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Abstract

The connective eccentricity index of a graph G is defined as ξce(G) =
∑
v∈V

deg(v)
ecc(v) ,

where deg(v) and ecc(v) are the degree and the eccentricity of the vertex v, respec-
tively. The complexity of the connective eccentricity index of a graph G, denoted
by Cξce(G), is the number of different deg(v)

ecc(v) for any vertex v. Alizadeh and Klavžar
[MATCH Commun. Math. Comput. Chem. 76(2016) 659-667] studied this in-
variant and left a problem “construct infinite families of graphs {Gn}n→∞ such
that Cξce(Gn) = |V (Gn)| = n”. In this paper, we solve this problem by giving a
construction of Gn for all n ≥ 7.

1 Introduction
Let G = (V (G), E(G)) be a simple graph on n vertices and m edges. The distance

dG(u, v) between two vertices u and v, is the length of a shortest u − v path in G. The

eccentricity eccG(v) of a vertex v is the largest distance between v and any other vertex u

of G. There are several important topological indices based on the eccentricity of vertices.

One of these topological indices is the connective eccentricity index of a graph G which

is defined as ξce(G) =
∑
v∈V

deg(v)
ecc(v) , introduced in [8] as a novel topological descriptor for

predicting biological activity. Afterwards, many researchers began to study this topic and

many results were obtained in [10–12]. We note that there is another topological index
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eccentric connectivity index ξc(G) of a graph G, which was introduced in [9] and is defined

as ξc(G) =
∑
v∈V

deg(v)ecc(v). For more information we can refer to [5–7].

Many topological indices are summation-type topological indices such as the Wiener

index, the connective eccentricity index and so on. Suppose that I(G) is a topological in-

dex and I(G) =
∑
v∈V

f(v). We can think of the value f(v) as the contribution to the index

I(G) from the vertex v. It is interesting to study the different contributions of vertices

of G. The initial study is about the Wiener index and named the Wiener dimension of

a graph [1]. Because the word “dimension” is also an important geometrical concept, Y.

Alizadeh and S. Klavžar [3] used the word “complexity” instead of “dimension”, and in-
troduced the complexity of the connectivity eccentricity index, for brevity, ξce-complexity,

denoted as Cξce(G). Formally, ξce-complexity of a graph G is defined as the number of

different deg(v)
ecc(v) for any vertex v of G. For more results about complexity, see [2, 4].

In [3], Y. Alizadeh and S. Klavžar studied the graph with its ξce-complexity equal to

some special values. For any d ≥ 2 and k ≥ 1, they made a construction of graph G

with diam(G) = d and Cξce(G) = k. It is obvious that 1 ≤ Cξce(G) ≤ n. Note that the

ξce-complexity of a vertex transitive graph equals 1. For the graph G with Cξce(G) = 1,

they constructed an infinite family of graphs that are not vertex-transitive. When they

talked about the graph G with Cξce(G) = |V (Gn)| = n, they constructed a graph G for

n = 7, and left a problem: it would be interesting to construct infinite families of graphs

{Gn}n→∞ such that Cξce(G) = |V (Gn)| = n. In this note, we will give a construction of

Gn with Cξce(G) = |V (Gn)| = n for all n ≥ 7.

2 Graphs with ξce-complexity equal to n

In this section, we will construct an infinite family of graphs Gn with ξce-complexity
equal to n. Before that, we sketch out our method.

Let G1 and G2 be two graphs with the same order. Suppose that G1 is the graph

with vertex set V (G1) = {u1, u2, . . . , un} and edge set E(G1), and G2 with vertex set

V (G2) = {v1, v2, . . . , vn} and edge set E(G2). Let Pl = t1t2 . . . tl be a path and P i
l be the

path Pl with a designated vertex ti for 1 ≤ i ≤ l .

We now define an operation of G1, G2 and P i
l , denoted by R(G1, G2, P

i
l ), as follows.

The resultant graph G = R(G1, G2, P
i
l ) has vertex set V (G) and edge set E(G), where

V (G) = V (G1)∪V (G2)∪V (Pl) and E(G) = E(G1)∪E(G2)∪E(Pl)∪E1∪E2 where E1 is the

-134-



set of all edges uivj satisfying i+j ≤ n+1, i.e., E1 = {u1v1, u1v2, . . . , u1vn, u2v1, . . . , u2vn−1,

u3v1, . . . , u3vn−2, . . . , unv1} and E2 is the set of edges connecting the i-th vertex ti of Pl

to all vertices of G2.

