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Abstract

The Deficiency Zero Theorem (DZT) provides definitive results about the dy-
namical behavior of chemical reaction networks with deficiency zero. Thus far, the
available DZTs only apply to classes of power-law kinetic systems with reactant-
determined interactions (i.e., the kinetic order vectors of the branching reactions
of a reactant complex are identical). In this paper, we present the first DZT valid
for a class of power-law systems with non-reactant-determined interactions (i.e.,
there are reactant complexes whose branching reactions have different kinetic order
vectors). This class of power-law systems is characterized here by a decomposition
into subnetworks with specific properties of their stoichiometric and reactant sub-
spaces, as well as their kinetics. We illustrate our results to a power-law system of
a pre-industrial carbon cycle model, from which we abstracted the properties of the
above-mentioned decomposition. Specifically, our DZT is applied to a subnetwork
of the carbon cycle system to describe the subnetwork’s steady states. It is also
shown that the qualitative dynamical properties of the subnetwork may be lifted to
the entire network of pre-industrial carbon cycle.
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1 Introduction

Chemical reaction networks (CRNs) are ubiquitous in many areas of studies, notably in

biochemistry-related disciplines. They provide a graphical form of the dynamical system

of networks of interacting species [23]. Abstractly, a CRN represents a universe whose

evolution corresponds to the transformation of its chemical elements − i.e., the consump-

tion of its elements to generate others [20]. Hence, in theory, systems with similar network

structures, even in areas beyond the natural sciences, may be represented by CRNs [20,23].

The study of CRNs gave rise to a significant body of theoretical work, notably the so-

called Chemical Reaction Network Theory (CRNT). The field had its foundation from the

papers of F. Horn, M. Feinberg, and R. Jackson in 1972 [4,9,10]. Results in CRNT reveal

that for many CRNs, their structure and associated kinetics (i.e., reaction rate functions)

alone determine the dynamical properties of the system. This is interesting, since the

structure (nor the kinetics) itself does not carry any information about the parameter

values and initial quantities. CRNT asserts that CRNs that satisfy certain structural

conditions exhibit a similar type of qualitative dynamical behavior.

Early results in CRNT revolved around the classification of a CRN using a non-

negative integer called the deficiency [5–7]. This index is not dependent on the network’s

size. Very large or complex CRNs may, in fact, have zero deficiency [17]. Instead, the

deficiency measures the amount of ‘linear independence’ among the reactions − the higher

the deficiency, the lower the extent of linear independence [16]. Hence, deficiency-zero

CRNs possess the highest possible degree of linear independence among the reactions.

The Deficiency Zero Theorem (DZT) establishes decisive results about the nature

of dynamics that deficiency-zero networks possess. All DZTs known to date are valid

for power-law kinetic systems with reactant-determined interactions (denoted by “PL-

RDK”), which are kinetic systems with power-law rate functions whose kinetic order

vectors are identical for reactions with the same reactant complex. The first DZT asserts

that all weakly reversible (i.e., each reaction is part of a cycle) deficiency-zero networks

taken with mass-action kinetics (MAK), regardless of the positive rate constants, cannot

admit multiple positive steady states, unstable positive equilibrium or sustained oscilla-

tions [5–7]. Note that in mass-action kinetics, the kinetic orders are the stoichiometric

coefficients of the reactant complex and hence, MAK is a special case of PL-RDK.

The next DZT was published some 40 years later by S. Müller and G. Regensburger pa-
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pers on Generalized Mass Action Kinetic (GMAK) systems, which marked the emergence

of results on power-law kinetics in CRNT [12,13]. GMAK systems essentially correspond

to PL-RDK systems, but there are some slight differences (see Section 6 of [18] for a de-

tailed discussion). Müller and Regensburger introduced the notion of kinetic deficiency,

which was the basis of their Kinetic Deficiency Zero Theorem.

In [19], Talabis et al. derived a Deficiency Zero and a Deficiency One Theorem for

a class of power-law systems (denoted by “PL-TIK”) with linkage class-wise linear inde-

pendent interactions. It is shown that any weakly reversible PL-TIK systems have zero

kinetic deficiency. Hence, the Deficiency Zero Theorem in [18] turns out to be a special

case of the Müller-Regensburger result.

