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Abstract

In this paper, we use the homotopy analysis method (HAM) with Green’s function
[1] for solving the coupled Lane–Emden boundary value problems which appear
in catalytic diffusion reactions. Due to the presence of singularity, these problems
pose difficulties in obtaining their solutions. To overcome the singular behavior at
the origin, the coupled Lane–Emden boundary value problems are transformed into
an equivalent Fredholm integral equations. The integral forms of the Lane-Emden
equations are then solved by the HAM. Unlike, Adomian decomposition method
(ADM), the HAM contains an adjustable parameters to control the convergence of
solution. For speed up the calculations, the discrete averaged residual error is used
to obtain optimal value of the adjustable parameter c0 to control the convergence
of solution. The numerical results show that the HAM gives reliable algorithm for
analytic approximate solutions of these systems. The error analysis of the sequence
of the analytic approximate solutions has been performed by computing the residual
error functions and the maximal residual error parameters, which demonstrate an
approximate exponential rate of convergence.
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1 Introduction

The astrophysicists Jonathan Homer Lane and Robert Emden studied the Lane–Emden

equations, where they considered the thermal behavior of a spherical cloud of gas acting

under the mutual attraction of its molecules and subject to the classical laws of thermo-

dynamics [2]. The Lane–Emden equation has been used to model several phenomena in

mathematical physics and astrophysics such as the theory of stellar structure, the thermal

behavior of a spherical cloud of gas, isothermal gas spheres and the theory of thermionic

currents [3]. This equation also describes the temperature or concentration variation in

many fields of physics, chemistry, biology, biochemistry, and many others such as isother-

mal and non-isothermal reaction diffusion process inside a porus cylindrical or spherical

catalysts [3], solidification of cylindrical and spherical objects [4] and thermal explosion in

rectangular slab [5]. A substantial amount of work has been done on these types of prob-

lems for various structures [6–23] and the references cited therein. The singular behavior

that occurs at x = 0 gives the main difficulty for solving the Lane-Emden equations.

Systems of Lane-Emden equations arise in the modelling of several physical and chemical

phenomena, such as pattern formation, population evolution, chemical reactions, and so

on [24–28]. In [26, 27], the Adomian decomposition method was used to solve the Volterra

integral form of the Lane–Emden equation with initial values and boundary conditions.

We consider the coupled of Lane-Emden boundary value problems: w′′
i (x) +

ki
x
w′

i(x) + fi(w1(x), w2(x)) = 0, ki ≥ 1 i = 1, 2 x ∈ (0, 1)

w′
i(0) = 0, wi(1) = ci,

(1.1)

where ci are real constants.

In this work we extend the HAM combined with the Green’s function strategy [1] to solve

the coupled Lane–Emden boundary value problems in catalytic diffusion reactions of the

form (1.1). We will show that using the integral form facilitates the computational work

and overcomes the singularity behavior at x = 0. The error analysis will be performed

by using the residual error functions and the maximal error residual parameters, which

demonstrate an approximate exponential rate of convergence.
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2 The HAM for integral form of Lane–Emden
equations

To convert the coupled of Lane-Emden boundary (1.1) into integral equation, it is written

in the following form

(xkiw′
i(x))

′ = xkifi(w1(x), w2(x)), i = 1, 2. (2.1)

Equation (2.1) is integrated twice first from 0 to x and then from x to 1, then by changing

the order of integration, and applying the boundary conditions w′
i(0) = 0, wi(1) = ci, i =

1, 2, we obtain for ki = 1 as

wi(x) = ci +

x∫
0

lnx skifi(w1(s), w2(s))ds+

1∫
x

ln s ski fi(w1(s), w2(s))ds, i = 1, 2,

and for ki 6= 1, we have

wi(x) = ci +

x∫
0

x1−ki − 1

1− ki
skifi(w1(s), w2(s))ds+

1∫
x

s1−ki − 1

1− ki
skifi(w1(s), w2(s))ds, i = 1, 2.

