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Abstract

An important part of a chemical graph theorist’s research work is concerned with
making observations and developing intuition about a particular research problem
through extensive numerical testing. Research questions in chemical graph theory
are often restricted to specific graph classes in which one is either looking for ex-
tremal values and extremal graphs of graph invariants, or graphs satisfying certain
constraints, or inequalities between different invariants. Many graphs from such
classes can nowadays be easily generated or readily downloaded from the web in
nauty’s graph6 format. We describe here a Java framework we call Graph6Java
for answering the above research questions among sets of graphs given in graph6
format, which represents unification of testing programs that we had used over the
years. Graph6Java consists of templates that can be easily customized so that the
researcher’s initial work should reduce just to rephrasing a question in hand within
a specific template. This way one can quickly prepare numerical calculations to
be performed over large sets of graphs and shift focus to more creative research
work instead. The use of templates is described in detail and illustrated on several
conjectures from chemical graph theory.

1 Introduction

Computers are indisputably a useful tool in mathematical research as they enable complex

calculations to be performed in a short period of time. For graph theory in particular,

there is a long history of software packages aimed to help researchers in their studies.
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Certainly one of the oldest such standalone programs is GRAPH, written by Dragoš

Cvetković and Laszlo Kraus from 1980–1984 [1–3], which provided closed environment

for visually editing graphs and calculating their invariants, and even implemented cer-

tain artificial intelligence methods for automatic proving of theorems in graph theory.

Another early example is Graffiti, written by Siemion Fajtlowicz in 1986 [4–8], which

was geared more toward automatic conjecture making than enabling researcher to test

his own conjectures. A slightly more recent example is AutoGraphiX, written by Gilles

Caporossi and Pierre Hansen in 2000 [9–12], which considered inequalities among graph
invariants as instances of optimization problems and then applied variable neighbour-

hood search metaheuristic to search for optimal, i.e., extremal graphs. Further examples

of standalone programs supporting graph theory research include newGRAPH [13–15],

which represents a modernized version of GRAPH, and Grinvin [16,17], which represents

a modernized version of Graffiti. Besides these programs, there are also several libraries

of data structures and methods that may be used to write programs working with graphs
in well-known programming languages, such as Leda for C++ [18, 19], Combinatorica

for Mathematica [20], GraphTheory for Maple [21–23] or NetworkX and MathChem for

Python [24–27].

However, despite all this available software it happens often enough in chemical graph

theory literature that conjectures are published without being thoroughly tested (a few

such conjectures may be found, for example, in [28–30] for which counterexamples are

exhibited in [31–35]). A possible explanation for failing to thoroughly test a conjecture

prior to its publication may lie in the fact that most of the above mentioned packages do

require to invest considerable amount of time in learning how to use them.

Graph theorists usually study properties of graphs from certain classes. Brendan

McKay’s package nauty [36, 37] provides a widely accepted way of generating sets of

smaller graphs constrained for connectedness, number of vertices or ranges of the numbers

of edges or vertex degrees. Programs are available for generating other classes of graphs

as well, most widely known of which are certainly Buckygen [38–40] and fullgen [41] for

generating fullerenes, and plantri [41–44] for generating other planar graphs. Actually,

many sets of graphs are already generated and ready for download in nauty’s graph6

format either from the House of Graphs [45, 46] or the web pages of mathematicians like

Brendan McKay [47] and Gordon Royle [48]. Research questions that are often studied
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on such sets of graphs involve calculation of invariants and selection of particular graphs

or pairs of graphs and may have some of the following forms:

• What are the values of certain invariants (such as energy and nullity) for graphs in

a given set?

• Which graphs in a given set satisfy certain constraints (such as having the Laplacian

energy equal to that of a complete graph)?

• Which graphs attain the maximum or the minimum value of a given invariant ex-

pression (such as the distance-sum heterogeneity index) under certain constraints

(such as fixed number of edges)?

• Which pairs of graphs have the same value of an invariant expression (such as equal

energies)?

• Which pairs of graphs have similar values of one invariant expression, but dissimilar

values of another invariant expression (such that the difference of their Wiener

indices is smaller than the difference of their Randić indices)?

To answer questions like these it is beneficial to be able to quickly set up numerical

tests to be performed over sets of graphs. We describe here a Java framework called

Graph6Java that we have developed for this purpose. Graph6Java is based on our existing

experience with graph computations and it provides general templates for dealing with the

above research questions. Templates are organized so as to enable graph theorists with

little to no programming experience to easily adapt them to their own question variants,

run them for a given set of graphs in graph6 format, visualize the selected graphs and,

eventually, develop deeper intuition about the behaviour of studied graph invariants.

Before starting with descriptions of the Graph6Java framework and its use, let us

briefly explain a few main reasons for our choice of Java over other programming lan-

guages: its speed, a large number of useful libraries and existence of a simple development

environment. First, while Java may not be as fast as C or C++, its speed is still compa-

rable to them, and on the other hand, it is substantially faster than interpreted languages

such as Python, Matlab (Octave) or Mathematica. Next, Java has a large number of

useful libraries, some already included in its distribution and some freely downloadable

from the internet. Its collection library, for example, enables to quickly sort graphs by
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invariant values or to use invariant values as keys in maps to instantly discover graphs

with the same or similar invariant values, while the graph6 archive is being processed.

The Colt library [49], on the other hand, sports data structures optimized for eigenvalue

calculations with both dense and sparse matrices. Above all, Java offers a simple inte-

grated development environment BlueJ [50], stripped of overwhelming user interfaces of

professional development environments such as NetBeans or Eclipse, enabling its users to

get started more quickly, as can be evidenced b its rather short manual [51]. BlueJ is

specifically designed for teaching a first programming course to undergraduate students

(and non-computer science researchers as well), and is followed by an excellent introduc-

tory book to programming in Java [52], which is gladly recommended for further reading,

as certain knowledge of Java programming is needed for more creative uses of Graph6Java.

The paper is organized as follows. In the next section we describe the software and

setup necessary to use Graph6Java. Different parts of the framework and its templates

are explained in detail in Section 3, while examples of its use on conjectures from the

literature are given in Section 4.

2 Preliminary setup for using Graph6Java
In order to use Graph6Java as intended, installation of several pieces of software is nec-

essary.

