, when a and b are exchanged in the case 2, the resulting OTP link diagrams
of C¢ are identified into six equivalence classes. These link types are represented by six
link diagrams numbered by 108,110, ..., 118 in table 2.

Case 3. When two twist tangles of D(G) are both a$, and the remaining twist tangles
are all b3, the resulting OTP link diagrams of C3 are divided into four cases.

Subcase 3.1. There are three link types of OTP link diagrams such that each diagram
has two a$, as the edges of a triangular face. These diagrams include D(2a‘§n 2b3,,, (LG 1,2
s 203-1), D(05, Vs 080 Vs 01, 205, 205, _1) and D(B5,,, 208, 05, a5y, 268, 205, ).

Subcase 3.2. There are three link types of OTP link diagrams such that each triangular
face of each diagram has a a3, as an edge. These diagrams include D(a$,,, 3b3,, agn_l, bs.,,
ag,,2ds. ), DS, as,,2b3, as b3, a3, 2d5 ) and D(2b3,,ag,,bS,, a5 |, bS,, aS,,2
a5_y)-

Subcase 3.3. There are eight link types of OTP link diagrams such that each diagram

has one a$, as the lateral edge and the other a3, as an edge of triangular faces. These
diagrams include D(ag,,2bg,, a2, al | 268 245 ), D(ag,,36S,, a5 |, a2, b%,, 245 ),
D(¥5: @5, Uy 08, 0515 208, 205, 1), D20, 05,88, 65,1, 05,65, 205,1), D(205,,2

05 Qa1 250, 205, 1), DV, 05,0 208, 05,1505, V5, 205, 1), D365, 08, 05,1, 65,5,

2a§n—1) and D(4bgn7a2n 1»2a2n72a2n 1)-
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Subcase 3.4. There is one OTP link diagram D(308,, S, a5, ,,a%,,bs,, 2a5, ) which
has two a$, as the lateral edges.

Similarly, when a and b are exchanged in the case 3, the resulting OTP link diagrams
of CZ can be identified into 15 equivalence classes. These link types are represnted by 15
link diagrams numbered by 120,122, ..., 148 in table 2.

Case 4. When three twist tangles of D(G) are all a3, and the remaining twist tangles
are all b3,, the resulting OTP link diagrams of C§ are divided into five subcases to be
considered as below.

Subcase 4.1. There is one OTP link diagram D(3a$,, b3, a2n " 2b2n,2a§n71) whose
three a$, forms a triangular face.

Subcase 4.2. There are three link types of OTP link diagrams such that each di-
agram has a a$, as an edge of one triangular face and has two a$, as the edges of
the other triangular face. These diagrams include D(Qa‘gn,2b‘2’tn,aé{hhIJS,L,aS",Qag,Hl)7
D(a$,, b, a3, b3, ab b, ag,,2d5 ) and D(bg,,2ag,, b3, a5, 1, b aS,, 2a5 ).

Subcase 4.3. There are six link types of OTP link diagrams such that each diagram has
one a$, as the lateral edge and two a$,, as the edges of a triangular face. These diagrams in-
clude  D(2a5,,b5,, a3, a2n 1265, 20’57171)7 D(ag,, b5, ag,, b, a’gnfh 3y D3y 2a§n71)7
D(as,, b5, 2a3,, a’?n 172b§!n72a§n71)7 D(2a(2¥n’ngn7a2n717a§ln7b(2¥n72a§n71) D(b5,, 2a3,, b5,
A1 @5 U3 205, 1) and D(15,,,3a5,,, a5, 1,265, a5, _y)-

Subcase 4.4. There are six link types of OTP link diagrams such that each diagram
has one a$, as the lateral edge and its each triangular face has a a$, as an edge. These
diagrams include D(ag,, 265, aS,,as . b3, a3, 2ds. 1), D(ag,, 365, a5 |, 243, 2a5 ),
D(bs,,, a3,,, b3, a3, a’gn—li b5y, s 2“%4): D(205,,, a3,,, bs,,, a2n—17 2a5,, 2@2”71) D(2b5,,,2
ag,,as b ag 245 ) and D(bg,,ag,, 20, a5, 1, 2aS,, 245, ).

Subcase 4.5. There are four link types of OTP link diagrams such that each diagram
has two a, as the lateral edges and a a3, as an edge of a triangular face. These diagrams
include D(as,,, 208, a5,., a5, 1, 05,508,205, 1), D(b8,, 5, b5,., a5, a5, 1,5, b5, 205, _1),

3
D(2b§n> 2a[2¥n‘r aé}nfh agn? b%ﬂ 2a2n 1) and D(3b§n7 a2n7 a2n 1 2(1%” 2aén71)' u

Theorem 3.4. There are 24 link types of OTP link diagrams with the orientation
o(6cv, 37), which are numbered from 169 to 192 in table 2 (Appendiz A).

Proof. For the orientation o(6c, 37), each twist tangle oriented with v must be b3, _;,
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then the number of the resulting OTP link diagrams can be calculated by the following

formula
208 4 2C§ +2C¢ + CF = 64.

We have four cases by only considering six twist tangles oriented with « for D(G).

Case 1. When these six twist tangles are all ag, or all b3,, two OTP link diagrams
D(6as,, 3b3,_,) and D(6bS,,3b3,_,) can be obtained.

Case 2. When a twist tangle is a3, and the remaining twist tangles oriented with « are
all b3,

%, the resulting OTP link diagrams of C¢ can be divided into two equivalence classes.

One class has three members, including D(a$,, 5b%,,3b3,_1), D(b3,, a3, 4b3,,3b3._,) and
D(2b3,,a5,,,3b%,,3b3,_1), where each diagram has a a$, as an edge of a triangular face.
The remaining link diagrams consist of the other class, including D(3b3,,, a$.,, 2b%,, 3b3,_1),

2n>
D(4b3,, a3, b5, 3b3,_1) and D(5b,

o3 . 30 o a
- ., a3, 303, 1), where each diagram has a a$, as the lat-

eral edge. Accordingly, we use D(a$,, 5b%,, 3by,_;) and D(3b3,, as,,, 203, 3by. 1) to repre-
sent these two link types respectively. Similarly, when a and b are exchanged in the case
2, we obtain two OTP link diagrams D(bS,, 5a$,, 3by,_;) and D(3a$,,, bS,,,2aS.,,3b3,_1)-

Case 3. When two twist tangles are both a$,, and the remaining twist tangles oriented
with « are all b3,, the resulting OTP link diagrams of C? can be divided into three
subcases as below.

Subcase 3.1. There are three OTP link diagrams such that each diagram has two a3,
as the edges of a triangular face of D(G). These diagrams include D(2a$,, 4b3,,3b3,_1),
D(a$,, b3, as,, 3bS,,3b3,_1) and D(b,

- %, 2aS,,, 3%, 3b3,_1 ). Since these three link diagrams

2n»
are corresponding to the same OTP link in R?, we use D(2a$,,4b%,, 3b3,_1) to denote this
link type.

Subcase 3.2. There are nine OTP link diagrams such that each diagram has one
a3, as the lateral edge and the other a9, as an edge of a triangular face. These di-
agrams are identified into three equivalent classes, and each class has three members.
The first class includes D(a$,, 2b%,, a3, 203, 3b3, 1), D(b3,,, a3, 2b3,, a3, bs,,, 3b3,,_) and
D(2b3,,a5,,2b%,,a%,,3b3,_1).  The second class includes D(2b3,,2a3,,2b5,,3b3, 1),
D(v8,, a5, 365, a%,,3b3,_1) and D(a3,,3b%,,as,,bs,,3b3,_1). The third class includes
D(bs,, a3,, b3, as,,20%,,3b3, 1), D(2b3,, a3,,b3,, a3, bs,, 303, 1) and D(a$,, 463, a5, 3

b3,_1). Accordingly, these three link types are represented respectively by D(a$,, 2b%,, a5,
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2b§n7 3b’%’"r*l)7 D(ngﬂﬂ 2a%ﬂ7 2ba

80363, 1) and D(15,.5,. b5, a5, 205,,363, ) -

Subcase 3.3. There are three OTP link diagrams such that each diagram has two a5,
as the lateral edges. These diagrams includes D(30S,,, a$.,, b5, a$,, 3b3,,_1), D(4bS,,,2a3,,, 3
by,—1) and D(3b%,,2a$,,b%,,3b3,_1), which are corresponding to the same OTP link in
R3. Hence we use D(3b3,, as,, b%,, as.,, 3b3,_;) to represent this link type.