The equivalent the Fredholm integral form of Lane-Emden equation (1.1) (for details see

[18]) is given by

wi(x) = ci +

1∫
0

Ki(x, s)s
kifi(w1, w2)ds, i = 1, 2 (2.2)

where Ki(x, s) are given below. For ki = 1, i = 1, 2

Ki(x, s) =

 ln s, x ≤ s,

lnx, s ≤ x
(2.3)

and for ki > 1, i = 1, 2

Ki(x, s) =


s1−ki − 1

1− ki
, x ≤ s,

x1−ki − 1

1− ki
, s ≤ x

(2.4)

As stated earlier, we will apply in this work the HAM combined with the Green’s function
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strategy [1]. The HAM was developed and improved by S. Liao [29–34] for solving a wide

class of functional equations. Various modifications of HAM have been also elaborated, for

example, the optimal homotopy asymptotic method (OHAM) was proposed by Marinca

and Herisanu [35–38], the optimal homotopy analysis method was proposed in [39–41],

and the spectral homotopy analysis method [42]. Other works based on HAM can be

found in [1, 43].

According to the HAM, the zero-order deformation equation may be written as

(1− q)[φi(x, q)− wi0] = qci0Ni[φi(x, q)], i = 1, 2, (2.5)

where q ∈ [0, 1] is an embedding parameter, wi0 are initial guesses, ci0 6= 0 are convergence

control parameters, φi(x, q) are unknown functions and Ni[φi(x, q)] are defined as

Ni[φi(x, q)] = φi(x, q)− ci −
1∫

0

Ki(x, s)s
kifi(φ1(s, q), φ2(s, q))ds = 0, i = 1, 2. (2.6)

At q = 0, (2.5) reduces to φi(x, 0) = wi,0 and at q = 1, it leads to Ni[φi(x, 1)] = 0 which

is exactly the same as (2.2) provided that φi(x, 1) = wi(x). Thus, as q increasing form 0

to 1, φi(x, q) moves from wi0 to wi.

We expand φi(x, q) in a Taylor series with respect to q to get

φi(x, q) = wi0(x) +
∞∑

m=1

wim(x)q
m, i = 1, 2, (2.7)

where

wim(x) =
1

m!

∂mφi(x, q)

∂qm

∣∣∣∣
q=0

, i = 1, 2. (2.8)

If the convergence parameter c0 6= 0 is chosen properly, the series (2.7) converges for q = 1

and it becomes

φi(x, 1) ≡ wi(x) = wi0(x) +
∞∑

m=1

wim(x), i = 1, 2, (2.9)

which will be the solutions of the problem (2.2).
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We now define the vector

−→w im = {wi0(x), wi1(x), . . . , wim(x)}, i = 1, 2

Differentiating (2.5) m-times with respect to q, dividing them by m!, setting subsequently

q = 0, the mth-order deformation equations are obtained

wim(x)− χm wi(m−1)(x) = ci0 Rim(
−→w i(m−1), x), i = 1, 2 (2.10)

where χm is given by

χm =

{
0, m ≤ 1

1, m > 1
(2.11)

and

Rim(
−→w i(m−1), x) =

1

(m− 1)!

∂m−1

∂qm−1
Ni[φi(x, q)]

∣∣
q=0

=
1

(m− 1)!

∂m−1

∂qm−1
Ni

( ∞∑
k=0

wikq
k
)∣∣

q=0

= wi(m−1)(x)− (1− χm)ci −
1∫

0

Ki(x, s) s
ki Hi(m−1)ds, i = 1, 2

(2.12)

where Him are given by

Hi(m) =
1

(m)!