BlueJ, Colt library and Graph6Java source files
BlueJ is a simple and easy to use IDE that we recommend for editing and running

Graph6Java source files. Download the appropriate installer from https://www.bluej.

org/ and install it. If you have downloaded BlueJ for Windows or Mac OS X, the installer

already contains Java development kit (JDK), necessary for compilation of Graph6Java

source files. If you have downloaded BlueJ for another operating system, you need to

ensure that you have JDK installed on your system as well. You may quickly check this

by opening up a terminal window on your system and typing javac in it. If the ter-

minal window replies with a lengthy help message on how to use javac, you have Java

compiler installed. Otherwise, download and install JDK from http://www.oracle.com/

technetwork/java/javase/downloads/index.html.

Graph6Java files may be downloaded as a zip archive from
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https://doi.org/10.5281/zenodo.1244000

When unzipped, you get a folder with the framework source files and a copy of colt.jar,

a Java library for eigenvalue calculations. BlueJ has to be instructed to load colt.jar,

which is done by selecting Preferences command from either Tools menu under Windows

or BlueJ menu under OS X, selecting Libraries tab in the newly opened window, clicking

on Add File and choosing colt.jar from the standard file open dialog.

Since Graph6Java consists of source files that need to be edited for each conjecture

separately, it may be a good idea to leave the folder with original source files intact and

make a new copy of that folder for each new conjecture to be tested. Once that is done,

you may open a copy of the framework in BlueJ by selecting Open Project command

from Project menu and then opening the folder containing the framework copy from the

standard file open dialog (to avoid confusion, note that you have to select and open the

actual folder and not any individual file).

Figure 1. BlueJ window: Java classes containing program code are shown in the
main part, with arrows depicting dependence of one class on another
class. The compile button is situated on the left side, while the object
bench is placed at the bottom of the window.

The main part of the BlueJ window contains classes of the current project, repre-

sented by named rectangles, which can be opened for editing by double-clicking. When-

ever source code has been edited, it needs to be recompiled by clicking Compile but-

ton (see Figure 1). Afterwards, you can right-click on a class rectangle and choose new

<Class_name>() to create a new object of a given class, which will then be shown as a
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rounded rectangle at the bottom of the window, in the so-called object bench. Right-

clicking an object in the object bench gives the option to call object methods, including

void run(String inputFileName, ...), the main method in each framework template.

BlueJ then opens a dialog, as shown in Figure 2, that asks for values of the method argu-

ments, where inputFileName denotes the file with a set of graphs in graph6 format. Note

that inputFileName, as a Java string, has to be entered with enclosing double quotation

marks, and that the program expects the file to be found in the framework directory

(unless the full path to it is typed in inputFileName as well).

Figure 2. Entering arguments for an object method.

Sets of graphs in graph6 format and nauty

Graph6, devised by Brendan McKay, is a format for describing graphs that originated in

pre-WWW times when data had to be written using printable ASCII characters in order

to be sent efficiently through e-mail. Basically, assuming that you deal with a simple

graph, it starts with the upper half of its adjacency matrix (without a zero diagonal),

lists the columns consecutively to obtain an array of bits and then divides this array into

chunks of 6 bits each (hence the name graph6). The 6-bit numbers obtained in this way

are added to 63 in order to produce visible ASCII characters (going from ? to ~ through

capital and small letters). The resulting file then consists of lines, one for each graph,

where the first character represents the number of vertices, also added to 63, and the

remaining characters in the line encode the adjacency matrix as described.

Quite a few sets of graphs in graph6 format are available online from several reliable

web pages:

• Brendan McKay at http://cs.anu.edu.au/~bdm/data/graphs.html has posted,

-742-



among others, sets of small simple, Eulerian and planar graphs;

• Gordon Royle at http://www.maths.uwa.edu.au/~gordon/data.html has posted,

among others, sets of small trees, bipartite graphs, cubic graphs;

• the House of Graphs at https://hog.grinvin.org/MetaDirectory.action has a

metadirectory with access to several further sets of graphs.

In cases when you need a set of graphs that is not available online, new sets can be

created using geng or genbg tools from nauty package. It is foreseen that the source code

of nauty is downloaded from http://pallini.di.uniroma1.it/ and compiled locally.

This is usually not an issue for non-Windows users—just use short instructions provided

at this site. If you happen to work on a Windows machine, a combination of Code::Blocks

IDE (http://www.codeblocks.org/) and GCC compiler such as mingw-w64 (http://

mingw-w64.org/doku.php/download) should get you started.

nauty tools are used from the command line. General format for geng command is

geng [-options] n [mine[:maxe]] [file]

where brackets [] denote optional arguments, n denotes the number of vertices, mine and

maxe the minimum and maximum number of edges, while file denotes the name of the

output file. The most often used options are -c to generated connected graphs, -d# for

the minimum vertex degree, where # denotes a number, and -D# for the maximum vertex

degree. Here are a few examples:

geng -c 9 graph9c.g6 to generate connected graphs on 9 vertices
geng -c 19 18:18 trees19.g6 to generate trees on 19 vertices
geng -cd3D3 16 cubic16.g6 for connected cubic graphs on 16 vertices
geng -cD4 11 chem11.g6 for connected chemical graphs on 11 vertices

See geng -help for list of other options. genbg is used similarly as described by genbg

-help.

You can also automate generation of graph sets. For example, if you wish to generate

connected 10-vertex graphs classified in files by their number of edges, you may use

for i in {9..45}; do geng -c 10 ${i}:${i} graph10e${i}.g6; done

in Unix-based terminal (Mac OS X, Linux), and

for /L %i in (9,1,45) do geng -c 10 %i:%i graph10e%i.g6

in Windows command line.
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Visualization of graphs with Graphviz
Graphviz is a well developed software package for visualization of graphs. It can be

downloaded from http://www.graphviz.org and, after successful installation, it offers a

number of command-line tools that produce an image of a graph from a text file with its

description. Such description mainly consists of the list of edges, with various options to

additionally describe visual properties of vertices and edges. An example of a description

of a small 5-vertex graph is shown in Figure 3(a), which uses a small trick to force Graphviz

to show further information about the graph (in this case its Wiener index) within the

resulting image by specifying an isolated vertex with that information as its label.

Graph {
1 -- 2
2 -- 3
2 -- 4
3 -- 4
4 -- 5
v [shape=box, label="W=16"]

}
(a) (b)

Figure 3. (a) Textual representation of a graph in the Graphviz format. (b) Visual
representation of the same graph produced by neato.

Graphviz tools implement several well known graph drawing algorithms. For small

undirected graphs perhaps the most useful among them is neato, based on minimization

of energy of the graph spring model (see [53]). General format of neato command is

neato [-options] dotfile > outputfile

where dotfile denotes the text file containing description of a graph (usually with exten-

sion .dot), and outputfile denotes the resulting image file. Among numerous options

the most useful appear to be -Goverlap=false, which implies that vertices should not

overlap each other, -Gsplines=true, which allows curved edges and -Tpng, -Tpdf, -Tgif

or -Tjpg, which specify the format of the output image file. For detailed description of

other available options of neato and further tools contained in Graphviz, the reader is

referred to http://www.graphviz.org/documentation/.