Similarly, when a and b are exchanged in the case 3, the resulting OTP link dia-
grams of CZ can be identified into five equivalence classes, that are D(2b$,,4a$,,3b3, 1),
D(ts,, 303 1), D(ag,, b, a5, 15,205,303, 1), D(23,,265,. 245,363, ;)

and D(Ba%w bgnﬂ agm bgm Bbgnfl)

« (e3 [e3
2a2n7 b2n7 2a2n7

Case 4. When three twist tangles of D(G) are all a3, and the remaining twist tangles
oriented with a are all b3, the resulting OTP link diagrams of Cg can be divided into
four subcases as below.

Subcase 4.1. There is only one OTP link diagram D(3a$,, 3V%,, 3b3,_;) such that its
three twist tangle a$, form a triangular face.

Subcase 4.2. There are nine OTP link diagrams such that each diagram has one a$,, as
the lateral edge and two ag, as the edges of a triangular face. These diagrams are identi-
fied into three equivalent classes, and each class has three members. The first class includes
D(2as,,, b5, a5,,, 263, 3b3,, 1), D(b5,,, 205,,, b5,,, a3, b3, 3bs,, 1) and D(a3,, b3, as,,, 205,,, a3,
2a$,,2b8,,3b3,_1), D(2a3,, 2b3,, a3, bs,,, 3
3as,,, 263, 3b5,, 1),
D(a$,, b5, a%,,b3,, a3, b5, 3b3,_1) and D(2a$,,3b5,,a%,,3b3,_1). Accordingly, we use

D(Qa‘;n, bgn# a(Zl'm Qb%w 3b’2‘/n71)’ D(ag7z7 b;w 20’%1’ 2b(2!n7 3b’2Y7171) and D(bgrm 3&‘21", 217571, 3b;n71)

3b3,_1). The second class includes D(a$,, b3,,

by,—1) and D(bS,, 2as,,, 2b3,,, as,,, 3b3,_1). The third class includes D (b3,

2n)

to represent these three link types.

Subcase 4.3. There are nine OTP link diagrams such that each diagram has two a3, as
the lateral edges and a a$,, as an edge of any triangular face. These diagrams are identified
into three equivalent classes, and each class has three members. The first class includes
D(2b5,,, a3, 05,245,303, ), D(as,,205,,a5,,b5,, a3,,3b3, 1) and D(b3,, a3, 05,243,

S, 3ba,_1)- The second class includes D(a$,, 3b%,,2a$,, 3b3,,_1), D(bS,,a%,,b%,,as,,bS.,,
as,, 3by,_1) and D(2b%,,3a$,,b%,,3b3,_,). The third class includes D(bS,, as,, 203, 2a5.,,

2n>
3b3,_1), D(2b5

] ] o .’ ] o ] ] . 3
%0, 205,05, 05,,3by, 1) and D(a$,,203,,2a3,,65,,3b;,_1). Accordingly,

2a$,,3b3,_1), D(as,,3bs,,2a3,,3b3,_,) and D(bS,,as,, 20,

(o3 [e3 (a3
we use D(2b5,, a3, b 2 2

[e3
2n 2a’2n7

3bg,_1) to represent these three link types.
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Subcase 4.4 There is only one OTP link diagram D(304,, 3a3,, 3b3,_;) which has three

a$, as the lateral edges. |

Theorem 3.5. There are 16 link types of OTP link diagrams with the orientation
0(3a, 38,3(—a)), which are numbered from 193 to 208 in table 2 (Appendiz A).

Proof. For the orientation o(3a, 33, 3(—«)), each twist tangle oriented with 8 must be
ay, ,, and each twist tangle oriented with a (or —a) will be ag, (or az®) or bg, (or bz®),
then the number of the resulting OTP link diagrams can be calculated by the following
formula

208 4 2C4 +2C¢ + Cf = 64.

We have four cases by only considering six twist tangles without the orientation 3 as
below.

Case 1. When each twist tangles oriented with « is all a3, and each oriented with —«
is all a3, an OTP link diagram D(3ag,,3ah, ;,3a5,>) can be obtained. Similarly, when
a is replaced by b in the case 1, we obtain the OTP link diagram D(303,, 3a5, ;, 3b5.%).

Case 2. When a twist tangle is a3, or a,,; and the remaining twist tangle each is b3, or
by,* according to the related orientation a or —a, the resulting OTP link diagrams of C}
include D(ag,, 263,305, |, 3b52), D(bS,, a2, b2, 3as, |, 3b5%), D(2b%,, a3, 3a5, |, 3b5%),
D(38,,, 305, 1, g, 2b5,%), D(318,,,3a5, 1, b5, a5, bp) and D(305,,,3a5, 1, 205", az,).
Since these six link diagrams are corresponding to the same OTP link or its reverse
in R3, we use D(a3,, 23, 3a5, ,3b5>) to represent this link type. Similarly, when a and
b are exchanged in the case 2, we obtain the OTP link diagram D(bS,,2aS.,, 3a5,_,,3a5%).

Case 3. When two twist tangles each is a3, or a,,; and the remaining twist tangles
each is b3, or by according to the related orientation o or —a, the resulting OTP link
diagrams of CZ can be divided into two subcases as below.

Subcase 3.1 There are six OTP link diagrams such that each diagram has two a$, or

two ag,y as the edges of a triangular face. These diagrams include D(2a$,, b3,,, 3a§n71 , 303,

D(ag7z7 bgn7 a(217u 3a§n—1’ 3b;:)! D(bgn‘ 2113717 Sa’gn—h 3b2:?)7 D(3bgn) 3(1571717 20‘27777 b;r?)‘ D(3b3n7
35, 1, a5, by, ;%) and D(3bS,,3a5, |, b7%,2a;%). Since these six link diagrams are

corresponding to the same OTP link or its reverse in R?, we use D(2a3,, b3, 3a§n717 3b5,)

to denote this link type.
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Subcase 3.2. There are nine OTP link diagrams such that each triangular face of
each diagram has a a$, or a a,, as an edge. These diagrams are further identified
into three equivalent classes, and each class has three members. The first class includes
D(agn72bgn73a§nfl7a2n 2ba,), D(bS,,, as,,, b3, 3a2n 1 ba agy' s ba,') and D(20,,,a5,,,3

3a2n—17 b2_n 70'271 ’ bZn )7 D(Zbng agm

2n?
a‘;n,“ 2055, a5y). The second class includes D(a$,,, 2%,
3@}297#17 ayy, 2b5,") and D(b3,, a3, b3, 3a§n,1, 2by,, as). The third class includes D(a$,, 2

05, a1, 2057, a5 ), D05, 05,5, 305, 1, a5, 2b5,7) and D(285,,,a3,,, 3a5, 1, by 4
b5%). Accordingly, we use D(ag,, 265, 3a5. 1, a5, 265%), D(ag,, 268, 3a5, |, b5, a5%, by"
) and D(a$,, 20, 3(157%17 205,

s age) to represent these three link types respectively.

Similarly, when a and b are exchanged in the case 3, the resulting OTP link diagrams

of C% can be identified into four equivalence classes, that are D(2b3,,a$,, 3a§n71, 3azy),

D(bg,, 243, 3a5, 1, by, 2a5,2), D(S,, 2%, 3a5, 1, 2a5,", by®) and D(18,, 2a3.,, 3a5, 1, a5,
byt az?).

Case 4. When three twist tangles each is a$, or a;," and the remaining twist tangles
each is b3, or by according to the related orientation o or —c, the resulting OTP link
diagrams of Cg can be divided into two subcases as below.

Subcase 4.1. There are two OTP link diagrams D(3aS,,3a5,_,,3b,%) and D(3b%,,3
ai. 1, 3a;®) such that each diagram has three ag, or three a;® as the edges of a triangular
face of D(G). Since these two link diagrams are reverse to each other as an OTP link in
R3, we use D(3a3,,3ay, 1,3b5") to represent this link type.