We illustrate an example R(P3, K3, P
2
5 ) in Figure 2.1.

In [3], Y. Alizadeh and S. Klavžar gave a graph of order 7 with ξce-complexity equal

to 7, see Figure 2.2.

For any number n ≥ 8, we will demonstrate our constructions. Let Cn and Kn be the

cycle and the complete graph of order n, respectively.

Figure 2.1. R(P3,K3, P
2
5 ) Figure 2.2. ξce(G) = 7

Theorem 2.1 If n = 4k + 4 with k ≥ 3 and k 6= 5, then G = R(G1, K2k−1, P
2
6 ) satisfies

that its ξce-complexity is n, where G1 is a 4-regular graph of order 2k − 1.

Proof. First of all, we claim that there exists a 4-regular graph of order 2k − 1 for any

k ≥ 3. Note that the Cayley graph Cay(G,S) is the graph whose vertex set is G and

two vertices a, b ∈ G are adjacent whenever ab−1 ∈ S. It can be verified that the Cayley

graph Cay(Z2k−1, {1, 2, 2k − 2, 2k − 3}) is 4-regular.

Suppose that V1 = V (G1), V2 = V (K2k−1) and V3 = V (P 2
6 ). By computation, we find

that the contributions (i.e. deg(v)
ecc(v) ) of all vertices of V1, which is called the contributions of

V1 for short, constitute a set S1 = {5
6
, 6
6
, . . . , 2k+3

6
}. The contributions of V2 constitute a

set S2 = {2k
5
, 2k+1

5
, . . . , 4k−2

5
}. The contributions of V3 form a set S3 = {1

5
, 2k+1

4
, 2
3
, 2
4
, 2
5
, 1
6
}.

Observe that S1, S2 and S3 are all simple sets. To prove that ξce-complexity of G is n, it

is suffice to show that S1, S2 and S3 are disjoint.

Note that 6 · 2k+1
4

and 5 · 2k+1
4

are not integer, so 2k+1
4

is not in S1 or S2. The maximal

value of S3\{2k+1
4

} is 2
3

which is less than the minimum 5
6

of S1. It implies that S1∩S3 = �.

By similar method, we deduce that S2 ∩ S3 = �. It remains to show that S1 ∩ S2 = �.

It is straightforward to verify that the assertion holds for 3 ≤ k ≤ 7. For k ≥ 8, we

have that the maximum 2k+3
6

of S1 is less than the minimum 2k
5

of S2. Thus, S1∩S2 = �.

We conclude that S1, S2 and S3 are disjoint. It follows that ξce(G) = n.
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Theorem 2.2 If n = 4k + 3 with k ≥ 2, then G = R(C2k, K2k, P
1
3 ) satisfies that its

ξce-complexity is n.

Proof. Let V1 = V (C2k), V2 = V (K2k) and V3 = V (P 1
3 ). The contributions of V1, V2 and

V3 are S1 = {3
4
, 4
4
, . . . , 2k+2

4
}, S2 = {2k+1

3
, 2k+2

3
, . . . , 4k

3
}, S3 = {2k+1

2
, 2
3
, 1
4
}, respectively.

Note that S1, S2 and S3 are all simple sets. It suffices to prove that S1, S2 and S3 are

disjoint.

Since 3
4
> 2

3
and 2k+1

2
> 2k+2

4
, we get S1

⋂
S3 = �. Because 3 · 2k+1

2
is not an integer

and 2
3
< 2k+1

3
, we deduce that S2

⋂
S3 = �.

For k ≥ 2, we get that 2k+2
4

< 2k+1
3

. Then S1

⋂
S2 = �.

We conclude that S1, S2 and S3 are disjoint. It follows that ξce(G) = n.

Theorem 2.3 If n = 4k + 6 with k ≥ 1, then G = R(C2k+1, K2k+1, P
2
4 ) satisfies that its

ξce-complexity is n.

Proof. Let V1 = V (C2k+1), V2 = V (K2k+1) and V3 = V (P 2
4 ). The contributions of V1,

V2 and V3 are S1 = {3
4
, 4
4
, . . . , 2k+3

4
}, S2 = {2k+2

3
, 2k+3

3
, . . . , 4k+2

3
}, S3 = {1

3
, 2k+3

2
, 2
3
, 1
4
},

respectively. Note that S1, S2 and S3 are all simple sets.