Batch processing of graphs by neato can be achieved within the shell, typically using

the for command. For example, to generate png images for all graph descriptions in a
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current directory, one may use
for file in *.dot; do neato -Goverlap=false -Gsplines=true -Tpng
${file} > ${file}.png; done

in any Unix-based terminals, and
for %f in (*.dot) do neato -Goverlap=false -Gsplines=true -Tpng %f
> %f.png

at the Windows command line.

3 Graph6Java description

There are five main classes in Graph6Java: the class Graph contains methods to con-
struct adjacency matrix and calculate invariants, while the classes ReporterTemplate,
SubsetTemplate, ExtremalTemplate and EquiTemplate contain worked-out examples
that, respectively, report invariant values, find a subset of graphs, find extremal graphs
and find pairs of graphs with (approximately) the same invariant values. Our aim was
that the templates need minimal changes in order to adapt to the researcher’s particular
need. Structure and methods of these classes are explained in subsequent sections, and
the interested reader is advised to read their actual Java code in parallel.

3.1 Graph class
Graph class starts with the main constructor public Graph(String s) that creates a
Graph object from its description in graph6 format. Provided the graph6 code is contained
in String g6code, the corresponding Graph object may be constructed by the command

g = new Graph(g6code);

The constructor also populates the degree sequence and the numbers of vertices and edges,
while the user has to call separate methods to calculate values of other invariants.

The class contains one more constructor public Graph(int A[][]) that creates a
Graph object from the supplied adjacency matrix. This constructor may be used, for
example, if one needs to create complement of a graph or a result of another graph
operation: the original graph is created from its graph6 code by the first constructor, an
adjacency matrix A of the new graph is calculated by user code and the new Graph object
is then constructed by h = new Graph(A);

Remaining methods in this class, listed in Table 1, calculate various invariants of a
graph, with a good deal of them representing its spectral properties. Graph class also con-
tains several auxiliary static methods (which are called with Graph.method() instead of
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Table 1. List of methods currently implemented in Graph class. In the method call
column, it is assumed that g and h represent constructed Graph objects.

Method call Return type Description

g.n() int Number of vertices
g.m() int Number of edges
g.degrees() int[] Array of vertex degrees
g.Amatrix(), g.Lmatrix(), int[][] Adjacency, Laplacian,
g.Qmatrix(), g.Dmatrix(), signless Laplacian, distance
g.Mmatrix() and modularity matrix
g.Aspectrum(), g.Lspectrum(), double[] Spectrum of adjacency, Laplacian,
g.Qspectrum(), g.Dspectrum(), signless Laplacian, distance
g.Mspectrum() and modularity matrix
g.Aeigenvectors(), g.Leigenvectors(), double[][] Eigenvectors of adjacency, Laplacian,
g.Qeigenvectors(), g.Deigenvectors(), signless Laplacian, distance
g.Meigenvectors() and modularity matrix
g.Acospectral(h), g.Lcospectral(h), boolean Checks A-cospectrality, L-cospectrality,
g.Qcospectral(h), g.Dcospectral(h), Q-cospectrality, D-cospectrality
g.Mcospectral(h) and M-cospectrality of g and h
g.Aintegral(), g.Lintegral(), boolean Checks whether A-spectrum, L-spectrum,
g.Qintegral(), g.Dintegral(), Q-spectrum, D-spectrum
g.Mintegral() and M-spectrum consists of integers
g.Aenergy(), g.Lenergy(), double Energy of adjacency, Laplacian,
g.Qenergy(), g.Denergy(), signless Laplacian, distance
g.Menergy() and modularity matrix
g.LEL() double Laplacian-like energy
g.estrada() double Estrada index
g.Lestrada() double Laplacian Estrada index
g.diameter() int Diameter
g.radius() int Radius
g.wiener() int Wiener index
g.randic() double Randić index
g.zagreb1() int The first Zagreb index
g.zagreb2() int The second Zagreb index
g.dshi() double Distance-sum heterogeneity index [54]
g.printAmatrix() String String representing adjacency matrix
g.printLmatrix() String String with Laplacian matrix
g.printQmatrix() String String with signless Laplacian matrix
g.printDmatrix() String String with distance matrix
g.printMmatrix() String String with modularity matrix
g.printEdgeList() String String representing edge list
g.printDotFormat() String Graph description in dot format
g.printDotFormat(data) String Dot format description with added

isolated vertex showing String data
g.saveDotFormat(filename) none Saves graph description in dot format

to the named file for later visualization
g.saveDotFormat(filename, data) none Saves dot format description to file

with added isolated vertex showing data

g.method()) for calculating spectra and eigenvectors of integer and real-valued (double)
matrices, checking that a matrix has integral spectrum, calculating deviation of array en-
tries and matrix energy, etc., which may be helpful to researchers who add new invariants
to this class. These are recognized in the source code by the keyword static.

Note that calculations of spectral properties depend on double-precision floating point
computations which, in general, are prone to errors. When checking mutual equality of
such quantities (as in g.Acospectral(h) or g.Aintegral()), one has to allow a certain
degree of freedom by checking that, actually, absolute value of the difference of two quan-
tities is sufficiently small. This is enabled by methods implemented in classes DoubleUtil

and DoubleMap. This means that the use of approximate results may also return either
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false positives or false negatives. While we have not yet come at an example of a false
negative, false positives do appear from time to time, so that the examples obtained with
the use of Graph6Java should be checked with a symbolic computation software (such as
Mathematica, Maple or Sage) prior to publication.

3.2 ReporterTemplate class

Class ReporterTemplate simply serves to list values of selected invariants for all graphs
in a given set. Its main method is run(String inputFileName, int createDotFiles),
where inputFileName contains the name of the file (i.e., the path to the file) with a set of
graphs in graph6 format, and createDotFiles is a flag that signals whether the method
should also output dot files for each graph in the set: it should be set to nonzero to output
dot files, and to zero otherwise. Beware that setting this flag to nonzero for a set with a
large number of graphs will create that many dot files in the folder and may significantly
slow down the operating system until the method finishes its work. Pseudo-code of the
run method is shown in Algorithm 1.