Subcase 4.2. There are 18 OTP link diagrams such that each diagram has a ag, (or a
ayy) as an edge of one triangular face and has two a5, (or two a$,,) as the edges of the other
triangular face of D(G). These diagrams are further identified as three equivalent classes,
and each class has six members. The first class includes D(a$,, 2b5,, 3‘15%1: 2a5,7, b32),
D(b8,,03,., b3, 305,_1, by’ 205,), D(205,,, a8,,, 305, 1, a5, by, az), D(2a8,,, b5,

byt ant, by), D(V5,. 208,305, 1, 2057, a5%) and D(a3,, bs

2n 2n 2n 2n)

B
3ag,, 1,
3aj 2b5,). Th
A5 By 1, Aoy 5 205,). €
second class includes D(ang 2bgn7 3a2n—17 a;n(,l7 b2_7?7 a2_n(,¥)7 D(bgnﬂ agrm bgnv 30’271,—17 2a2_nl,17 bZ_S)v
B —Q —Q @ ﬂ — « (o3 (o3 ﬂ
(2b2n7 a2n 30’2n—17 bZn ’ 2a2n )7 (b2n7 20’2717 3a2n—17 b2n ) 0’2n b2n )1 (a2n> 2n Q2 30‘27;—17 2
—Q —Q B 3 aqa 1 3 B
b2n ) oy, ) and D(Q(]’gna bgnv 3a2n—17 a‘2n I 2b2n ) The third class includes D(a‘gna ngnv 3a‘2n—17
—a —a a Lo pa B —a p—a -« a o B o
bZn ’ 2a2n )7 D(b2n= A9ps me 3a2n—17 Ao b2n 5 Aoy, )7 D(Qme Ao 3a2n 1 2a2n ’ b?n )v D(bzm 2
a B o B —
Aop, 3{1’271 1 a?n 21)271 )7 ((IQn b2n7 a?n' 3”’2n 1 b2n ’ aZn ’ b2n ) and D(2(]2n7 b?n? 3a2n 1 2[)2n ’

a ) Accordmgly, we use D(a’2n7 2b2n7 30’271 1 20‘2 b2n )1 (agnr 2b(2yn 3a2n717 a;r?v b;ﬁr a;:
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Y and D(aS,, 263, 3a5 1, by%, 2a5.%) to represent these three link types respectively. B

Theorem 3.6. There are 32 link types of OTP link diagrams with the orientation
o(4a, 48, —a), which are numbered from 209 to 240 in table 2 (Appendiz A).

Proof. The number of the OTP link diagrams oriented with o(4a, 43, —a) can be calcu-
lated by the following formula

2(2C9 4 2C; + CF) = 32.

We have two cases by only considering five twist tangles without the orientation f as
below.

Case 1: When the twist tangle oriented with —a is as,.', we have three subcases to be
considered in the following.

Subcase 1.1. When all twist tangles oriented with « are all ag, or all b3,, two OTP
link diagrams D(4a$,,4a5, ,,a;®) and D(4b3,, 45, ;%) are obtained.

Subcase 1.2. When a twist tangle is a3, and the remaining three twist tangles oriented

with « are all b3

%, the resulting OTP link diagrams of C}} can be identified into four equiva-

lence classes. These diagrams include D(a$,, 305, 4a5, 1, a5), D(05,, a3, 205, 4a5, 1, a5"
), D(2b3.,, a8, b8, 4a, 1, a5") and D(3bg,,, aS,,4ay, 1, ay®). Similarly, when a and b are
exchanged in the subcase 1.2, the resulting OTP link diagrams of C} can be identified into
four equivalence classes. We use D(bg,,3ag,,4a5, |, a5"), D(ag,,bS,, 208, 4as, |, az®),
D(2ag,,b%,, a2, 4a5, | ay®) and D(3ag,,b3,,4a5, | az®) to represent the four link types.

Subcase 1.3. When two twist tangles are both a$, and the remaining two twist tangles
oriented with « are both 05,,, we obtain six OTP link diagrams. There are three link types
of OTP link diagrams such that each diagram has two a3, as the edges of a triangular face.
These diagrams include D(bg,, 2aS,,bS,, 45, |, a;%), D(aS,, b, a3, b3, 4a5_, az>) and
D(2ag,,2b3,,4a5, 1, a5,"). There are another three link types of OTP link diagrams such
that each diagram has one a$, as the lateral edge and the other ag, as an edge of a triangu-
lar face. These diagrams include D(ag,, 262, a,, a5 | az®), D(bS,, a2, b2, as,, da5, |,
a;®) and D(2b2,,2a2,, 4a5 | az®).

Case 2: The twist tangle oriented with —a is b,;". Similarly to the case 1, the resulting
OTP link diagrams can be identified into 16 equivalence classes, which are represented by

these 16 link diagrams numbered by 210, 212, ..., 240 in table 2. | |
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Theorem 3.7. There are 20 link types of OTP link diagrams with the orientation
o(2a, v, @, 27, 2, 7y), which are numbered from 241 to 260 table 2 (Appendiz A).

Proof. For the orientation o(2a, 7, a, 27, 2a, ), the number of the resulting OTP link

diagrams can be calculated by the following formula
207 4203 + 207 = 32.

We have three cases by only considering five twist tangles oriented with « as below.

Case 1. When all twist tangles oriented with « are all a$, or all b3,, two OTP link
diagrams D(2a$,, b3, 1, %y, 2b3,_1,2a%,,b3,_1) and D(2b%,, b3, _1,b%,,203,_1,20%,,b3. 1)
can be obtained.

Case 2. When a twist tangle of D(G) is a3, and the remaining four twist tangles are
all b3, the resulting OTP link diagrams of C# are divided into two subcases as below.

Subcase 2.1. There are four OTP link diagrams such that each diagram has a a$, as
an edge of any triangular face. These diagrams are further identified into two equivalence
classes, and each class has two members. The first class includes D(a$,,b3,,03,_1,05,,2
ban_1,2b5,,b3, 1) and D(20S,, b3, 4, b5,,203, 1,05, a5, b3,_1). The second class includes
D(b5,, a3, 0351, b3, 203, 1,263, 0, 1) and D(205,,b3, 1,05, 2b3, 4, a5,, 03,05, ). Ac-
cordingly, these two link types are represented respectively by D(a$.,, b5, ba,_1, 0%, 23,1,
263, b3, 1) and D(b3,,, a5,,, b3,y 05,, 2b3, 1, 205,, b3, 1)

Subcase 2.2. There is only one OTP link diagram D(2b%,,, b3, 1, aS,, 2b3,,_1,2bS,, b3, 1)
which has a a$, as the lateral edge.

Similarly, when a and b are exchanged in the case 2, the resulting OTP link diagrams
of C3 can be identified into three equivalent classes. These three link types are represented
by three link diagrams numbered by 244, 246 and 248 in table 2.

Case 3. When two twist tangles are both a3, and the remaining three twist tangles
are all b3, the resulting OTP link diagrams of C2 can be divided into three subcases as
below.

Subcase 3.1. There are two OTP link diagrams D(2a$,, b3,,_1, b5, 263, _1, 265, ba,_1)
and D(205,,, b3, _1,b5,,203,_1,2a5,,b3,_1) such that each diagram has two a3, as the edges
of a triangular face. Since these two link diagrams are corresponding to the same OTP

link in R3, we use D(2a$,,b3,_1,b0%,, 263, 1,265, b3, ;) to represent this link type.



-241-

Subcase 3.2. There are four OTP link diagrams such that each triangular face for each
diagram has a a$, as an edge. These diagrams are further identified into three equivalent
classes. The first class has two members, including D(a$,, b3, b3, _1, bS,,, 263, _1, %, bS,,,
by,—1) and D(bS,, as,, b3, _1,05,,203, 1,05, aS,,b3,_1). The second class has one dia-
gram D(a$,,b3,, 03, 1,05,,2b3, 1,05,,aS,,b3,_1). The third class also has one diagram
D(vs,,a8,,b3,_1,b%,,2b3,_1,a%,,b%,, b3, _1). Accordingly, we use D(a$,, b5, b3,_1, 5,2
D3n—1, 055, V3,03, 1), D(a,,, 05, b3, 1,05, 263, 1, b5, a3, b3, 1) and D(b5,, a3,,, b3, 4, b3,
203, 1,05, b5,,b3. 1) to represent these three link types respectively.