The following CRN G is weakly reversible and has deficiency zero with power-law

kinetics (the arc labels are the kinetic orders):

G : M1

M2

M3

M4

M5

M6

1

0.36

1

1 1

10.2

1

1

1

1

9.4

1

1

(1.1)

Does this system have positive equilibria? One may immediately think of applying a DZT.

However, observe that there are branching reactions (e.g., M1 →M2 and M1 →M5) with

different kinetic orders. This power-law kinetic system is said to have non-reactant-

determined interactions (denoted by “PL-NDK”). First examples of models of biological

systems displaying this type of power-law kinetics (but with higher deficiencies) were

provided by Arceo et al. in [1,3]. The network G , in fact, points to the CRN representation

of a power-law approximation of the Earth’s pre-industrial carbon cycle model of R.

Schmitz [15]. For systems such as G , existing DZTs are not applicable.

However, it can be shown that G has an interesting network decomposition: it is the

union of subnetworks that have no common reactions on pairwise basis. The interesting

property is that the kinetics on each subnetwork is of a PL-RDK subclass for which a

DZT is known. This observation led us to a DZT that aids the description of the steady

states of G . Moreover, to our knowledge, the result is the first DZT which is valid for a

class of PL-NDK systems.

The rest of the paper is organized as follows. Section 2 reviews important concepts and

results in CRNT relevant to this paper. Section 3 discusses our main result − a Deficiency

Zero Theorem beyond PL-RDK systems. This theorem is applied to a subnetwork of
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the power-law kinetic system corresponding to the pre-industrial carbon cycle model of

Schmitz. It is shown that the qualitative dynamical behavior of this network carries over

to the entire network of pre-industrial carbon cycle. In Section 4, we summarize our

results and outline some research perspectives.

2 Fundamentals of Chemical Reaction Networks and

Kinetic Systems

This section reviews notions, results and notations (obtained from [3, 18]) that are per-

tinent in understanding the results in this work. Some concepts introduced by Feinberg

in [5, 7] are also reviewed.

Notation. We denote the real numbers by R, the non-negative real numbers by R≥0 and

the positive real numbers by R>0. Objects in the reaction systems are viewed as members

of vector spaces. Suppose I is a finite index set. By RI , we mean the usual vector space

of real-valued functions indexed by I . For x ∈ RI , the ith coordinate of x is denoted by

xi, where i ∈ I . The sets RI
≥0 and RI

>0 are called the non-negative and positive orthants

of RI , respectively. Addition, subtraction, and scalar multiplication in RI are defined in

the usual way. If x ∈ RI
>0 and y ∈ RI , we define xy ∈ R>0 by

xy =
∏
i∈I

xyii . (2.1)

The vector log x ∈ RI ,where x ∈ RI
>0, is given by (log x)i = log xi, for all i ∈ I . If

x, y ∈ RI , the standard scalar product x · y ∈ R is defined by x · y =
∑

i∈I xiyi. By the

support of x ∈ RI , denoted by supp x, we mean the subset of I assigned with non-zero

values by x. That is, supp x := {i ∈ I |xi 6= 0}.

We formally define CRN as a digraph with vertex-labelling (its stoichiometry).

Definition 1. A chemical reaction network is a digraph (C ,R) where each vertex

has positive degree and stoichiometry, i.e. there is a finite set S (whose elements are

called species) such that C is a subset of RS
≥0. Each vertex is called a complex and

its coordinates in RS
≥0 are called stoichiometric coefficients. The arcs are called re-

actions. We denote the number of species with m, the number of complexes with n and

the number of reactions with r.
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This definition of a chemical reaction network is equivalent to the usual definition as a

triple N = (S ,C ,R) in [5] with the requirement S =
⋃

supp y for y ∈ C , i.e. each

species appears in at least one complex.

In the reaction y → y′, we say that y is the reactant complex and y′ is the product

complex. Two useful maps are associated with each reaction − the reactant map and the

product map. The reactant map ρ : R → C maps a reaction to its reactant complex

while the product map π : R → C maps it to its product complex. We denote |ρ(R)|

with nr, i.e. the number of reactant complexes.