Algorithm 1 run method of ReporterTemplate class
1: procedure run(inputFileName, createDotFiles)
2: Open inputFileName for reading
3: Open new file named inputFileName+".results.csv" for writing
4: while line with g6code read from inputFileName is not empty do
5: Construct Graph g from its g6code
6: Calculate necessary invariants of g
7: Output g6code and invariant values to inputFileName+".results.csv"
8: if createDotFiles 6= 0 then
9: Save dot format of g to a separate file

10: Close input and output files

When you download Graph6Java from https://doi.org/10.5281/zenodo.1244000,
the run method of ReporterTemplate class is set to report values of energy and nullity
for graphs in the set. To report other invariants, one needs to customize parts of the run

method corresponding to steps 6 and 7 in Algorithm 1. These steps correspond to the
following snippet in the source code:

// Calculate necessary invariants here:
double energy = g.energy();

double[] eigs = g.Aspectrum();
int nullity = 0;
for (int i=0; i<g.n(); i++)

if (DoubleUtil.equals(eigs[i], 0.0))
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nullity++;

// Output g6code and invariant values here:
outResults.println(g6code + ", " + energy + ", " + nullity);

Let us briefly explain this code snippet. First, each variable in a Java program must
be defined with its type when used for the first time: int is needed to define the variable
nullity that will keep the value of nullity (initially set to 0), and similarly, double is
needed to define energy and double[] is needed for eigenvalues eigs. (Return types of
Graph methods are listed in Table 1.) However, type is not needed when using the variables
afterwards: thus we write just nullity++ (which increases the value of nullity by 1),
and not int nullity++. This snippet also illustrates the use of the static equals method
in DoubleUtil class: we will increase nullity whenever we come across an eigenvalue that
is close to 0, which is checked by the command DoubleUtil.equals(eigs[i], 0.0). To
output values of invariants, one needs to print a line (println) to the output file which
is kept in the object outResults (hence outResults.println(string)). The string to
be output is created with the string concatenation operator +: if the first argument of +

is a string (and g6code is), then all the remaining arguments will be treated as strings as
well. Hence the result of g6code + ", " + energy + ", " + nullity will be a comma-
separated string containing the values of graph’s g6code, energy and nullity, that is
written in the output file.

Consult source code of the ReporterTemplate class for implementation of the remain-
ing steps of Algorithm 1.

3.3 SubsetTemplate class

Class SubsetTemplate serves to select a subset of graphs in a given set which satisfy a
given condition and output the subset and further data to a new file. Its main method is

run(String inputFileName, int createDotFiles)

where inputFileName gives the name of the graph6 file with the set of graphs and
createDotFiles is a zero-nonzero flag of whether the method should also output dot
files for each graph that satisfies the condition (nonzero to output dot files, and zero
otherwise). As in the case of ReporterTemplate class, nonzero value of createDotFiles

should only be used if you expect a handful of graphs in the subset (and not thousands).
Pseudo-code of the run method is shown in Algorithm 2.
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Algorithm 2 run method of SubsetTemplate class
1: procedure run(inputFileName, createDotFiles)
2: Open inputFileName for reading
3: Open new file named inputFileName+".results.tex" for writing
4: while line with g6code read from inputFileName is not empty do
5: Construct Graph g from its g6code
6: Calculate necessary invariants of g
7: Check whether the given condition holds for g
8: if condition holds then
9: Output g6code and invariant values to inputFileName+".results.tex"

10: if createDotFiles 6= 0 then
11: Save dot format of g to a separate file
12: Close input and output files

The run method in the downloaded Graph6Java files is set to select integral graphs
from a set of graphs. To change it to select different types of graphs, one needs to update
parts of the run method corresponding to steps 6 and 7 of Algorithm 2. These steps
initially correspond to the following code snippet:

// Calculate necessary invariants here:
double[] eigs = g.Aspectrum();

// Write a criterion to select a graph into the subset here:
int integral = 1; // Instead of just: if (g.Aintegral())
for (int i=0; i<g.n(); i++) // integral=0;

if (!DoubleUtil.equals(eigs[i], Math.round(eigs[i]))) {
integral = 0;
break;

}

// Output selected graphs and other data to the output file here:
if (integral==1) {

...
}

After obtaining a copy of adjacency eigenvalues of g in double[] eigs, the code
goes on to check their integrality. The variable int integral serves as a flag here: it
is initially set to 1, and becomes 0 if there is an eigenvalue that is not sufficiently close
(!DoubleUtil.equals(), where ! denotes logical negation) to its nearest integer, as
returned by Math.round(eigs[i]). In such case there is no need to check the remaining
eigenvalues, so that the program interrupts the current loop with break and proceeds
further with execution. Finally, output is produced if the flag integral had remained
equal to 1 after the for loop.
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The reader may also consult source code of the SubsetTemplate class for example of
translating an array of eigenvalues into a string for its addition to the dot file.

3.4 ExtremalTemplate class
Class ExtremalTemplate serves to select a given number of extremal values (either min-
imal or maximal) of a given invariant and to also report all graphs in the set with those
invariant values. Its main method is run(String inputFileName, int extnum, int

lookformax), where inputFileName specifies the graph6 set of graphs, extnum gives the
number of extremal values to be reported and lookformax determines whether the method
is to look for maximum values (lookformax≥0) or minimal values (lookformax<0).
Pseudo-code of the run method is given in Algorithm 3.

Algorithm 3 run method of ExtremalTemplate class
1: procedure run(inputFileName, extnum, lookformax)
2: Open inputFileName for reading
3: Open new file named inputFileName+".results.tex" for writing
4: Construct an empty map
5: while line with g6code read from inputFileName is not empty do
6: Construct Graph g from its g6code
7: Calculate necessary invariant of g and put it into key
8: if map has less than extnum keys or map already contains this key then
9: Put key and g6code into map

10: else
11: if lookformax<0 then
12: if key is smaller than the largest key currently in map then
13: Remove the largest key from map
14: Put key and g6code into map
15: else
16: if key is larger than the smallest key currently in map then
17: Remove the smallest key from map
18: Put key and g6code into map
19: for each key in map do
20: Output key to inputFileName+".results.tex"
21: for each g6code corresponding to key in map do
22: Output g6code to inputFileName+".results.tex"
23: Construct Graph g from its g6code
24: Save dot format of g with key as data to a separate file
25: Close input and output files

This run method is slightly more complicated than run methods in previous two classes
due to necessity to keep track of a dynamically changing map of keys and corresponding
g6code strings. This functionality is provided by auxiliary class DoubleMap, extended

-750-



upon the standard class TreeMap, which enables one to identify keys that are sufficiently
close to each other (i.e., that differ by less than DoubleUtil.DOUBLE_EQUALITY_THRESH-

OLD in absolute value, which is set to 10−8 in Graph6Java source). As before, caution must
be taken as this may either wrongly identify truly different values or treat essentially equal
values calculated with sufficiently large numerical errors as different (the latter case could
be easily dealt with by increasing the value of DoubleUtil.DOUBLE_EQUALITY_THRESHOLD).
Hence results should be checked independently with a symbolic computation package prior
to publication. Nevertheless, the speed and simplicity with which initial results may be
obtained in this way warrants usefulness of Graph6Java.