Subcase 3.3. There are four OTP link diagrams such that each diagram has one a3,
as the lateral edge and the other aj, as an edge of a triangular face. These diagrams are
further identified into two equivalence classes. Also, each class has two members. The first
class includes D(a$,, b3, 03,1, a%,, 203, _1,2b%,, b3, 1) and D(2b%,,b3,_1, a%,,2b3,_1, b5,
a$,,by,_1). The second class includes D(20S,,, b3, _1,aS.,, 203, _1,0%.,, b5, b3,_1) and D(b,,
as,, bayn_1,a%,,2b3, 1,205 . b3 ). Accordingly, we use D(a$,,b%,, b3, 1, as,, 2b3. 1,205,
by,_1) and D(2bS b3 1, a%,,2b3, 1, aS,, b, b3, 1) to represent these two link types re-
spectively.

Similarly, when a and b are exchanged in the case 3, the resulting OTP link diagrams
of C2 can be identified into six equivalence classes. These link type are represented by six

link digrams numbered by 250, 252, ..., 260 in table 2. |

Theorem 3.8. There are 20 link types of OTP link diagrams with the orientation
o(e, 28, a, —av, 2a, 23), which are numbered from 261 to 280 in table 2 (Appendiz A).

Proof. For the orientation o(«, 28, a, —, 2, 23), the number of the resulting OTP link

diagrams are calculated by the following formula
2(2C9 + 205 4 C%) = 32.

We have two cases by only considering five twist tangles oriented with « or —« for D(G)
as below.

Case 1. When the twist tangle oriented with —a is a5, we have three subcases as
below.

Subcase 1.1. When all twist tangles oriented with a are all a5, or all b3, , two OTP link
diagrams D(ag,, 245, |, dS,, a5, 2aS.,, 2ay, ) and D(b3,, 2a5, |, b3, az®, 2b%,, 2a5, ) can

be obtained.
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Subcase 1.2. When a twist tangle is a3, and the remaining three twist tangles

oriented with o are all b3,

the resulting OTP link diagrams of C} are divided into
two equivalence classes. One class includes D(b‘z"n,Qagn717bgn,a;ﬁbgn,agnﬂagnfl) and
D(a$,, 245, |, b8, 5", 2b%,,2d5 ), where each diagram has a g, as an edge of a triangu-
lar face. The other class includes D(bS,, 2a5, 1, a$.,, az, 203,245, ) and D(bg,, 245,
bg,, a5, ag,, S, 2ah ), where each diagram has a ag, as the lateral edge. Accordingly,
we use D(bg,,2a5 |, bS,, a5, b8, a,, 2a, ) and D(bS,,2a5, |, a3, a5, 263,25 ) to
represent these two link types respectively. Similarly, when a and b are exchanged
in the subcase 1.2, we obtain two link types represented by the OTP link diagrams
D(agn72a§n—l7agn$a;7;¥7ag b2n72a2n 1) and D(a2n72a2n 1 03, G5, 2a27z72a2n 1)

Subcase 1.3 When two twist tangles of D(G) are both a$, and the remaining two twist

tangles oriented with o are both b, , the resulting OTP link diagrams of C? can be also

20
divided into three subcases in the following.

Subcase 1.3.1. There is one OTP link diagram D(a$,, 2d5, ,b%,, a3, b3, a3, 245, )
whose each triangular face has one a3, as an edge.

Subcase 1.3.2. There are four OTP link diagrams such that each diagram has one a$, as
the lateral edge and the other a$, as an edge of a triangular face. These diagrams are fur-
ther identified into two equivalence classes, and each class has two members. The first class
includes D(ag,,2d5, |, a3, a5, 20, 2a5 ) and D(bS,, 2a5, 1, b3, a5, 243, 2d5. ). T-
he second class includes D(a$,,, 2(12”71, b3, agy, as,, bs,, 2(1@”71) and D(b5,,, 2(1%717 ag,, azyy,
bg,,as,,2a5 ). Accordingly, we use D(aS,,2ah |, a3, a5®,2b3,,2a5 ) and D(ag,,2
afn,l, bg,,a5",ag,,bS,, 2ah ) to represent these two link types respectively.

Subcase 1.3.3. There is one OTP link diagram D(b5,,, 2‘157171’ as,, ayy, as,, b5, 2a§n71)
which has two a$,, as the lateral edges.

Case 2. The twist tangle oriented with —a of D(G) is b5. Similarly to the case

1, the resulting OTP link diagrams are identified into ten equivalence classes, which are

represented by ten link diagrams numbered by 262, 264, ..., 280 in table 2. | |

Theorem 3.9. There are 16 link types of OTP link diagrams with the orientation
o(2a, v, a, 47y, —at), which are numbered from 281 to 296 in table 2 (Appendiz A).
Proof. The number of OTP link diagrams with the orientation o(2a, v, a, 47y, —a) can
be calculated by the following formula

2(2C9 +203) =
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If the twist tangle oriented with —« of D(G) is as,y', we have two cases as below.

Case 1. When all twist tangles oriented with a of D(G) are all a§, or all b3,, two
OTP link diagrams D(2a5,,, b3, _1, a%,,4b3,_1, a5 ) and D(2b5,, b3, _1,b%,,4b3, 1, a5") can
be obtained.

Case 2. When a twist tangle of D(G) is a3, and the remaining two twist tangles
oriented with « are both S, the resulting OTP link diagrams of C} are identified
into three equivalent classes. These diagrams include D(a$,, b, b3,—1, b5, 463, 1, a5 ),
D(vs,,a8,,b3,_1,b%,,4b3 1, a5®) and D(2b%,,b3, 1, a%,,4b3, 1, a5"). Similarly, when a
and b are exchanged in the case 2, we obtain three link types of OTP link diagrams
D(b5,, a3, b3, 1, 05, 4b3,, 1, a3,), D(as,,, 05, b3, 1, a5,,4by, 1, ag,") and D(2a5,, b3, 1, b3,
4b3, 1, ag,)-

If the twist tangle oriented with —a of D(G) is b5,". Similarly to the above cases,
the resulting OTP link diagrams are identified into eight equivalence classes, which are

represented by eight link diagrams numbered by 282, 284, ..., 296 in table 2. |

Theorem 3.10. There are ten link types of OTP link diagrams with the orientation
o(a, 28, o, —a, 36, —ar), which are numbered from 297 to 306 in table 2 (Appendiz A).

Proof. The number of OTP link diagrams with the orientation o(«, 2, a, —a, 33, —«)

are calculated by the following formula
2C9 +2C; + C} = 16.

We have three cases as below by only considering four twist tangles oriented with «
or —a for G.

Case 1. When these four twist tangles each is a3, or as,; according to the related ori-
entation a or —a respectively, one OTP link diagram D(aS,, 2as, _,aS,, a3, 3as, 1, a5%)
can be obtained. Similarly, when « is replaced by b in the case 1, we obtain an OTP link
diagram D(bg,,2a5 | b3, . b5, 3as, 1, b7%).

Case 2. When a twist tangle is a3, or a,,’ and the remaining twist tangles each is 03, or
b5, the resulting OTP link diagrams of C} are divided into two equivalence classes such
that two OTP link diagrams in each class are reverse to each other as an OTP link in R®.
One class includes D(ag,, 2a5, 1,08, b5, 3a5, 1, b5%) and D(bg,, 2d5, 1, b8,, by, 3a5,
ayy), where each diagram has a a$, or as," as an edge of any triangular face of D(G). The

_ 8 _ _
2a§n—17 agn! bsyy 3a2n—17 b?rix) and D(bgru 2a§n—17 bgn? G’ZT?’ 3a§n—1)

other class includes D (b3, ot

2n)
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—a

by), where each diagram has a a$, or ay. as the lateral edge. Accordingly, we use
D(aS,,2a5, 0%, b5, 3d5 1, b3%) and D(bS,,2d5, 1, as,, by, 3ds, 1, b3®) to represent
these two link types respectively. Similarly, when a and b are exchanged in the case 2, the
resulting OTP link diagrams of C} can be identified into two equivalence classes. We use
D(1S,,2d5, a3, a3>, 3, 1, a3>) and D(aS,, 2as, 1,03, a5, 3ds, |, a3>) to represent
these two link types.

Case 3. When two twist tangles each is a$, or a,, and the remaining twist tangles
each is b3, or by, according to the related orientation a or —c respectively, the resulting
OTP link diagrams of C} can be divided into three subcases as below.