∂m

∂qm
f

( ∞∑
k=0

w1kq
k,

∞∑
k=0

w2kq
k

)∣∣∣∣
q=0

, i = 1, 2. (2.13)

Using (2.10) and (2.12), the mth-order deformation equations are simplified as

wim − χmwi(m−1) = ci0

(
wi(m−1) − (1− χm)ci −

1∫
0

Ki(x, s) s
ki Hi(m−1)ds

)
, i = 1, 2.

(2.14)
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Taking wi0 = ci, i = 1, 2, the solution components will be computed as:

wi1(x) = ci0

(
wi0(x)− ci0 −

1∫
0

Ki(x, s)s
kiHi0ds

)
,

wi2(x) = (1 + ci0) wi1(x)− ci0

1∫
0

Ki(x, s)s
kiHi1ds,

...

wim(x) = (1 + ci0) wi(m−1)(x)− ci0

1∫
0

Ki(x, s)s
kiHi(m−1)ds, m = 3, 4, . . . .

(2.15)

The Mth-order approximate solutions of the problem (2.2) are given by

φiM(x, ci0) =
M∑

m=0

wim(x, ci0), i = 1, 2. (2.16)

To select the appropriate convergence control parameters ci0 has a big influence on the

convergence region of series (2.16) and on the convergence rate as well [41, 44]. One of the

methods for selecting the value of convergence control parameter is the so-called ci0-curve

and the horizontal line may be considered as the valid interval for ci0 [31, 45]. This method

enables to determine the effective region of the convergence control parameter, however

it does not give the possibility to determine the value ensuring the fastest convergence

[41]. Another way to find the optimal value of the convergence-control parameters ci0 is

obtained by minimizing the squared residual of governing equation

∆iM(ci0) =

∫ 1

0

[Ni(φiM(x, ci0))]
2dx , i = 1, 2. (2.17)

However, the exact squared residual error ∆iM(ci0) is expensive to calculate when M is

large. For speed up the calculations Liao [40, 41] suggested to replace the integral in

formula (2.17) by its approximate value obtained by applying the quadrature rules. So,

we approximate ∆iM(ci0) by the so-called discrete averaged residual error defined by

∆iM(ci0) =
1

n

n∑
j=1

[Ni(φiM(xj, ci0))]
2, i = 1, 2, (2.18)
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where xj = jh, h = xj − xj−1. The optimal values ci0 will be obtained by solving

∂∆iM

∂ci0
= 0, i = 1, 2 (2.19)

and then those values will be substituted in (2.16) to get the optimal approximate solu-

tions.

3 The HAM for BVP in catalytic diffusion reactions

Consider the particular case of the coupled Lane–Emden equations (1.1) with the quadra-

tic and product nonlinearities as [25]:
w′′

1(x) +
2

x
w′

1(x)− k11w
2
1(x)− k12w1(x)w2(x) = 0,

w′′
2(x) +

2

x
w′

2(x)− k21w
2
1(x)− k22w1(x)w2(x) = 0,

(3.1)

with boundary conditions {
w′

1(0) = 0, w1(1) = c1,

w′
2(0) = 0, w2(1) = c2,

(3.2)

The coupled Lane–Emden equations (3.1) and (3.2) occurs in catalytic diffusion reactions

[25]. The parameters c1, c2, k11, k12, k21 and k22 can be specified for the actual chemical

reactions. In [25] authors studied the qualitative analysis for the solutions. In [26],

Adomian decomposition method was applied to solve (3.1) and (3.2) by fixing parameters

c1 = 1, c2 = 2, k11 = k22 = 1, k12 = 2/5, k21 = 1/2. All of the computations have been

performed using the MATHEMATICA software.