It should be noted that the pairs kept in a DoubleMap object consist of a Double object
key and a collection of strings (Vector<String>), each of which represents g6 code of a
graph with that value of the key. The key is calculated in step 7 of Algorithm 3, and in
the Graph6Java version this step corresponds to the line:

// Calculate necessary invariant here and make it the key:
key = new Double(g.dshi());

The invariant used here is the distance-sum heterogeneity index, defined by Estrada and
Vargas-Estrada in [54] and implemented as a method of Graph class. Note that g.dshi()

returns double value, an ordinary real number, while key is defined to be of type Double,
which represents a Java object holding a double value inside itself. This inconsistency
is a peculiarity of Java, as collections (such as maps) are meant to keep objects (such
as Double) and not primitive number types (such as double). As a consequence, when
changing the above code, one needs to pay attention that the key has to be constructed
as a Double object from the provided value of the invariant: if the value is calculated as
val, then the corresponding code will be key = new Double(val); On the other hand,
it does not matter if val is of type double or int—constructor of Double will correctly
deal with both cases.

In addition, run method assumes that the number of extremal graphs found will be
relatively small, so that at the end it outputs each extremal graph with key added as data
to a separate dot file for later visualization with Graphviz. For easier identification of
dot files, their names include number of vertices, value of the key and ordinal number of
graph with that key, interspersed by user defined strings. The reader may further consult
source code for details of working with maps and collections and naming output files.
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3.5 EquiTemplate class

Class EquiTemplate serves to find subsets of graphs having (approximately) equal val-
ues of a selected invariant in a given set of graphs. Its main method is run(String

inputFileName), where inputFileName specifies the set of graphs. Pseudo-code of the
run method is shown in Algorithm 4.

Algorithm 4 run method of EquiTemplate class
1: procedure run(inputFileName)
2: Open inputFileName for reading
3: Open new file named inputFileName+".results.tex" for writing
4: Construct an empty map
5: while line with g6code read from inputFileName is not empty do
6: Construct Graph g from its g6code
7: Calculate necessary invariant of g and put it into key
8: Put key and g6code into map
9: for each key in map do

10: if collection of strings corresponding to key has at least two entries then
11: Output key to inputFileName+".results.tex"
12: for each g6code corresponding to key in map do
13: Output g6code to inputFileName+".results.tex"
14: Construct Graph g from its g6code
15: Save dot format of g with key as data to a separate file
16: Close input and output files

This run method also relies on DoubleMap class for its operation. For each graph in a
set it simply puts the key (=calculated invariant value) and g6code into DoubleMap map,
while DoubleMap internally takes care of checking whether map already contains another
key key2 that is sufficiently close to the provided key, in which case g6code is added
to the collection of strings classified under key2 (otherwise, key is added as a new key
in map with the corresponding collection consisting solely of g6code). After map is fully
populated, it is enough to traverse it: all graphs that have sufficiently equal invariant
values will be classified under the same key, so that one has to report each key whose
collection contains at least two entries, together with the list of corresponding graph6
codes and dot files for visualization with Graphviz.

This simplicity, however, is hampered by the fact that the whole set of graphs together
with keys has to be kept in internal memory. Although both graph6 codes and Double-
valued keys should be rather small in size, it appears that Java virtual machine is too
generous in its memory management, so that we were not able to run this method on the
set of 11,716,571 connected graphs on 10 vertices on computers available to us (although
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it works without problems on the set of 261,080 connected graphs on 9 vertices).
As in the case of ExtremalTemplate class, key is Double object constructed from a

supplied integer (int) or float (double) value. For example, in the downloaded version
of Graph6Java

key = new Double(g.energy());

constructs key from the double value returned by energy() method of Graph class. As
it is expected that the number of graphs sharing invariant values will be relatively small,
run method for each key shared by at least two graphs output each graph (with key
added as data) to a separate dot file for later visualization with Graphviz. Dot filenames
include numbers of vertices, keys and ordinal numbers (within the group sharing the
key) for easier identification. The reader is invited to consult source code for remaining
implementation details.

4 Examples of use

In this section we showcase the use of Graph6Java on some conjectures and results
recently published in literature on mathematical chemistry. Each of the four classes:
ReporterTemplate, SubsetTemplate, ExtremalTemplate and EquiTemplate is illus-
trated in a separate subsection.

4.1 Using ReporterTemplate

The ReporterTemplate is the most basic part of Graph6Java. For an input list of graphs
and a selected list of graph invariants, this template generates a csv file of graph6 codes of
graphs and their computed invariants. The resulting csv file may be further processed in a
spreadsheet software, such as Excel or OpenOffice Calc, to generate charts and diagrams.
For example, reporting invariant values of trees of order 12 was one of the steps necessary
to obtain plots presented in Figs. 6 and 9 in forthcoming subsections.

For another example of this type of study, we may look into dependence of graph
energy on nullity. The nullity of a graph G, denoted by n0(G), is the multiplicity of
the eigenvalue 0 in its adjacency spectrum. The energy [55] of a graph G is defined as
E(G) =

∑n
i=1 |λi|, where λ1, . . . , λn are adjacency eigenvalues of G. Quantum chemical

arguments suggest that E should be a decreasing function of n0 [56–58]. However, from a
mathematical point of view the naive statement

n0(G) > n0(H) ⇒ E(G) < E(H) (1)
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is not generally true for arbitrary graphs G and H, and as stated in [58], it must be
assumed that except for nullity, all other structural features of the graphs G and H that
influence their energy, are equal or differ negligibly. This vague description is quite difficult
to quantify since the dependence of energy on graph structure is not yet completely
understood.

In Figure 4 we present two plots of energy vs. nullity for trees of order 20, and con-
nected graphs of order 10 and size 20. In these plots, each vertical bar at a given value
of n0 represents the interval from the smallest to the largest value of graph energy. If
the naive statement (1) would be true, we would expect the top of each bar to be lower
than the bottom of the bar to its left. Of course this does not hold, but at the same time
we can observe that the general behaviour of bars is that as we move from left to right
to increase nullity, the bars move lower, which gives some support for the conjectured
behaviour of E with respect to n0.
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Figure 4. Plots of graph energy (on the vertical axis) vs. nullity (on the horizontal
axis). Top: for all trees of order 20. Bottom: for all connected graphs of
order 10 and size 20.

