Solution to a Problem on the Complexity of Connective Eccentric Index of Graphs*

Xiaolin Chen, Huishu Lian ${ }^{\dagger}$
Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
chxlnk@163.com, lhs6803@126.com

(Received August 10, 2018)

Abstract

The connective eccentricity index of a graph G is defined as $\xi^{\mathrm{ce}}(G)=\sum_{v \in V} \frac{\operatorname{deg}(v)}{\operatorname{ecc}(v)}$, where $\operatorname{deg}(v)$ and $\operatorname{ecc}(v)$ are the degree and the eccentricity of the vertex v, respectively. The complexity of the connective eccentricity index of a graph G, denoted by $C_{\xi^{\mathrm{ce}}}(G)$, is the number of different $\frac{\operatorname{deg}(v)}{\operatorname{ecc}(v)}$ for any vertex v. Alizadeh and Klavžar [MATCH Commun. Math. Comput. Chem. 76(2016) 659-667] studied this invariant and left a problem "construct infinite families of graphs $\left\{G_{n}\right\}_{n \rightarrow \infty}$ such that $C_{\xi^{\mathrm{ce}}}\left(G_{n}\right)=\left|V\left(G_{n}\right)\right|=n$ ". In this paper, we solve this problem by giving a construction of G_{n} for all $n \geq 7$.

1 Introduction

Let $G=(V(G), E(G))$ be a simple graph on n vertices and m edges. The distance $d_{G}(u, v)$ between two vertices u and v, is the length of a shortest $u-v$ path in G. The eccentricity $\operatorname{ecc}_{G}(v)$ of a vertex v is the largest distance between v and any other vertex u of G. There are several important topological indices based on the eccentricity of vertices. One of these topological indices is the connective eccentricity index of a graph G which is defined as $\xi^{\mathrm{ce}}(G)=\sum_{v \in V} \frac{\operatorname{deg}(v)}{\operatorname{ecc}(v)}$, introduced in [8] as a novel topological descriptor for predicting biological activity. Afterwards, many researchers began to study this topic and many results were obtained in [10-12]. We note that there is another topological index

[^0]eccentric connectivity index $\xi^{\mathrm{c}}(G)$ of a graph G, which was introduced in [9] and is defined as $\xi^{\mathrm{c}}(G)=\sum_{v \in V} \operatorname{deg}(v) \operatorname{ecc}(v)$. For more information we can refer to [5-7].

Many topological indices are summation-type topological indices such as the Wiener index, the connective eccentricity index and so on. Suppose that $I(G)$ is a topological index and $I(G)=\sum_{v \in V} f(v)$. We can think of the value $f(v)$ as the contribution to the index $I(G)$ from the vertex v. It is interesting to study the different contributions of vertices of G. The initial study is about the Wiener index and named the Wiener dimension of a graph [1]. Because the word "dimension" is also an important geometrical concept, Y. Alizadeh and S. Klavžar [3] used the word "complexity" instead of "dimension", and introduced the complexity of the connectivity eccentricity index, for brevity, $\xi^{c e}$-complexity, denoted as $C_{\xi^{\mathrm{ce}}}(G)$. Formally, $\xi^{c e}$-complexity of a graph G is defined as the number of different $\frac{\operatorname{deg}(v)}{\operatorname{ecc}(v)}$ for any vertex v of G. For more results about complexity, see [2, 4].

In [3], Y. Alizadeh and S. Klavžar studied the graph with its $\xi^{c e}$-complexity equal to some special values. For any $d \geq 2$ and $k \geq 1$, they made a construction of graph G with $\operatorname{diam}(G)=d$ and $C_{\xi^{\mathrm{ce}}}(G)=k$. It is obvious that $1 \leq C_{\xi^{\mathrm{ee}}}(G) \leq n$. Note that the $\xi^{c e}$-complexity of a vertex transitive graph equals 1 . For the graph G with $C_{\xi^{\mathrm{ce}}}(G)=1$, they constructed an infinite family of graphs that are not vertex-transitive. When they talked about the graph G with $C_{\xi \mathrm{ce}}(G)=\left|V\left(G_{n}\right)\right|=n$, they constructed a graph G for $n=7$, and left a problem: it would be interesting to construct infinite families of graphs $\left\{G_{n}\right\}_{n \rightarrow \infty}$ such that $C_{\xi^{c e}}(G)=\left|V\left(G_{n}\right)\right|=n$. In this note, we will give a construction of G_{n} with $C_{\xi^{\mathrm{ce}}}(G)=\left|V\left(G_{n}\right)\right|=n$ for all $n \geq 7$.