According to the HAM with Green’s function (2.14), we have the following iteration

formulation for (3.1) and (3.2) as

w1m − χmw1(m−1) = c10

[
w1(m−1) − (1− χm)c1 −

1∫
0

K1(x, s) s
2 H1(m−1)ds

]
,

w2m − χmw2(m−1) = c20

[
w2(m−1) − (1− χm)c2 −

1∫
0

K2(x, s) s
2 H2(m−1)ds

]
,

(3.3)
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where Ki(x, s) are given below. For ki = 2, i = 1, 2

Ki(x, s) =


s1−ki − 1

1− ki
, x ≤ s,

x1−ki − 1

1− ki
, s ≤ x

(3.4)

3.1 For c1 = 1, c2 = 2, k11 = k22 = 1, k12 = 2/5, k21 = 1/2

Using (3.3) with w10 = c1, w20 = c2, and fixing the parameters c1 = 1, c2 = 2, k11 =

1, k12 = 2/5, k21 = 1/2 and k22 = 1, the 4th-order approximations are obtained as

φ14 = 1 +
9c10
10

+
597c210
500

+
55973c310
105000

+
7c10c20
120

+
1613c210c20
47250

+
65c10c

2
20

3024
−

(
9c10
10

+
33c210
25

+
9611c310
15000

+
c10c20
12

+
1409c210c20
27000

+
67c10c

2
20

2160

)
x2 +

(
63c210
500

+
563c310
5000

+
c10c20
40

+
91c210c20
4500

+
7c10c

2
20

720

)
x4 −

(
173c310
35000

+
137c210c20
63000

+
c10c

2
20

5040

)
x6. (3.5)

φ24 = 2 +
5c20
4

+
63c10c20
200

+
1961c210c20
14000

+
67c220
48

+
673c10c

2
20

5040
+

3139c320
6048

−
(
5c20
4

+
9c10c20
20

+
413c210c20
2000

+
35c220
24

+
713c10c

2
20

3600
+

487c320
864

)
x2 +

(
27c10c20
200

+
141c210c20
2000

+
c220
16

+
83c10c

2
20

1200
+

13c320
288

)
x4 +

(
− 57c210c20

14000
− 13c10c

2
20

2800
− c320

2016

)
x6. (3.6)

Applying (2.18) and (2.19), we obtain optimal values c10 = −0.767463, c20 = −0.789762

and hence the HAM approximations to the solutions are obtained as

φ14(x) = 0.780767 + 0.191485x2 + 0.0244069x4 + 0.00334088x6. (3.7)

φ24(x) = 1.68960 + 0.273372x2 + 0.0326694x4 + 0.00436072x6. (3.8)

and by setting c10 = c20 = −1, the ADM approximations to the solutions are obtained as

ψ14(x) = 0.763625 + 0.220604x2 + 0.00845556x4 + 0.00731587x6. (3.9)

ψ24(x) = 1.66822 + 0.30988x2 + 0.0126944x4 + 0.00921032x6. (3.10)

To examine the accuracy and applicability of the HAM, we define the residual and max-
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Figure 1 Plots of the HAM φ14(x) and ADM
ψ14(x) solutions
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Figure 2 Plots of the HAM φ24(x) and ADM
ψ24(x) solutions

imum absolute residual errors as

ResiM(x) =

∣∣∣∣φ′′
iM +

2

x
φ′
iM − k11φ

2
1M − k12φ

2
1Mφ

2
2M

∣∣∣∣, i = 1, 2 (3.11)

RiM = max
0≤x≤1

ResiM(x), i = 1, 2 (3.12)

resiM(x) =

∣∣∣∣ψ′′
iM +

2

x
ψ′
iM − k11ψ

2
1M − k12ψ

2
1Mψ

2
2M

∣∣∣∣, i = 1, 2 (3.13)

riM = max
0≤x≤1

resiM(x), i = 1, 2, (3.14)

where φiM are ψiM , the HAM solutions and are the ADM solutions, respectively.

The numerical results of approximate solutions (φi4, ψi4, i = 1, 2), the absolute resid-

ual errors (Resi4(x), resi4(x), i = 1, 2) , and the maximum absolute residual errors

(Ri4, ri4, i = 1, 2) obtained by the HAM and the ADM are given in Tables 1-3 for

c1 = 1, c2 = 2, k11 = k22 = 1, k12 = 2/5, k21 = 1/2 and in Tables 4-6 for c1 = 1, c2 =

2, k11 = k12 = k21 = k22 = 1.