4.2 Using SubsetTemplate

The SubsetTemplate is used to filter out a subset of graphs according to a given property.
For illustrating the use of template, we will focus on borderenergetic graphs [59] and
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L–borderenergetic graphs [60].

4.2.1 Borderenergetic graphs

A non-complete graph G of order n is borderenergetic if E(G) = E(Kn) = 2n − 2. Bor-
derenergetic graphs were introduced by Gong et al. [59], while further results on bor-
derenergetic graphs can be found in [61–67]. It was shown in [59] that there are no
borderenergetic graphs of order less than 7, and all such graphs of orders 7, 8 and 9

were listed. This list includes one borderenergetic graph of order 7, six of order 8, and
seventeen of order 9. Further, Li et al. [61] reported the list of borderenergetic graphs of
order 10 consisting of 47 graphs. This latter number was corrected in [62] to be 49. We
tested these results to confirm the lists of borderenergetic graphs of order up to 10.

It was further reported that there are 158 borderenergetic graphs of order 11 in [62],
and 572 borderenergetic graphs of order 12 in [63], although we did not check these results
here due to time limits.

4.2.2 L–borderenergetic graphs

Let G be a graph and let A denote its adjacency matrix. The matrix L = D − A where
D is the diagonal matrix of vertex degrees of G is called the Laplacian matrix of G. The
Laplacian energy [68] of G, denoted by EL(G), is defined by

EL(G) =
n∑

i=1

∣∣µi − d̄
∣∣ ,

where n is the order of G, d̄ is the average degree of G, and µ1, . . . , µn are the eigenvalues
of L. A simple property of the Laplacian energy is that for regular graphs it coincides
with graph energy. As an example, EL(Kn) = E(Kn) = 2n− 2.

Current results on L–borderenergetic graphs can be found in [60, 69–75]. Several of
these works include listings of small L–borderenergetic graphs of order at most 10. We
used SubsetTemplate to verify these lists. This is especially of interest since results of [69]
have been shown to be incomplete [70].

To mitigate possible floating point errors, we instructed Graph6Java to make a subset
of graphs of a given order n whose Laplacian energy differs from 2n − 2 by at most 0.5.
This is achieved by changing DOUBLE_EQUALITY_THRESHOLD=0.5 in DoubleUtil class. We
then carefully investigated (at a higher computational cost) each graph in the resulting
subset for being L–borderenergetic. For this we used symbolic and arbitrary precision
computation in Maple to reach a reliable conclusion. As our first result, we can confirm
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Order Number of graphs

4 2
5 1
6 11
7 5
8 33
9 23
10 227

Table 2. Counts of L–borderenergetic graphs of small order.

the counts reported in the literature of L–borderenergetic graphs for orders up to 9. These
counts are summarized in Table 2.

However, for L–borderenergetic graphs of order 10 we obtained only 227 such graphs,
while 233 were reported in [70]. We investigated the reported graphs in [70] and found six
graphs listed there as being L–borderenergetic, while they are not. These false positives
are the graphs H31

10 , H88
10 , H89

10 , H90
10 , H91

10 , and H92
10 in the notation of [70], shown in Table 3

along with their Laplacian energy.

4.3 Using ExtremalTemplate

The ExtremalTemplate finds graphs which maximize or minimize certain graph invariant,
which is the focus of most problems in mathematical chemistry. Here we illustrate the
use of this template on a conjecture about a recent topological index.

The distance-sum heterogeneity index of a graph G = (V,E) is defined by Estrada and
Vargas-Estrada [54] as

ϕ(G) =
∑
i∈V

di
si

− 2
∑

{i,j}∈E

(sisj)
−1/2

where di is the degree of vertex i and si is the sum of all distances from i to other vertices.
Estrada and Vargas-Estrada [54] propose the problem of finding graphs of any given
order which maximizes distance-sum heterogeneity index. Computational results of [54]
for graphs of order at most 8 show that for n = 3, 4, 5, the star graph K1,n−1

∼= K1∨Kn−1

maximizes ϕ, while for n = 6, 7, 8 the maximum is achieved by the so-called agave graph
K2 ∨ Kn−2, where ∨ denotes the join of two graphs. Inspired by these results, they
conjecture the following.

Conjecture 1 [54] Among the graphs of order n ≥ 6, the agave graph has the maximum
distance-sum heterogeneity index.
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Graph Graph6 code Laplacian energy (approx.)

H31
10 ICQB}w\X_ 19.3754231351000249

H88
10 I?ACJLYM_ 18.0000048728229290

H89
10 IC`Czref? 17.9999954284824327

H90
10 IEoeeH]Jo 17.9999955203530093

H91
10 IC`Emg]I? 17.9999950133844081

H92
10 IC`DhpUb? 17.9999979727567947

Table 3. Graphs of order 10 wrongly reported as L-borderenergetic in [70].
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Extending computational results of [54], we searched for graphs of order 9 and 10

which maximize ϕ and for these orders, we found graphs with distance-sum heterogeneity
index larger than that of the agave graph. It turns out that these maximal graphs, like
stars and agave graphs, are also joins of a complete and an empty graph.

A split graph is a graph whose vertex set V can be partitioned into a clique C and an
independent set I. A complete split graph is a split graph in which every vertex in C is
adjacent with every vertex in I. The complete split graph with |V | = n and |I| = α is
denoted by CS(n, α). Table 4 summarizes computational results on graphs with maximum
distance-sum heterogeneity index.

Order Graph

n ∈ {3, 4, 5} CS(n, n− 1)
n ∈ {6, 7, 8} CS(n, n− 2)
n ∈ {9, 10} CS(n, n− 3)

Table 4. Graphs with maximum distance-sum heterogeneity index

Computational results of Table 4 suggest that for graphs G of a fixed order n, the
maximum value of ϕ(G) is attained by a complete split graph CS(n, α). Let V = C ∪ I

be the vertex set of CS(n, α) as defined above. Then for every i ∈ C, di = si = n − 1,
and for every i ∈ I, di = n− α and si = n+ α− 2. Therefore,

ϕ(CS(n, α)) = (n− α) · 1 + α · n− α

n+ α− 2
− 2

[(
n−α
2

)
n− 1

+
α(n− α)√

(n− 1)(n+ α− 2)

]

=
α(n− α)

(n− 1)(n+ α− 2)

[
2n+ α− 3− 2

√
(n− 1)(n+ α− 2)

]
.