Subcase 3.1. There is one OTP link diagram D(a$,, 25 . bs,,, bs,y, 3a5. 1, ;") whose
each triangular face has a a$, or a a,,." as an edge.

Subcase 3.2. There are four OTP link diagrams such that each diagram has one a$,
or a,, as the lateral edge and the other a8, or a,:" as an edge of a triangular face. These
diagrams are further identified into two equivalence classes such that two OTP link dia-
grams in each class are reverse to each other as a OTP link in R®. The first class includes

o B8 o1 — B — (a4
D(as,, 2ay,, 1, a5, by, 3ah, 1, bs,") and D(bs,,,

25, 1,68, a5, 3as, 1, a5%). The second
class includes D(bg,, 2a5, 4, a%,,b3%,3d5 1, a;®) and D(ag,, 2a5, 1, b8, a5", 3d5, 1, b7%).
Accordingly, these two link types are represented by D(a$,, 2a§n_17 as,, by, 3a§n_17 by)
and D(b3,,2a5 1, a%,, by, 3a5 1, a5").

Subcase 3.3. There is one OTP link diagram D (b3,

B @ —a B —a .
2n> 2“271—1 y Aop, Aop 5 3(12”,17 b?n ) which

has a ag, and a a,y as the lateral edges. |

Theorem 3.11. There are ten link types of OTP link diagrams with the orientation
o(e, 36, —a, , B, —av, 8), which are numbered from 307 to 316 in table 2 (Appendiz A).

Proof. The number of the resulting OTP link diagrams can be calculated by the following
formula
209 +2C; + C3 = 16.

We have three cases as below by only considering four twist tangles each oriented with
a or —a for D(G).

Case 1. When these four twist tangles each is a$, or ay,; according to the related
orientation « or —a respectively, one OTP link diagram D(a3,, 30/237171-, asy, as,, a‘;n,l, ay,y,
a5 ) can be obtained. Similarly, when a is replaced by b in the case 1, we obtain one

OTP link diagram D(bS,,3ay, 1,052, b3, a1, by, a5, ).

2n»
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Case 2. When a twist tangle is a$, or a,," and the remaining twist tangles each
is by, or by, the resulting OTP link diagrams of C} can be divided into two equiv-
alence classes such that to OTP link diagrams in each class are reverse to each other
as an OTP link in R3. One class includes D(a,,3as, 1, by b3, a5 1, by ds ) and
D(bS,,3as, _,,b3%,b%, a1, a;®, a5, ), where each diagram has a a$, or a;* as an edge
of any triangular face of D(G). The other class includes D(bg,, 3a5, |, by, aS,, a5 1 by,
ai. ) and D(bS,,3a5 |, a5, b8, a5 1 by, dl ), where each diagram has a ag, or ;"
as the lateral edge. Accordingly, we use D(a$,,3d5, 1, by, b3, b, 1, by, b, ;) and

(b‘;n,3a2n 10y, aQn,ah 1,b2f,a2n 1) to represent these two link types respectively.
Similarly, when a and b are exchanged in the case 2, we obtain two link types represented
by Db, 3051, 02, 050, Oy, 0 05 1) and D(ag,, 305, 1,57, 05, 05,1, 07 05, 1).

Case 3. When two twist tangles each is a$, or ay," and the remaining twist tangles

n
each is b3, or by, according to the related orientations @ and —a respectively, the resulting
OTP link diagrams of C? are divided into three subcases.

Subcase 3.1. There is one OTP link diagram D(aS,, 3as, by, b, a8 1, a5, a5, )
whose each triangular face has a a3, or a,. as an edge.

Subcase 3.2. There are four OTP link diagrams such that each diagram has one a$,
or ay, as the lateral edge and the other a$, or a,,. as an edge of a triangular face. These
diagrams are further identified into two equivalence classes such that two OTP link dia-
grams in each class are reverse to each other as an OTP link in R®. The first class includes
D(as,, 3“2n 1> o 5 A5y, a271 1502 ’G’Zn 1) and D(b3,,, 3“271 1> Qo 5 U, a’fn 15 Qo ,azn D T-
he second class includes D(bg,, 35, |, b3, a2, a5, 1, a5 a5, ;) and D(ag,,3a5, |, a7,
be ah, 1, by as, ). Accordingly, we use D(ag,,3a5, 1, b5, aS,, a5, 1, b3, d, ) and
D(b3,, 3a/§n71, by, as,, agnfl, as,y, agnfl) to represent these two link types respectively.

Subcase 3.3. There is one OTP link diagram D(b3,, 3as,_,, a5, a%,, as 1, by% a5, ;)
which has a a$, and a a5, as the lateral edge. |

For the remaining twelve orientations, in each orientation there are at most eight link
diagrams produced by using the twist tangle to replace the related orientation on each
edge, and hence it is easy to identify their link types. Here the proof of the following
theorem is omitted .

Theorem 3.12. There are 50 link types of OTP link diagrams obtained from the re-
maining 12 orientations, which are numbered from 317 to 366 in table 2 (Appendiz A).
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The following theorem can be directly obtained from the above theorems.
Theorem 3.13. Let G be a triangular prism graph. Then there are 366 link types of
OTP link diagrams constructed from G.

Conjecture 3.14. These 366 link types of OTP link diagrams constructed from G as
above are different to each other.

For each OTP link with each edge having even crossing number, this conjecture may
be proved by calculating their HOMFLY polynomials based on this relation between the
polyhedral graph and these links [31,32]. However, this method will lost its value for the

remaining links since it is difficult to obtain the HOMFLY polynomials of these links.

4 Conclusion

In this paper, triangular prism links are constructed to give all topological structures of
DNA triangular prisms with double-helical edges. All OTP links are determined by using
22 different orientations and further identified into 366 link types by considering the same
topological structures produced by the construction method and symmetry of triangular
prism in the construction process. For each OTP link, each edge is two twisted stranded
with the crossing number 2n or 2n — 1 and each vertex is a ‘hole’ formed by connecting
any two adjacent edges. These links are numbered sequentially from 1 to 366 in table 2
(Appendix A). Also, we note that each OTP link has the same parameter n for each edge,
which is approximate to a regular triangular prism with equal edge lengths. In fact, the
parameter n can be different for each edge.

On the other hand, it is worth noting that there are 104 OTP links with the same
orientation o(9«) (called as ‘even’ links), where their each edge have even crossing number.
And there is only one OTP link D(3b3, ,,3ah, ;,3b3, ;) with the orientation o(3+, 38, 37)
(called as ‘odd’ link), where its each edge have odd crossing number. The remaining each
OTP link have at least two edges having even and odd crossing number respectively.
Also, each OTP link is alternating. The link D(9a$,) covers the topological structure of
five-strands DNA prism [25], which have the largest crossing number 18 for n = 1 in table
2 (Appendix A). In contrast, the single-stranded DNA triangular prism is the smallest
3D DNA polyhedron ever reported, whose topological structure is ambient isotopic to a

alternating OTP link. However, the knot D(3b],_,,3a5._,,3bJ,_,) numbered as 351 has
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only half twist on each edge for n = 1, which may be the minimum crossing number on
each edge. This result provides a possibility to create a smaller-sized triangular prism
knot from theoretical viewpoints. Thus, our work provides an insight deeply into the
possible existing topological structures for DNA triangular prisms, and also gives a list
of candidates for further synthesizing these DNA molecules with required topological
structures.

Acknowledgments: This work was supported by a grant from the National Natural Science
Foundation of China (No. 11501454).