Table 1 The HAM and ADM approximations to solutions

x φ14 ψ14 φ24 ψ24

0.0 0.780767047 0.763624868 1.689598095 1.668215608
0.1 0.782684342 0.765831758 1.692335084 1.671315683
0.2 0.788465717 0.772463013 1.700585517 1.680631694
0.3 0.798200840 0.783553024 1.714469358 1.696214314
0.4 0.812043169 0.799167888 1.734191780 1.718159052
0.5 0.830215964 0.819418576 1.760051017 1.746622830
0.6 0.853020705 0.844479370 1.792449348 1.781847192
0.7 0.880847918 0.874611567 1.831907230 1.824188148
0.8 0.914190405 0.910192446 1.879080563 1.874152645
0.9 0.953658877 0.951749513 1.934781102 1.932441674
1.0 1.000000000 1.000000000 2.000000000 2.000000000
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Table 2 The absolute residual errors

x Res14(x) res14(x) Res24(x) res24(x)

0.0 0.011640586 0.230942914 0.016249657 0.766598470
0.1 0.011385744 0.226867128 0.015921395 0.763378418
0.2 0.010641294 0.214888858 0.014966847 0.754062831
0.3 0.009458900 0.195746198 0.013466018 0.739676243
0.4 0.007895555 0.170637696 0.011515827 0.721894603
0.5 0.005967766 0.141171286 0.009172894 0.702994203
0.6 0.003582957 0.109285297 0.006368090 0.685772693
0.7 0.000443210 0.077133580 0.002786970 0.673434203
0.8 0.004085554 0.046923639 0.002292183 0.669427479
0.9 0.011148438 0.020692579 0.010214085 0.677221825
1.0 0.022633272 8.41341E-17 0.023231283 0.700000000

Table 3 The maximum absolute residual errors

M R1M r1M R2M r2M
2 4.665E-01 8.666E-01 5.998E-01 1.56667
3 9.750E-02 4.428E-01 6.772E-02 7.100E-01
4 1.164E-02 2.309E-01 1.624E-02 7.665E-01
5 2.451E-03 1.267E-01 3.370E-02 7.100E-01
6 6.333E-04 7.155E-02 8.600E-04 7.100E-01
7 1.395E-04 4.160E-02 1.867E-04 7.100E-01
8 3.632E-05 2.467E-02 4.846E-05 7.100E-01
9 1.607E-05 1.490E-02 2.161E-05 7.100E-01
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3.2 For c1 = 1, c2 = 2, k11 = k12 = k21 = k22 = 1

Taking w10 = c1 = 1, and w20 = c2 = 2, and fixing the parameters k11 = k12 = k21 =

k22 = 1, we obtain

φ14 = 1 +
3c10
2

+
11c210
5

+
2741c310
2520

+
7c10c20
40

+
41c210c20
315

+
65c10c

2
20

1008
−

(
3c10
2

+
5c210
2

+
491c310
360

+
c10c20
4

+
73c210c20
360

+
67c10c

2
20

720

)
x2 +

(
3c210
10

+
7c310
24

+
3c10c20
40

+
c210c20
12

+
7c10c

2
20

240

)
x4 −

(
13c310
840

+
3c210c20
280

+
c10c

2
20

1680

)
x6.

φ24 = 2 +
3c20
2

+
7c10c20
10

+
893c210c20
2520

+
67c220
40

+
769c10c

2
20

2520
+

3139c320
5040

−
(
3c20
2

+ c10c20

+
191c210c20

360
+

7c220
4

+
163c10c

2
20

360
+

487c320
720

)
x2 +

(
3c10c20
10

+
23c210c20
120

+
3c220
40

+
19c10c

2
20

120
+

13c320
240

)
x4 −

(
13c210c20
840

+
3c10c

2
20

280
+

c320
1680

)
x6.