For example, the above formula gives

ϕ(CS(9, 7)) =
11−

√
112

4
≈ 0.10425 and ϕ(CS(9, 6)) =

189− 18
√
104

52
≈ 0.10452,

which provides a counterexample to Conjecture 1.
Table 5 reports numerical values of ϕ(CS(n, n − ω)) for small values of n and ω.

For each fixed n, the largest such value is highlighted in bold to emphasize the pattern.
The complete split graphs corresponding to these maximum values can be considered as
replacements of the agave graph in Conjecture 1. It can be easily seen that for every
positive integer ω,

lim
n→∞

ϕ(CS(n, n− ω)) =
(
3
2
−

√
2
)
ω.

Assuming that the maximal graphs with respect to distance-sum heterogeneity index are
complete split graphs, this implies that there is no bound on their clique number ω.
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ω = 1 ω = 2 ω = 3 ω = 4 ω = 5 ω = 6 ω = 7 ω = 8 ω = 9 ω = 10

n = 2 0

n = 3 0.0337 0

n = 4 0.0508 0.0239 0

n = 5 0.0596 0.0505 0.0167 0

n = 6 0.0648 0.0702 0.0432 0.0121 0

n = 7 0.0684 0.0847 0.0673 0.0359 0.0092 0

n = 8 0.0709 0.0957 0.0877 0.0610 0.0299 0.0072 0

n = 9 0.0727 0.1042 0.1045 0.0842 0.0542 0.0251 0.0057 0

n = 10 0.0742 0.1111 0.1185 0.1048 0.0784 0.0479 0.0213 0.0047 0

n = 11 0.0754 0.1167 0.1303 0.1228 0.1010 0.0719 0.0423 0.0182 0.0039 0

n = 12 0.0763 0.1214 0.1403 0.1386 0.1217 0.0955 0.0657 0.0375 0.0158 0.0033

n = 13 0.0771 0.1253 0.1489 0.1524 0.1405 0.1179 0.0894 0.0598 0.0334 0.0138

n = 14 0.0778 0.1287 0.1564 0.1646 0.1573 0.1386 0.1126 0.0833 0.0545 0.0299

n = 15 0.0784 0.1316 0.1629 0.1754 0.1726 0.1578 0.1347 0.1067 0.0773 0.0498

n = 16 0.0789 0.1341 0.1686 0.1850 0.1863 0.1754 0.1555 0.1296 0.1007 0.0718

n = 17 0.0793 0.1364 0.1737 0.1936 0.1987 0.1916 0.1750 0.1515 0.1239 0.0948

n = 18 0.0797 0.1384 0.1782 0.2013 0.2100 0.2065 0.1932 0.1724 0.1466 0.1180

n = 19 0.0800 0.1402 0.1823 0.2083 0.2203 0.2202 0.2101 0.1921 0.1684 0.1410

n = 20 0.0803 0.1417 0.1860 0.2147 0.2297 0.2328 0.2258 0.2106 0.1892 0.1635

Table 5. Distance-sum heterogeneity index of some complete split graphs
CS(n, n− ω)

Estrada et al. [54] also consider extremal graphs for distance-sum heterogeneity index
among all graphs of a fixed order and size. They give an algorithm to generate such
maximal graphs in an iterative fashion, where starting with a star, each maximal graph
is obtained from a previous one by adding an edge. All resulting graphs constructed in
this way are split graphs. More specifically, each of these maximal graphs is a split graph
with partition V = C ∪ I and a distinguished vertex x ∈ C such that C induces a clique,
every i ∈ C \ {x} is adjacent to every j ∈ I, and x is adjacent to exactly β vertices in I.
If β ∈ {0, α}, we have a complete split graph. Estrada et al. [54] conjecture that these
graphs have maximum distance-sum heterogeneity index among all graphs with the same
order and size, and they report computational verification of this conjecture for orders
n ≤ 8. We further checked this conjecture for n ∈ {9, 10} and found that the conjecture
holds for these orders.

4.4 Using EquiTemplate

The EquiTemplate class can be used to find subsets of graphs which have the same value
of a graph invariant. To illustrate this template, we provide counterexamples to two
conjectures on interrelations of graph distance measures from [76]. Note that counterex-
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amples to these conjectures have been obtained independently by Ilić and Ilić [77] as
well.

For a pair of graph invariants, Dehmer et al. [76] study behaviour of one invariant
with respect to the other. For these comparisons, the distance measure

d(x, y) = 1− e−(x−y)2/σ2

is used, where x, y ∈ R and σ is the parameter of the Gauss function. This distance
measure is attributed to Schädler [78]. If I is a graph invariant, the above distance
function defines the graph distance

dI(G,H) = d (I(G), I(H)) = 1− e−(I(G)−I(H))2/σ2

for any two graphs G and H. Several results and conjectures in [76] have the form

dI(G,H) ≤ dJ(G,H) (2)

where I and J are two graph invariants and G and H are a pair of graphs. It is easily
observed that

dI(G,H) ≤ dJ(G,H) ⇐⇒ |I(G)− I(H)| ≤ |J(G)− J(H)|.

Hence a possible way to contradict an inequality of the form (2) is to find a pair G,H

of graphs such that J(G) = J(H) while I(G) 6= I(H), for which EquiTemplate is well
suited.

4.4.1 Conjecture on Wiener index vs. Randić index

For a vertex u of G let du denote the degree of u, and for another vertex v of G let d(u, v)
denote the distance between u and v in G. Wiener index [79] and Randić index [80] of G
are defined, respectively, as

W (G) =
∑

{u,v}⊆V

d(u, v),

and
R(G) =

∑
uv∈E

(
dudv

)−1/2
.

The first conjecture of Dehmer et al. [76] that we tackle is as follows.

Conjecture 2 [76] Let T and T ′ be any two trees of order n. Then

dW (T, T ′) ≥ dR(T, T
′).
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We approach this conjecture by searching for pairs of trees with the same Wiener index.
Since such trees do not necessarily have equal degree sequences, one expects their Randić
index to be different. We were able to find two pairs of counterexamples already at order 7,
which are presented in Figure 5. Investigating further trees of higher orders, we found
out that the pair on the right can be generalized as described below.

Figure 5. The two pairs of counterexamples of order 7 to Conjecture 2.