By simple calculations, we deduce that S1

⋂
S3 = � and S2

⋂
S3 = �.

For k ≥ 1, we get that 2k+3
4

< 2k+2
3

. Then S1

⋂
S2 = �. Thus, S1, S2 and S3 are

disjoint and the proof is complete.

Theorem 2.4 If n = 4k + 5 with k ≥ 3 and k 6= 4, 7, then G = R(G1, K2k, P
1
5 ) satisfies

that its ξce-complexity is n, where G1 is a 4-regular graph of order 2k.

Proof. Let V1 = V (G1), V2 = V (K2k) and V3 = V (P 1
5 ). The contributions of V1, V2 and V3

are S1 = {5
6
, 6
6
, . . . , 2k+4

6
}, S2 = {2k+1

5
, 2k+2

5
, . . . , 4k

5
}, S3 = {2k+1

4
, 2
3
, 2
4
, 2
5
, 1
6
}, respectively.

Note that S1, S2 and S3 are all simple sets.

By simple calculations, we deduce that S1

⋂
S3 = � and S2

⋂
S3 = � for k ≥ 3.

For k = 3, 5, 6, we can check that S1

⋂
S2 = �. For k ≥ 8, we get that 2k+4

6
< 2k+1

5
.

Then S1

⋂
S2 = �. Thus, S1, S2 and S3 are disjoint and the proof is complete.

To sum up, the above results illustrate the graphs with ξce-complexity equal to n for

all n ≥ 7 except {8, 9, 12, 13, 21, 24, 33}. For these special graphs, we will give the concrete

constructions in the following. For brevity, we omit their proofs.
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(1) For n = 8, the graph G = R(P2, K2, P
2
4 ) satisfies that its ξce-complexity is 8.

The contributions of vertices are S1 = {2
4
, 3
4
}, S2 = {3

3
, 4
3
}, S3 = {1

3
, 4
2
, 2
3
, 1
4
}.

(2) For n = 9, the graph G = R(P2, K2, P
2
5 ) satisfies that its ξce-complexity is 9.

S1 = {2
5
, 3
5
}, S2 = {3

4
, 4
4
}, S3 = {1

4
, 4
3
, 2
3
, 2
4
, 1
5
}.

(3) For n = 12, the graph G = R(2P2, K4, P
2
4 ) satisfies that its ξce-complexity is 12.

S1 = {2
4
, 3
4
, 4
4
, 5
4
}, S2 = {5

3
, 6
3
, 7
3
, 8
3
}, S3 = {1

3
, 6
2
, 2
3
, 1
4
}.

(4) For n = 13, the graph G = R(C5, C5, P
1
3 ) satisfies that its ξce-complexity is 13.

S1 = {3
4
, 4
4
, 5
4
, 6
4
, 7
4
}, S2 = {4

3
, 5
3
, 6
3
, 7
3
, 8
3
}, S3 = {6

2
, 2
3
, 1
4
}.

(5) For n = 21, the graph G = R(4P2, K8, P
2
5 ) satisfies that its ξce-complexity is 21.

S1 = {2
5
, 3
5
, . . . , 9

5
}, S2 = {9

4
, 10

4
, . . . , 16

4
}, S3 = {1

4
, 10

3
, 2
3
, 2
4
, 1
5
}.

(6) For n = 24, the graph G = R(C10, K10, P
1
4 ) satisfies that its ξce-complexity is 24.

S1 = {3
5
, 4
5
, . . . , 12

5
}, S2 = {11

4
, 12

4
, . . . , 20

4
}, S3 = {11

3
, 2
3
, 2
4
, 1
5
}.

(7) For n = 33, the graph G = R(7P2, K14, P
2
5 ) satisfies that its ξce-complexity is 33.

S1 = {2
5
, 3
5
, . . . , 15

5
}, S2 = {15

4
, 16

4
, . . . , 28

4
}, S3 = {1

4
, 16

3
, 2
3
, 2
4
, 1
5
}.

Remark: By calculations, we can check that for 2 ≤ n ≤ 6, there exists no graph on

order n with its ξce-complexity equal to n.
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