Applying (2.18) and (2.19), we obtain optimal values c10 = −0.689796, c20 = −0.708697

and hence the HAM approximations to the solutions are obtained as

φ14(x) = 0.674423 + 0.271204x2 + 0.0454739x4 + 0.00889876x6,

φ24(x) = 1.67352 + 0.27178x2 + 0.0455586x4 + 0.00914259x6,

and by setting c10 = c20 = −1, the ADM approximations to the solutions are obtained as

ψ14(x) = 0.592659 + 0.409722x2 − 0.0291667x4 + 0.0267857x6,

ψ24(x) = 1.59266 + 0.409722x2 − 0.0291667x4 + 0.0267857x6.
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Figure 3 Plots of HAM φ14(x) and ADM
ψ14(x) solutions
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Figure 4 Plots of HAM φ24(x) and ADM
ψ24(x) solutions
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Table 4 The HAM and ADM approximations to solutions

x φ14 ψ14 φ24 ψ24

0.0 0.674423143 0.592658730 1.673518521 1.592658730
0.1 0.677139742 0.596753063 1.676240889 1.596753063
0.2 0.685344640 0.609002667 1.684463213 1.609002667
0.3 0.699206350 0.629317007 1.698354439 1.629317007
0.4 0.719016401 0.657577333 1.718207120 1.657577333
0.5 0.745205361 0.693684896 1.744453865 1.693684896
0.6 0.778365260 0.737628444 1.777690385 1.737628444
0.7 0.819278422 0.789571015 1.818705108 1.789571015
0.8 0.868952703 0.849956000 1.868515392 1.849956000
0.9 0.928663139 0.919632507 1.928410306 1.919632507
1.0 1.000000000 1.000000000 2.000000000 2.000000000

Table 5 The absolute residual errors

x Res14(x) res14(x) Res24(x) res24(x)

0.0 0.043719198 1.163185862 0.047175755 1.163185862
0.1 0.042789989 1.143631002 0.046264512 1.143631002
0.2 0.040067370 1.086028837 0.043608077 1.086028837
0.3 0.035715976 0.993549036 0.039407953 0.993549036
0.4 0.029906016 0.871406768 0.033895791 0.871406768
0.5 0.022646550 0.726730135 0.027166674 0.726730135
0.6 0.013530025 0.568313445 0.018923646 0.568313445
0.7 0.001363158 0.406196710 0.008108600 0.406196710
0.8 0.016352278 0.250993596 0.007616937 0.250993596
0.9 0.044140746 0.112865431 0.032593096 0.112865431
1.0 0.089549318 1.17961E-16 0.074158043 1.17961E-16

Table 6 The maximum absolute residual errors

M R1M r1M R2M r2M
2 1.0171100 2.00000 0.976732 2.000000
3 0.2902730 1.54514 0.142540 1.545140
4 4.371E-02 1.16319 4.717E-02 1.163190
5 2.824E-02 0.96358 1.272E-02 0.963584
6 4.308E-03 0.79717 4.546E-03 0.797179
7 1.188E-03 0.69863 1.263E-03 0.698631
8 1.288E-04 0.55557 1.367E-04 0.555577
9 1.721E-05 0.50333 1.795E-05 0.503336
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Remark 3.1. One can note that in the Tables 6, we observe that the HAM (present

method) gives stable and convergent solution.

4 Conclusion

We have examined a system of coupled Lane-Emden BVPs that models many physical

and chemical phenomena such as catalytic diffusion reactions. We employed the HAM

combined with the Green’s function strategy [1]. Our approach enhances the compu-

tational efficiency while overcoming the difficulty of the singular behavior at the origin

x = 0. The HAM was used systematically in a straightforward manner. The obtained

results were supported by proper figures to show the power of the method and to show

the enhancements over exiting techniques such as the ADM [26]
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