Let n and r be positive integers such that n is odd and 1 ≤ r ≤ n− 4. We define two
trees Bn,r and Fn as follows. The tree Bn,r is obtained from a path on three vertices by
attaching r pendent vertices at one leaf, and n− r− 3 pendant vertices at the other leaf.
The tree Fn is obtained by subdividing every edge of the star K1,(n−1)/2. The pair of trees
on the right in Figure 5 consists of B7,2 and F7. The simple structure of these trees easily
yields the following results.

Proposition 1 Let n and r be positive integers with n odd and 2 ≤ r ≤ n− 3. Then

W (Bn,r) = (n+ r)2 − 3(r + 1)2 − n+ 1,

R(Bn,r) =
r + 1√

2√
r + 1

+
n− r − 3 + 1√

2√
n− r − 2

,

W (Fn) =
1

2
(n− 1)(3n− 5),

R(Fn) =
n− 1

2
√
2

+

√
n− 1

2
.

These formulas allow us to find infinitely many pairs of counterexamples to Conjecture 2.
For example, if n = 2k + 1 and r = k − 1, the pair Bn,r, Fn is a counterexample since

W (Bn,r) = W (Fn) = 6k2 − 2k,

while
R(Bn,r)−R(Fn) =

k
√
k + k − 2−

√
8(k − 1)√

2k
=

k√
2
+O

(√
k
)
.
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One might wonder here whether there are counterexamples to Conjecture 2 with dif-
ferent Wiener indices. Motivated by this question, we investigated differences |W (T ) −
W (T ′)| and |R(T ) − R(T ′)| for pairs of trees T and T ′ of the same order n. Figure 6
shows a plot of these differences for n = 12. It can be observed from this plot that most
pairs of trees satisfy the assertion of Conjecture 2 (note that the axes in this plot have
different scales, so that the line y = x is rather steep). On the other hand, the accumula-
tion of points on the left side of the plot suggests that there exist counterexamples with
different Wiener index. Indeed, this plot includes a point with Wiener difference 1 (on
the horizontal axis) and Randić difference bigger than 1. The corresponding pair of trees
is shown in Figure 7.

Figure 6. A plot of |R(T )−R(T ′)| (on the vertical axis) against |W (T )−W (T ′)|
(on the horizontal axis) for all pairs T, T ′ of trees of order 12.

Figure 7. Counterexample to Conjecture 2 with different Wiener indices.

An infinite family of counterexamples with different values of Wiener index can be
obtained by tweaking our earlier family of counterexamples as follows. Let k and t be
positive integers with t � k, and let n = 2k + 1 and r = k − t− 1. Proposition 1 yields

W (Fn)−W (Bn,r) = 2t2,
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and for a constant t,
R(Fn)−R(Bn,r) =

k√
2
+O

(√
k
)
.

The parameter t can be used to control the difference in the Wiener index of the two trees,
while keeping t fixed, the difference in the Randić index of the two trees grows arbitrarily
large. We conclude that there are tree pairs contradicting Conjecture 2 with the property
that the differences in Wiener and Randić indices both grow arbitrarily large.

4.4.2 Conjecture on graph energy vs. graph entropy

The entropy of G [76] is defined by

Ig(G) = log(E(G))− 1

E(G)

n∑
i=1

|λi| log |λi|,

where E(G) =
∑

i=1 |λi| is the energy of G and λ1, . . . , λn are adjacency eigenvalues
of G. It represents the standard Shannon entropy [81] applied to the probability vector(

|λi|
E(G)

)
i=1,...,n

. Dehmer et al. [76] posed the following conjecture.

Conjecture 3 [76] Let T and T ′ be any two trees of order n. Then

dE(T, T
′) ≥ dIg(T, T

′).

Taking the same approach as for the previous conjecture, we looked for pairs T, T ′

of trees of the same order, such that E(T ) = E(T ′) while Ig(T ) 6= Ig(T ′), which would
serve as counterexamples to this conjecture. It should be noted that unlike Wiener index,
graph energy is not necessarily an integer, and numerical errors might yield EquiTemplate

to report false positives. To mitigate this effect and check the correctness of numerical
calculations in Java, we used symbolic computation in Maple for graphs of small order
and arbitrary-precision arithmetic of Maple for graphs of higher orders.

Figure 8. A counterexample to Conjecture 3.

This search produced a pair T, T ′ of trees of order 9 with the desired property, pre-
sented in Figure 8. Let T be the left tree in this figure and T ′ be the right tree. The
adjacency spectrum of T is

Sp(T ) =

{
2,

√
5 + 1

2
, 1,

√
5− 1

2
, 0,

1−
√
5

2
,−1,−

√
5 + 1

2
,−2

}
,
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while the adjacency spectrum of T ′ is

Sp(T ′) =
{√

5, 1, 1, 1, 0,−1,−1,−1,−
√
5
}
.

From here we can see that E(T ) = E(T ′) = 6 + 2
√
5, while Ig(T ) ≈ 2.005062 and

Ig(T ′) ≈ 1.992056. We had found several more counterexamples of this type: one pair of
equienergetic trees of order 13, one pair of order 14, four pairs of order 15, seven pairs of
order 16, and three pairs of order 17.

Certainly, counterexamples to Conjecture 3 do not have to constitute equienergetic
pairs of trees. Figure 9 shows a plot of |Ig(T )− Ig(T ′)| against |E(T )− E(T ′)| for pairs
T, T ′ of trees of order 12. It can be seen from this plot that while most pairs of trees of
order 12 satisfy Conjecture 3, there are also quite a few counterexamples in which trees
have different energies.

Figure 9. A plot of |Ig(T )−Ig(T ′)| (on the vertical axis) against |E(T )−E(T ′)| (on
the horizontal axis) for all pairs T, T ′ of trees of order 12. The dashed
line has slope 1.

5 Conclusions

We have presented here a Java framework called Graph6Java that can be quickly and
simply adapted for solving particular instances of a few general research problems in
graph theory and mathematical chemistry. Its usefulness is demonstrated by improving
understanding of several recent results from the literature. Since Graph6Java is based on

-764-



numerical computations, it is also possible that its use can lead to either false positives
or false negatives when dealing with real-valued invariants that are densely distributed
in an interval, emphasizing the need to verify results obtained by this framework in
another symbolic computation or arbitrary-precision arithmetic package. As a matter of
fact, it would be even more useful to have a piece of software that would unify ability
to perform fast numerical computations with both symbolic algebraic computation and
arbitrary-precision arithmetic. At the moment it seems that Python is well suited to
pack all these abilities into a coherent whole: it could compile and run Graph6Java
in the background when fast numerical computation is needed, while SymPy library [82]
offers tools for symbolic algebraic computations, and mpmath library [83] offers arbitrary-
precision arithmetic. We leave this idea for future work.
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