A connected component of a CRN is called a linkage class, and the number of linkage

classes in the network is denoted by `. A CRN is weakly reversible if whenever there

exists a directed path from a complex y to a complex y′, there also exists a directed path

from y′ to y.

Suppose the set
{
ωi ∈ RI | i ∈ I

}
forms the standard basis for RI where I = S ,C

or R. We recall three maps relevant in the study of CRNs: incidence map, map of

complexes, and stoichiometric map.

Definition 2. Let N = (S ,C ,R) be a CRN. The map of complexes Y : RC → RS

maps the basis vector ωi to the complex i ∈ C . The incidence map Ia : RR → RC is the

linear map defined by mapping for each reaction r : i→ j ∈ R, the basis vector ωr to the

vector ωj − ωi ∈ C . The stoichiometric map N : RR → RS is defined as N = Y ◦ Ia.

Im N is called the stoichiometric subspace S, whose dimension s is called the rank

of the CRN. Two vectors c, c′ ∈ RS are stoichiometrically compatible if c − c′ ∈ S.

The intersection of a coset c + S with RS
≥0 is called a stoichiometric compatibility

class.

A non-negative integer, called the deficiency, can be associated to each CRN. This

number has been the center of many studies in CRNT due to its relevance in the dynamic

behavior of the system.

Definition 3. The deficiency of a CRN is the integer δ = n− `− s.
The reactant matrix Yres is the m × nr matrix Y without the columns of the non-

reactant complexes (i.e., those complexes that are purely product complexes). Its columns

are the reactant complexes. Its image Im Yres is called the reactant subspace R, whose

dimension q is called the reactant rank of the CRN. The concept of reactant deficiency

was introduced by Arceo et al. in [2]:

-625-



Definition 4. The reactant deficiency δρ := nr − q, i.e., the difference between the

number of reactant complexes and the reactant rank q.

Remark 1. Theorem 1 of [2] summarizes the relationship between the deficiency and

reactant deficiency of a CRN. In particular, for weakly reversible networks, 0 ≤ δρ−δ ≤ `.

By kinetics of a CRN, we mean the assignment of a rate function to each reaction in

the CRN. It is defined formally as follows.

Definition 5. A kinetics of a CRN N = (S ,C ,R) is an assignment of a rate function

Kj : ΩK → R≥0 to each reaction j ∈ R, where ΩK is a set such that RS
>0 ⊆ ΩK ⊆ RS

≥0,

c ∧ d ∈ ΩK whenever c, d ∈ ΩK , and

Kj(c) ≥ 0, for all c ∈ ΩK .

A kinetics for a network N is denoted by K = [K1, K2, ..., Kr]
> : ΩK → RR

≥0. The pair

(N , K) is called the chemical kinetic system (CKS).

The above definition is adopted from [23]. It is expressed in a more general context

than what one typically finds in CRNT literature. Note that for power-law kinetic systems,

one sets ΩK = RS
>0. Here, we focus on the kind of kinetics relevant to our context:

Definition 6. A chemical kinetics is a kinetics K satisfying the positivity condition:

For each reaction j : y → y′ ∈ R, Kj(c) > 0 if and only if supp y ⊂ supp c.

Once a kinetics is associated with a CRN, we can determine the rate at which the

concentration of each species evolves at composition c.

Definition 7. The species formation rate function (SFRF) of a chemical kinetic

system (CKS) is the vector field

f(x) = NK(x) =
∑
y→y′

Ky→y′(x)(y′ − y). (2.2)

The equation dx/dt = f(x) is the ODE or dynamical system of the CKS. A positive

equilibrium or steady state x is an element of RS
>0 for which f(x) = 0. The set of

positive equilibria of a chemical kinetic system is denoted by E+(N , K). For a differ-

entiable f , a steady state x is called non-degenerate if Ker (Jx(f)) ∩ S = {0}, where

Jx(f) is the Jacobian matrix of f at x.
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Power-law kinetics is defined by an r×m matrix F = [Fij], called the kinetic order

matrix, and vector k ∈ RR , called the rate vector.