2 Graphs with $\boldsymbol{\xi}^{c e}$-complexity equal to \boldsymbol{n}

In this section, we will construct an infinite family of graphs G_{n} with $\xi^{c e}$-complexity equal to n. Before that, we sketch out our method.

Let G_{1} and G_{2} be two graphs with the same order. Suppose that G_{1} is the graph with vertex set $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and edge set $E\left(G_{1}\right)$, and G_{2} with vertex set $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E\left(G_{2}\right)$. Let $P_{l}=t_{1} t_{2} \ldots t_{l}$ be a path and P_{l}^{i} be the path P_{l} with a designated vertex t_{i} for $1 \leq i \leq l$.

We now define an operation of G_{1}, G_{2} and P_{l}^{i}, denoted by $R\left(G_{1}, G_{2}, P_{l}^{i}\right)$, as follows. The resultant graph $G=R\left(G_{1}, G_{2}, P_{l}^{i}\right)$ has vertex set $V(G)$ and edge set $E(G)$, where $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup V\left(P_{l}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(P_{l}\right) \cup E_{1} \cup E_{2}$ where E_{1} is the
set of all edges $u_{i} v_{j}$ satisfying $i+j \leq n+1$, i.e., $E_{1}=\left\{u_{1} v_{1}, u_{1} v_{2}, \ldots, u_{1} v_{n}, u_{2} v_{1}, \ldots, u_{2} v_{n-1}\right.$, $\left.u_{3} v_{1}, \ldots, u_{3} v_{n-2}, \ldots, u_{n} v_{1}\right\}$ and E_{2} is the set of edges connecting the i-th vertex t_{i} of P_{l} to all vertices of G_{2}.

We illustrate an example $R\left(P_{3}, K_{3}, P_{5}^{2}\right)$ in Figure 2.1.
In [3], Y. Alizadeh and S. Klavžar gave a graph of order 7 with $\xi^{c e}$-complexity equal to 7, see Figure 2.2.

For any number $n \geq 8$, we will demonstrate our constructions. Let C_{n} and K_{n} be the cycle and the complete graph of order n, respectively.

Figure 2.1. $R\left(P_{3}, K_{3}, P_{5}^{2}\right)$

Figure 2.2. $\xi^{c e}(G)=7$

Theorem 2.1 If $n=4 k+4$ with $k \geq 3$ and $k \neq 5$, then $G=R\left(G_{1}, K_{2 k-1}, P_{6}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is n, where G_{1} is a 4 -regular graph of order $2 k-1$.

Proof. First of all, we claim that there exists a 4-regular graph of order $2 k-1$ for any $k \geq 3$. Note that the Cayley graph $\operatorname{Cay}(G, S)$ is the graph whose vertex set is G and two vertices $a, b \in G$ are adjacent whenever $a b^{-1} \in S$. It can be verified that the Cayley $\operatorname{graph} \operatorname{Cay}\left(Z_{2 k-1},\{1,2,2 k-2,2 k-3\}\right)$ is 4-regular.

Suppose that $V_{1}=V\left(G_{1}\right), V_{2}=V\left(K_{2 k-1}\right)$ and $V_{3}=V\left(P_{6}^{2}\right)$. By computation, we find that the contributions (i.e. $\frac{\operatorname{deg}(v)}{\operatorname{ecc}(v)}$) of all vertices of V_{1}, which is called the contributions of V_{1} for short, constitute a set $S_{1}=\left\{\frac{5}{6}, \frac{6}{6}, \ldots, \frac{2 k+3}{6}\right\}$. The contributions of V_{2} constitute a set $S_{2}=\left\{\frac{2 k}{5}, \frac{2 k+1}{5}, \ldots, \frac{4 k-2}{5}\right\}$. The contributions of V_{3} form a set $S_{3}=\left\{\frac{1}{5}, \frac{2 k+1}{4}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \frac{1}{6}\right\}$. Observe that S_{1}, S_{2} and S_{3} are all simple sets. To prove that $\xi^{c e}$-complexity of G is n, it is suffice to show that S_{1}, S_{2} and S_{3} are disjoint.