Appendix A The list of 366 OTP links

N(D) | D([@) N(D) | D(G)
1 D(9b5,,) 2 D(9a5,,)
3 D(a5,,, 8b5,) 4 D(bs,,,8as5,,)
5 D(3b5,,, a5, 565,,) 6 D(3a3;,, b5, 5a5,)
7 D(2as,,, 7b3,,) 8 D(2b5,,, 7a5,,)
9 D(a5,,, 765,, a5,,) 10| D(bs,,, 7as,,.b5,)
11| D(2by,,, 2a5,, 5b5,,) 12| D(2a5,, 263, Sag,)
13| D(ag,,6b3,,a5,,b5,) 14| D(bs,,6a5,,b5,,a5,)
15 D(GZVN‘)an a5y, 205,,) 16 D(b3,,,5a5,,b3,,, 2a5,)
17 D(as,,, 2b3,,, a5, 5b3, ) 18 D(bwzuzwbzn as,)
19 D(b3,,, a5, b3, a5, 565, ) 20 D(ag,,, b 2m‘12n b5,,,5a3,)
2L | D(3b5,, a5, b5, a5, 3b3,,) 22 | D(3ay,,b5,,a5,,b5,,3a5,)
23 | D(3a5,,605,) 24 | D3B3, 6af,)
25 D(as,,, 6b3,,,2a5,) 26 D(b3,,, 6a5,,2b3,,)
27 | D(3b3;,, 3as,,, 3b3,) 28 | D(3ay,,3b,,3a5,,)
29 | D(a5,,5b5,,2a5,,b5,,) 30| D(bg,, 5a5,,2b5,, a5,)
31| D(3bg,, ag,,3b3,, 2a3,) 32 | D(3as,,b%,, 3as,, 2b5,)
33 | D(2bg;,, 2a3,, 465, a3;,) 34 | D(2ay,,2b3,,, a5, b3,,)
35 | D(ag,, 503, a3,,,b3,, a5, ) 36 | D(b5,,5a5,, b5, as,,,b3,)
37 D(as,,, 2b5,,, a5,,, 4b3, , a5, 38 D(b3,,, 2a5,,b3,, 445, b5,)
39 D(3b5,,, ag,, 205,,, 2a5,,, b5,,) 40 D(3as,,, b5, , 2a5,,, 265, , as,,)
41 D(2b3,,, 2a3,,,b5,,, ag,, 3b3, 42 D(Z"szbzm’lzmbzm3“21;)
43 D(b5,,, a5, b3,,, a5, 465, a5,,) 44 D(ag,,, b5, a5, b5, 4ag,, b3,)
45 D(3b3,,, a5, 205,,, a5, b3,,, a5,) 46 D(3a,,, 2rL72a2er2n’02n b2n)
47 D(as,,, 265, as,,, 3b5,, as,,, b5, 48 D(b3,,,2a5,,b5,, 305, b5, as,,
49 D(as,,, 265, a5,,, b5, , as,,, 3b5,) 50 D(b3,,, 2a5,,b5,, a5,,, b5, , 3a5,,
51 | D(a5,,2b5,, a5, 265, as,,, 2b5,,) 52| D(v,,2a5,,b5,, 203, b3, 205,)
53 | D(b5,,a5,,b5,, a5, b5,, a5, 3b5,,) 54 | D(a5,,b5,,a5,, b5, a3, b5,, 3a5,)
55 | D(b5,, a5, b, as,, 265, a5, 265,) 56 | D(a5,,b5,, a5, by, 2a5,,, b5, 2a5,,)
57 | D(4as,,5b5,) 58 | D(4b5,,5a5,)
59 D(2a5,,5b3,,, 2a5,,) 60 D(2b3,,, 5a5,,,2b3,,)
61 D(3a5,, 3b3,,, a5, 2b5,,) 62 D(3b3,,, 3a5,, b3,,, 2a3,)
63 | D(2ay,,4b5,,,2a5,,,b5,) 64 | D(2b,,, das,,, 2b3,,, as,)
65 D(as,,, 2b3,,, 3a5,,, 3b3,,) 66 D(b3,,,2a5,,3b3,,, 3a3,)
67 D(2b5,,, 2as,,, 365, , 2a5,,) 68 D(2a5,,2b%,, 3ag,,, 2b3,)
69 D(2a21z’4bZrHGQVL’bZn ag,) 70 D(2b2n’4a2n’b271’a2n’b2n)
71 D(b5,,, 3a5,,, b5, a5, , 3b5,, 72 D(a3,,, 3b2rwagn' > 305, )
73 D(as,,, 265, as,,, 3b5,, 2a5,,) 74 D(b3,,, 2a5,,b3,, 345, 2b3;,)
75| D(2b5,,2a5,, 265, , 2a5,,, b5, ) 76| D(a3,, 205, 203, 203, a5,)
77 D(b5,,, a5, b3,,, a5, 3b3,,, 2a5,) 78 D(as,,, b5,,, a3y, b5,,, 33, 2b5,,)
79 D(as,,, 265, a5,,, 205, 2a35,,, b5, ) 80 D(b3,,,2a5,,b5,, 205, 2b3,,, a5,)
81 D(2“zn’bzn~“2wbzr."12n 3b2n 82 D(2b3,,, a5, b5,, a5,,, b5, , 3a5,,)
83 D(as,,, b5, a2n’b'2n’aZrL on 84 D(b3,,, a5,,, 2b3,, a5,,, b, 3a5,,)
85 D(2b3,,, 2as;,, 265,,, ag,, bs,,, a5,) 86 D(2a3,,, 265, 2a3,,, b5, as,,, b5, )
87 | D(a5,,2b5,,a5,,b5,,, 2a5,,, 2b5,,) 88 | D(v3,,2a5,,b5,,03,, 203, 2a5,)
89 | D(ag,,2b3,,, a5, 205, a3, b3,,, as,, ) 90 | D(b5,,2a5,,b5,, 2a5,, b5, as,,, b5,
9L | D(b5,,a3,,b5,,, a3, 265,205, b3,,) 92 | D(ag,,b5,,,a3,,b3,, 205, 2b3,,, a5, )
93 | D(ag,,2b5,,,a5,,,b5,,a5,, 2b5,,, a5, ) 94 | D(b5,,2a5,,b5,, a5, b3, 2a5,,, b5,)
95 | D(2b3;,,2a5,,b5,, a5, b5, a3, b3, 96 | D(2a3,,,205,, a3, b5, a3, b3, a5, )



97
99
101
103
105
107
109
111
113
115
117
119

139

167

D(b3,,,a8,,b3,,, as,,, 2b3,,, as,,, b3, as,,)
D(as,,,2b%,, a3, b3, a3, b3, a3, b3,,)
D(bm,a%,bm,a%,b2”,a2n,2b2n,a2”)
D(b3,,,a3,,b5,,a5,,,b5,,, a3, b3, , as;, , b3,
D(4b3,,, a5, |, 2b3,,,2a5 |
D(‘“’zm“é;nfpbz “211’2“57171)
D(4b2n’agn—l’aQn’bZn’zu‘gn—l)
D(as,,, 305, a3, . 2b5,,.2a5, ;)
D(3b3,,,a%,,ab, 1,23, 2a5 1)
D(2b3,,,as;,, b2n7a§n 172b‘2n’2a’2n 1)
D(bg.,,a$,,, 263, a5, 1, 2bS. ,2a5 )
D(4b3,, a5, _|,2ag,,2a5 1)
D(2a8,,,265,,, a, _,208,,, 245, ;)
D(2b3,,2a8,,, a5, _,2b8,,, 25, )
D(a3,,,3b%,,, a5, _1,b%,,a8,,2a5, 1)
D(asmSbswaé’wam&.,Zaé’M)
D(3b3,,,ag,, a5, 1,b%,,a%,,2a5 1)
D(3b2n7a2n’a§n 1’a2n7b2¥n‘2a§n—l)
D(bg,,,2a8,,,b3,, a5 _1,2b8. ,2ah )
D(aS,,,2b3,, a3, ab, 1,263,205 )
D(a8,,,08,,, 03,,, b8,y a5, 1, 265, 205, 1)
D(b8,,, a8,,, 268, a1 b8, a5, 205, 1)
D(255,,, a8, b8, @, 1, b8, a8, 205, 1)
D(b5,,,a8,,,5,,,08,,, ab,, _y, 265,23, )
D(2b5,,, a8,,, b5, %, _y, a5, b5, 205, )
D(b,,, a8,,, 268, %, _,, a8, b5, 203, )
D(3a$,,,b3,, a5, 1,263, 2a5, )

%n)

D(bg,,,3ag,,a5 .28, 25, )
D(2ag,,, 263, ab, _1,bS,, ag,, 2ah, ;)
D(2a3,,,8,,, a8,,, a5y, 1, 265, 25, 1)
D(a3,,b8,,,2a8,,, ab,, _,, 265, 2a}, )
D(2a3,,,2b3,, a5, _,a%,,b3,,2ay, )
D(b(an‘2a2n>b2n7a2n—1’b2n7a2n>2a23n—1)
D(b,,,2a8,,,b8,, a5, _y, a5, b5, 203, )