Note that $6 \cdot \frac{2 k+1}{4}$ and $5 \cdot \frac{2 k+1}{4}$ are not integer, so $\frac{2 k+1}{4}$ is not in S_{1} or S_{2}. The maximal value of $S_{3} \backslash\left\{\frac{2 k+1}{4}\right\}$ is $\frac{2}{3}$ which is less than the minimum $\frac{5}{6}$ of S_{1}. It implies that $S_{1} \cap S_{3}=\oslash$. By similar method, we deduce that $S_{2} \cap S_{3}=\oslash$. It remains to show that $S_{1} \cap S_{2}=\oslash$.

It is straightforward to verify that the assertion holds for $3 \leq k \leq 7$. For $k \geq 8$, we have that the maximum $\frac{2 k+3}{6}$ of S_{1} is less than the minimum $\frac{2 k}{5}$ of S_{2}. Thus, $S_{1} \cap S_{2}=\oslash$.

We conclude that S_{1}, S_{2} and S_{3} are disjoint. It follows that $\xi^{c e}(G)=n$.

Theorem 2.2 If $n=4 k+3$ with $k \geq 2$, then $G=R\left(C_{2 k}, K_{2 k}, P_{3}^{1}\right)$ satisfies that its $\xi^{c e}$-complexity is n.

Proof. Let $V_{1}=V\left(C_{2 k}\right), V_{2}=V\left(K_{2 k}\right)$ and $V_{3}=V\left(P_{3}^{1}\right)$. The contributions of V_{1}, V_{2} and V_{3} are $S_{1}=\left\{\frac{3}{4}, \frac{4}{4}, \ldots, \frac{2 k+2}{4}\right\}, S_{2}=\left\{\frac{2 k+1}{3}, \frac{2 k+2}{3}, \ldots, \frac{4 k}{3}\right\}, S_{3}=\left\{\frac{2 k+1}{2}, \frac{2}{3}, \frac{1}{4}\right\}$, respectively. Note that S_{1}, S_{2} and S_{3} are all simple sets. It suffices to prove that S_{1}, S_{2} and S_{3} are disjoint.

Since $\frac{3}{4}>\frac{2}{3}$ and $\frac{2 k+1}{2}>\frac{2 k+2}{4}$, we get $S_{1} \bigcap S_{3}=\oslash$. Because $3 \cdot \frac{2 k+1}{2}$ is not an integer and $\frac{2}{3}<\frac{2 k+1}{3}$, we deduce that $S_{2} \bigcap S_{3}=\oslash$.

For $k \geq 2$, we get that $\frac{2 k+2}{4}<\frac{2 k+1}{3}$. Then $S_{1} \bigcap S_{2}=\oslash$.
We conclude that S_{1}, S_{2} and S_{3} are disjoint. It follows that $\xi^{c e}(G)=n$.

Theorem 2.3 If $n=4 k+6$ with $k \geq 1$, then $G=R\left(C_{2 k+1}, K_{2 k+1}, P_{4}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is n.

Proof. Let $V_{1}=V\left(C_{2 k+1}\right), V_{2}=V\left(K_{2 k+1}\right)$ and $V_{3}=V\left(P_{4}^{2}\right)$. The contributions of V_{1}, V_{2} and V_{3} are $S_{1}=\left\{\frac{3}{4}, \frac{4}{4}, \ldots, \frac{2 k+3}{4}\right\}, S_{2}=\left\{\frac{2 k+2}{3}, \frac{2 k+3}{3}, \ldots, \frac{4 k+2}{3}\right\}, S_{3}=\left\{\frac{1}{3}, \frac{2 k+3}{2}, \frac{2}{3}, \frac{1}{4}\right\}$, respectively. Note that S_{1}, S_{2} and S_{3} are all simple sets.

By simple calculations, we deduce that $S_{1} \bigcap S_{3}=\oslash$ and $S_{2} \bigcap S_{3}=\oslash$.
For $k \geq 1$, we get that $\frac{2 k+3}{4}<\frac{2 k+2}{3}$. Then $S_{1} \bigcap S_{2}=\oslash$. Thus, S_{1}, S_{2} and S_{3} are disjoint and the proof is complete.

Theorem 2.4 If $n=4 k+5$ with $k \geq 3$ and $k \neq 4,7$, then $G=R\left(G_{1}, K_{2 k}, P_{5}^{1}\right)$ satisfies that its $\xi^{c e}$-complexity is n, where G_{1} is a 4-regular graph of order $2 k$.

Proof. Let $V_{1}=V\left(G_{1}\right), V_{2}=V\left(K_{2 k}\right)$ and $V_{3}=V\left(P_{5}^{1}\right)$. The contributions of V_{1}, V_{2} and V_{3} are $S_{1}=\left\{\frac{5}{6}, \frac{6}{6}, \ldots, \frac{2 k+4}{6}\right\}, S_{2}=\left\{\frac{2 k+1}{5}, \frac{2 k+2}{5}, \ldots, \frac{4 k}{5}\right\}, S_{3}=\left\{\frac{2 k+1}{4}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}, \frac{1}{6}\right\}$, respectively. Note that S_{1}, S_{2} and S_{3} are all simple sets.

By simple calculations, we deduce that $S_{1} \bigcap S_{3}=\oslash$ and $S_{2} \bigcap S_{3}=\oslash$ for $k \geq 3$.
For $k=3,5,6$, we can check that $S_{1} \bigcap S_{2}=\oslash$. For $k \geq 8$, we get that $\frac{2 k+4}{6}<\frac{2 k+1}{5}$. Then $S_{1} \bigcap S_{2}=\oslash$. Thus, S_{1}, S_{2} and S_{3} are disjoint and the proof is complete.

To sum up, the above results illustrate the graphs with $\xi^{c e}$-complexity equal to n for all $n \geq 7$ except $\{8,9,12,13,21,24,33\}$. For these special graphs, we will give the concrete constructions in the following. For brevity, we omit their proofs.
(1) For $n=8$, the graph $G=R\left(P_{2}, K_{2}, P_{4}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is 8 . The contributions of vertices are $S_{1}=\left\{\frac{2}{4}, \frac{3}{4}\right\}, S_{2}=\left\{\frac{3}{3}, \frac{4}{3}\right\}, S_{3}=\left\{\frac{1}{3}, \frac{4}{2}, \frac{2}{3}, \frac{1}{4}\right\}$.
(2) For $n=9$, the graph $G=R\left(P_{2}, K_{2}, P_{5}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is 9 . $S_{1}=\left\{\frac{2}{5}, \frac{3}{5}\right\}, S_{2}=\left\{\frac{3}{4}, \frac{4}{4}\right\}, S_{3}=\left\{\frac{1}{4}, \frac{4}{3}, \frac{2}{3}, \frac{2}{4}, \frac{1}{5}\right\}$.
(3) For $n=12$, the graph $G=R\left(2 P_{2}, K_{4}, P_{4}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is 12 . $S_{1}=\left\{\frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{5}{4}\right\}, S_{2}=\left\{\frac{5}{3}, \frac{6}{3}, \frac{7}{3}, \frac{8}{3}\right\}, S_{3}=\left\{\frac{1}{3}, \frac{6}{2}, \frac{2}{3}, \frac{1}{4}\right\}$.
(4) For $n=13$, the graph $G=R\left(C_{5}, C_{5}, P_{3}^{1}\right)$ satisfies that its $\xi^{c e}$-complexity is 13 . $S_{1}=\left\{\frac{3}{4}, \frac{4}{4}, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}\right\}, S_{2}=\left\{\frac{4}{3}, \frac{5}{3}, \frac{6}{3}, \frac{7}{3}, \frac{8}{3}\right\}, S_{3}=\left\{\frac{6}{2}, \frac{2}{3}, \frac{1}{4}\right\}$.
(5) For $n=21$, the graph $G=R\left(4 P_{2}, K_{8}, P_{5}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is 21 . $S_{1}=\left\{\frac{2}{5}, \frac{3}{5}, \ldots, \frac{9}{5}\right\}, S_{2}=\left\{\frac{9}{4}, \frac{10}{4}, \ldots, \frac{16}{4}\right\}, S_{3}=\left\{\frac{1}{4}, \frac{10}{3}, \frac{2}{3}, \frac{2}{4}, \frac{1}{5}\right\}$.
(6) For $n=24$, the graph $G=R\left(C_{10}, K_{10}, P_{4}^{1}\right)$ satisfies that its $\xi^{c e}$-complexity is 24 . $S_{1}=\left\{\frac{3}{5}, \frac{4}{5}, \ldots, \frac{12}{5}\right\}, S_{2}=\left\{\frac{11}{4}, \frac{12}{4}, \ldots, \frac{20}{4}\right\}, S_{3}=\left\{\frac{11}{3}, \frac{2}{3}, \frac{2}{4}, \frac{1}{5}\right\}$.
(7) For $n=33$, the graph $G=R\left(7 P_{2}, K_{14}, P_{5}^{2}\right)$ satisfies that its $\xi^{c e}$-complexity is 33 . $S_{1}=\left\{\frac{2}{5}, \frac{3}{5}, \ldots, \frac{15}{5}\right\}, S_{2}=\left\{\frac{15}{4}, \frac{16}{4}, \ldots, \frac{28}{4}\right\}, S_{3}=\left\{\frac{1}{4}, \frac{16}{3}, \frac{2}{3}, \frac{2}{4}, \frac{1}{5}\right\}$.