! B
D(agy,, b5, a8, 05, a5 15 5,5 a3y, 205, 1)
a pa go po o pa
D(agy,, b5, a3, 03, a3y, 1,05, 05,205, 1)

D(6b3,,, Bb;yn_ 1
D(a3,,,5b%;,,3b3,, )
D(3b3,,a3,,2b3,,, Sb% _1)
D(2a3,,,4b3,,, 31)271 1)
D(2b3,,2a%,,2b%,,3b3, 1)
D(3b3,,,a3,,bs,, a3, , 3b;n71)
D(ugn, 2b%,,,as,,,2b3, 3b;’n71)
D(bg" ,a%,, b5, ,a5,,2b5, , Sb;’n7 1 )
D(3a$,,,3b%,,3b3, 1)

D(bg", 3ag,,2b5,, 3b;n71)
D(2ag", b3,,,a5,,,2b5,, 3b;’717 1)
D(agn, b3, 2a5,,,2b3, 3b;’717 1)
D(303,,,3a5, |, 3b5,"
D(ag,,2b8,,,3a5, _,3b5:%)
D(2a$,,,b%,,3a5, _,,3b5,"
D(a$,,, 208,,, 3a5, a3, 205,
D(a$,,265,,, 3a, _y, 26,7, a5,")
D(a,,, 268,305, 1, b3, a5, b))
D(3a$,,,3d5, _,3b5,%)

D(a,,, 268,305, 1,245, b3,")
D(4bg,,, day, _,a3,)

D(4a$,,, 4a§n a5

D(ag,, 303, 4a5, _;,a5,)
D(3b5,,, a8, dajy, 1, a5,")
D(b8,,,3a3,,, 4a5, _1,a5,7)
D(3a8,,,b3,,. 4a5, _1,a5,7)
D(2a,,,2b3,,4a5, 1, a5%)
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98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128

132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170

192

a5y, 05,5 a5,,, 05, 245, 05, aznvbzn)
b2n7202n hgnw”%vbznw”zwbzn S
%nv b2n’ [ aznv bs,,,2a5,,,b5,)
s U5, 05, 05,15 a5, , 05, a8, 08, a3,)
4a8,,, ah, 1,208,205, 1)
40‘211"1211—1’a?an2n’2a2n—l)
40‘111’aZn—l’bln’a}n’zaQn—l)
2!7’5a2n’a§n 172u‘2n72a§n 1)
3a2n7b2n a2n 1,205, 2"571 1)
2a5,, b5, a5, agn 15205, 2‘12n 1)
a2n’b(2'n’2a‘2n>a§n 1‘2a‘2n>2a2n 1)
4a%,, a5, 1,205, 2a3, 1)

205, 2a3,, a5, 1’2a2n’2a§n—1)
zaznaszn«‘lzn—p2azn«2“2n-1)
2n’su‘2n’a2n 1’a2n'b2n’2a2n 1)

bznv"zwzazn 1)

(

(

(

(a3,

(

(

(

(®

(

(

(

(

(

(

¢

(bZrL,3(12r“(12n .
(3a3,,, b5, ‘lzn 17a2n’b2n72a2n 1)
(3a3,,,b5,, a5, 17b2n7a2n72a2n 1)
(a2n’2b2n’a2n>a3n 1’2”‘2n’2a2n—1)
(b2n'2a2n’b2n’a‘§n 1 2‘12"12‘15?”71)
(055 a2n7b2n’a2n’a§n—l’2a2n’2a2n—l)
(a%y» zn’zaln’a‘g‘n—l’a‘Zﬂ.’bZn’zaQn—l)
(2a3;,,b%,, a3, 03,3, 05,5 05,5205, 1)
(a2n’b2n’a2n7b2n’a§n 152053, 2a5, )
(2a3,,, 65, a5,,, ‘lgn 1’b2n7a2n’2a§n 1)
(a271’b2n’2a2n>0‘2n 168, 08,5 205, )
(3655 a5 H‘gn—l s 205, 2a§n 1)

(a3 363 a?n—l 2a3,,, 2“’267,71)

(2 2nxZazn«‘l’zan—(vazn»bzw2‘151.—1)

(20 21)’u‘2n’b2n’a‘gn 1,208,245, 1)

(03, a5, 2b3,,, a5, 172a2n’2a§n 1)
(203, ’2a2n’a§n 1’b2n’a2n72a§n 1)
(a5,,, 265, a8,y @, 155,05, 2a5, 1)
(a3,,, 263, a8,,, a1, b8, 08,205, )
(055 @35 b5 5 A5y Ay l’u‘2n’b2n’2a2n—1)
(
(6
(08,
(¢
(
(
(
(
(
(
(a$,
(
(
(
(05,
(2
(
(
(b
(
(
(
(
(
(
(
(
(

b2n a2n7b2n’aZn’a‘Zn—l’bZn’aZn’2a2n—1)

2“211’ sznv 2a3,,, 3b2n"71)
3a%,,08,,,a3,,,0%,,33, 1)
b3, 203,,,05,,, 28,33, )

a3, b8,,,a8,,,b8,,,2a8,,,3b3, )
3680 13a2nv3b2n 1)

2?)2n,(127L,b2n,2112",3bh1 1)

bzn,azn,szn,Zaml,szn 1)

3a$,,,3a5,_1,3a3,")

s 208, , 305, _1,3a5,")
2na‘12n»5‘12n 153a5,")

bg,,,2a3,, 311271 1,03, 2a5,")

bs,,2a3,,, Sa% 1,2a5,,b5")
2n72a2n73a2n 1002, 5 ba ag,)

a2n,2b2n,3a2n 1 bo s 2a5,7)

0‘2"’2b2n’3u§n 182, b2y a3,)

4b2n’4agn—l’b2n )

4ag,,daly, 1,b;n)

“21.13”2m4“2n 1:b2)

3b5,,5 a5, 4“§n 1b2)

bg‘n,3a2n,4a2n 1,03,)

3a5,,, b2n'4a§n 1b2)

2a,,,2b3,,, dajy, _,,b5>)
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225
227
229
231
233
235
237
239
241
243
245
247
249
251
253