Remark: By calculations, we can check that for $2 \leq n \leq 6$, there exists no graph on order n with its $\xi^{c e}$-complexity equal to n.

References

[1] Y. Alizadeh, V. Andova, S. Klavžar, R. Škrekovski, Wiener dimension: fundamental properties and (5,0)-nanotubical fullerenes, MATCH Commun. Math. Comput. Chem. 72 (2014) 279-294.
[2] Y. Alizadeh, T. Došlić, K. Xu, On the eccentric complexity of graphs, Bull. Malays. Math. Sci. Soc. (2017) 1-17.
[3] Y. Alizadeh, S. Klavžar, Complexity of topological indices: the case of connective eccentric index, MATCH Commun. Math. Comput. Chem. 76 (2016) 659-667.
[4] Y. Alizadeh, S. Klavžar, On graphs whose Wiener complexity equals their order and on wiener index of asymmetric graphs, Appl. Math. Comput. 328 (2018) 113-118.
[5] K. C. Das, M. J. Nadjafi-Arani, Comparison between the Szeged index and the eccentric index, Discr. Appl. Math. 73 (2015) 74-86.
[6] P. Dankelmann, M. J. Morgan, S. Mukwembi, H. C. Swart, On the eccentric connectivity index and Wiener index of a graph, Quaest. Math. 37 (2014) 39-47.
[7] T. Došlić, M. Saheli, Eccentric connectivity indx of composite graphs, Util. Math. 95 (2014) 3-22.
[8] S. Gupta, M. Singh, A. K. Madan, Connectivity eccentricity index: a noval topological descriptor for predicting biological activity, J. Mol. Graph. Model. 18 (2000) 18-25.
[9] V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure property and structure activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273-282.
[10] K. Xu, K. C. Das, H. Liu, Some extremal results on the connective eccentricity index of graphs, J. Math. Anal. Appl. 433 (2016) 803-817.
[11] G. Yu, L. Feng, On the connective eccentricity index of graphs, MATCH Commun. Math. Comput. Chem. 69 (2013) 611-628.
[12] G. Yu, H. Qu, L. Tang, L. Feng, On the connective eccentricity index of trees and unicyclic graphs with given diameter, J. Math. Anal. Appl. 420 (2014) 1776-1786.

[^0]: *Supported by National Natural Science Foundation of China (No. 11601511), the Natural Science Foundation of Jiangsu Province (No. BK20160237 and BK20150169).
 ${ }^{\dagger}$ Corresponding author.