259
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D(2b2n,2a2n,4a2" 1,a2_n)
D(b3,,, as,, 2b2n'4a2n 1,82,")
D(2b2n'n‘2n>b2n'4a2n 1,82,")
D(a§,,bs,,2a5,, 4”57;71 Jag,")
D(2a8,,,b8,,. a3,,. 4a5, 1. a5,7)
D(58,,2a8,,, b8, 4a5, . az,)
D(ag,,, 268, a3,,. 4a5, 1. a5,7)
D(ag,,: b8, 08,: 68,405,y a5,)
D(58,,a8,,b8,,, a8, 4a5,, _,, a5,")
D(268,,b3,, 1,080 2631, 208,03, 1)
D(2b3,,,b3,,_1,08,,,2b3, _1,2b%,.b3, 1)
D(agy,, b5, b3, 1,05, 263, ¢ 2b2n’b2n—1)
D(b2n‘a?n’b2n—l>b2n72b2n 172b2n‘b2n 1)
D(2a3,,,b3,, 1717271»2[7271 172b2n7b2n 1)
D(a$,, b2n7b2n 1’a2n’2b2n 172b2n7b2n 1)
D(2b2n 2n— 1’a2n72b2n en a5 b5, ;n 1>
D(a3,,, 2mb2n 1’b2n’2b2n 1’a2n’b2n’b2n 1)
gEZ% 2n!g‘2yn—1«ll:§w!gll:zn—ubczxw‘zgmz‘zyn 1;
5S> @35 O 15 0% 21L—l’a2n' 20 92n—1
D(bzn’2a21;—1’bgn’a;r?’zbgn’202n—l)
D(bm,2a‘2"_1,agn,a;:’,bez’n,Zazﬂy_l)
D(a$,,,2ay, 1,65, as,", 243, 2a,,, )
D(ag,,2a, 1,03, a5, 2b5,,2a5, ;)
D(a$,,2a5, 1,03, a5, 2a3,,,2a5, _)
D(b5,, 2a5,, 1, b5,: a2, V3,05 05, 205, 1)
D(ag,,, 25, 1,08, a3, 03,6, 205, 1)
D(a,,, 25, 1.6, a5, b8, a5, 205, ;)
D(a,,, 2a5,, 1.8, a5, a8,,,b3,,, 2a5, ;)
D(b§,,,205,, 1,08, a5, a8, b3, 2a5,, )
D(268,,,b3,, 1, b8,,,4b3,_,a5,")
D(2a3,,,b3,_1, 08,463, 1, a3,")
D(2b3,,b3,_1, 05y, 4b3, 1, a5,")
D(2a2nvb2n—1’b ,4b3, on—1° %2, )
D(u‘ln’b2n’b2n—17b1n’4b2n—l’a2n )
D(bs;,, a3, b3, 1,68, 43,1, a5,")
D(b3,,a8,,,b3,,_1,05,,4b3,,_1.a5,")
D(a$,,.b8,,,b3, 108,463, 1, a3,")
D88, 205, 1,68, ba,t" a5, 1, b5,7)
D(ag,,, 2a5,, 1.6, by, Bah, 1. b5,)
D(b8,,, 205, 1,08, by, Bas, 1 b,")
D(a8,,, 2k, 1,68, b,y 3ahy, 1, a5,
D(a§,,, 2a5,, 1,08, by, 35, b3,
D(8,, 80, 1 by, b8, a5, 1 by, a5, )
D(a8,,: 3k, 1, b8 @b b, sy )
D(8,,3a, 1 by, a8y, @b, s, )
D(ag,,: 3aj, 1+ ba, by a1 Q5,5 0y y)
D(a8,: 3ag,,_1:ba, 3, 45,1 byt a5, )
Db, 20, 1,68, 05,1, 68,,363, 1)
D(a8,,: 2a5,, b,y _1,68,, 363, 1)
D(58,, 20}, 1 a8, a5, _1,08,,, 363, 1)
D(58,,2a,, 1, b8,, a5, 1,08, 363, )
D(58,,2a, 1, b8,,3a5, 1,68, a5, 1)
D(a$,,, Q‘ISn 15650 *sagn—l 205 agn—l)
D(bzmzazn uazwdazn 1’b271’a§n 1)
D(b2n'4a2n—1’b2n’2a§n—l’b2n)
D(ag,, 4ab, _;;b8,, 205, _1,b5,)
D(b5,, 4as,,_,, as,,,2a%, _1,b5,)
D(bs,,,363,, _1,ba," .03, _1,b5,,263,, 1)
D(a$,,,3b3,, 1, b2 3, 1563 263, 1)
D(bS,,,3b3,, 15 a5, b3, 15 b5,,, 263, 1)
D(3b3,,,3a5, _1,3b3,_1)
D(ag,,,2b3,, 3a§n7%, 363, 1)
D(3b3,,_1,3by,;", 363, 1)

224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254
256
258
260
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205,208,405, 1, b5,.7)

B, 0, 265, 4,1, byl
268,,,08,,, b8, 405, 1.6,

5,08, 205, dag, 1, 05,7)

2a8,,,03,., 05, 45, _y,b5,7)

b, 203,65, dazy, 1.05,7)

a8,,,203,.,08,,, da5, . b,.7)

a3, 8,508,568, day, 1, 05.7)

b5, 08,563,508, das, y,b5,.)

208,03, 1,08,,2b3,, 1,2a8,,b3, ,)
208,63, 158,263, 1,208,,03,,

b3 0305 03015055203, 1,203,063, )
a3, b8,,,03,, 1, 08,,2b3,_1,20a8,,,b3,, )
2b(2’n7b;n—l7agn’2b;n—l72agn’b;n—l
b‘2n7a2n’b2n 17b2n72b2n 1,208, b3, 1)
2a8,,,b3,, _ 1‘h2n’2b2n 11}7271 ‘1211117;71 1)
bS5 08,503, 1 a2n’2b2n 1005, b3n_1)
b5, 08,03, 1, a8,,2bs,_q,a8,,,b8,, b3, 1)
a8, b8,,,03,, 1, 08,,2b3,, 1,63, a8, b3, 1)
bS5 205, 1,63, b3, 268,205, 1)

50 A3

5ns 2‘12n 103,03, 268, 205, )
a5 2a2'n—1’b2n ’ b2n ,2a5,,,2a5, )

) 205, 2“271 -1)
<, 2a8,, 2a2n 1)

b5, 2a5, 1‘h21:’b2n 7bZH7GZIL’2[12n 1)

a5 2a2'n—1 ) @55 b3,y
(2

o B o
a5 205, 1, a5,

a5 2a§n—1 108, bay > 05, b5, 2"2n —1)
0520515050 bty US55 051, 205, 1)
08 2051050 ba,r s 05,0, 205, 1)
V550525, 1,5 bayt's 05,0, U 205, 1)
260,03, 15650, 463, 15 b5,7")

208, b3, 1,08,,4b3, 1,05,

263, 3y, 15085, 4b3,, 1, 03,,")

2082 b3, 150805463, 1, 03,.7)

a3, 085,03, 1,055,463, 1, b5,)

S 03 03,15 b8 463, 1 03,)

b35 05,0, 03,1505, 463, 1, b3,
80,05, b3,, 1,08, 463, 4, b3,)

as,, 2‘12n711‘L(z’nv“;f»:‘agnfva;f)

CN

b5,0: 205, 1, a8, Q5,0 Bag,_y, az,)
Sy 205, 1568, 05,0 Ba5, 1, az,")
88,05 205, 1, a8, Q.0 Bag, 1, b,")
08, 2ab, 1,08, by, 3ah, _y, ag,)
a8,,805, _1,05,%, S, a5y, 05,505, 1)
V8,0 305,15 05,0408, Aoy 155, 0y 1)
85805, 1, 05,8 b8, 051,05, 05y 1)
V80305, 1, 05,5 08,5 05y 1,3, 05,1
05,5 30, 1,05, 05, Ay, 1, G5, Ay, )

a B a o qpY
8,525, 1,05, gy, 1505,,3b3, 1)

>
2

s 20, 1,08, Gy 508,363, 1)
03205 1,055, 1,05 303, 1)
05205 1,0, 0y 03303, 1)
agw2“51.—1«agn!:;agn—uagwagn,—l)
5ns Zu‘gn—l s A3 3‘1§n—1 505, A1)
a5 2agn—1 3035 3‘1571-1 505, gy 1)
0 Aag, 1,03, 205, 1,03,

B, Ay 1,050,205, 1, a5,,)

a5 4“§n71 205, 2a§n—1" as,)
8,363, 1505, 63, 1,08, 203, 1)
bS, 363, 15 a5, 503, 1, a8,,2b3, )
8,303, 1,05, 503, 1, 08,,2b3, )
Sag’n’ 3a§n7173b;{n—1)

88,208, 3a5, 1,363, ;)

8b3, 305036, 1)

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE



349
351
353
355
357
359
361
363
365
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D(3bg,, 1»”25725% 363, 1 350 | D(3b3,_1,b5,2a5,",3b3, 1)

D(3b), . 3u2n 15363, 1) 352 | D(bg,,5a5, ;. b+ 20, 1)

D(ag,,5a5, _\,a5>,2a5, ) 354 | D(a$,,5a5, 1, b5 2%, N

D(bzvnv?’azjn 102, ’agn 1:303,, 1) 356 D(a2n13aén 102, a2n 1303, 1)

D(a8,,, 305, 1, b3, 051,363, ) 358 | D(bg,,305, 1,a57,a5, 1,303, )
D(bg,,,363,, 1. ‘lfn 1203, 1, zagn 1) 360 D(aznvdbzn 10 “gn 1203, 171‘1571 1)
D(2a§n 1’b2n 108,263, 1’2agn 163,1) 362 D(2ay,, 1~ b3n—1, 085,203, _ I’ZU‘gn 103, 1)
D(b3,,,b3,,_1,b8,,203,, 172‘1; 13 l’agn 1) 364 D(a$,,b3, 1,08, 2b3, 1, 2”21, 1503, 1,05, 1)
D(ag,,, b3, 1vb2nv2b2n 15205 1,630 1,05, 1) 366 | D(b3,,b3, 108,263, 15205, 1,b3, 1 a5, 1)

Table 2. The list of 366 OTP links (the link D is labeled by the number N(D)).
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