Definition 8. A kinetics K : RS
>0 → RR is a power-law kinetics (PLK) if

Ki(x) = kix
(Fi,·)

>
for i = 1, . . . , r, (2.3)

where ki ∈ R>0 and Fi,· refers to the ith row of the kinetic order matrix F . A PLK system

has reactant-determined kinetics (of type PL-RDK) if for any two reactions i, j with

identical reactant complexes, the corresponding rows of kinetic orders in F are identical,

i.e., Fik = Fjk for k = 1, ...,m. On the other hand, a PLK system has non-reactant-

determined kinetics (of type PL-NDK) if there exist two reactions with the same

reactant complexes whose corresponding rows of kinetic orders in F are not identical.

Note that in Equation (2.3), the vector x(Fi,·)
> ∈ RR is computed using Equation (2.1).

Remark 2. Clearly, mass-action kinetics is a special case of PL-RDK. For mass-action,

the corresponding kinetic order matrix is formed by taking Fij to be the stoichiometric

coefficient of the species j in the reactant complex of reaction i.

Recall the definition of the m × n matrix Ỹ from [13]: For a reactant complex, the

column of Ỹ is the transpose of the kinetic order matrix row of the complex’s reaction,

otherwise (i.e., for non-reactant complexes), the column is 0. We form the T -matrix of

a PL-RDK system by truncating away the columns of the non-reactant complexes in Ỹ ,

obtaining an m× nr matrix.

Arceo et al. [2] investigated the relationship between the reactant subspace of a system

and its kinetic behavior. They identified a class of networks, called RSS network, to be

particulary interesting. A CRN has the RSS (reactant-determined stoichiometric

subspace) property (or type RSS) if S is contained in R. Moreover, Arceo et al.

introduced the notion of kinetic flux subspace S̃ of a PL-RDK system on an RSS network.

For a PL-RDK system on an RSS network, the kinetic flux subspace S̃ is the subspace

T (Y −1res (S)).

Talabis et al. [18] identified some subsets of PL-RDK systems, one of which is the

PL-RLK systems.

Definition 9. A chemical kinetics K is said to be reactant set linear independent

(of type PL-RLK) if the columns of T are linearly independent.

-627-



The Deficiency Zero Theorem of Talabis et al. applies for a set of kinetics called PL-

TIK and PL-TLK systems. A chemical kinetics is considered to be any of these type if the

so-called augmented T -matrix of the system (see [18]) is column maximal. Nevertheless,

it was shown in the study that a PL-TIK system with a single linkage class and with

no inflow reactions (that is, there are no reactions having zero reactant complex) is a

PL-RLK system. We can, thus, restate (the first two statements of) the DZT for PL-TIK

of Talabis et al. [18] as:

Theorem 1 (Deficiency Zero Theorem for PL-RLK Systems). Let (N , K) be a

PL-RLK system with ` = 1 and δ = 0. Then

(i) E+(N , K) 6= ∅ if and only if N is strongly connected, and

(ii) if E+(N , K) 6= ∅ and x∗ ∈ E+(N , K), then

E+(N , K) = {x ∈ RS
>0| log x− log x∗ ∈ S̃⊥}. (2.4)

Finally, we briefly review some notions related to decomposition of chemical kinetic

systems.

Definition 10. A subnetwork N ′ = (S ′,C ′,R ′) of a chemical reaction network

N = (S ,C ,R) is the sub-digraph defined by a subset R ′ ⊂ R, i.e. C ′ is the subset of

complexes occurring in R ′, and S ′ is the subset of species occurring in C ′. The embed-

ded representation of a subnetwork N ′ is the triple (S ′,C ′,R ′). A set of subnetworks

{Ni = (Si,Ci,Ri), i = 1, . . . , k} is a network decomposition of N = (S ,C ,R) if

{Ri} forms a partition of R.

Feinberg introduced the important concept of independence in his review:

Definition 11. A network decomposition is independent if S = S1 + S2 + · · · + Sk

is direct. A subnetwork N ′ = (S ′,C ′,R ′) is called independent if the decomposition

induced by {R ′,R \R ′} is independent.

Proposition 1. A network decomposition is independent if and only if s = s1+s2+· · ·+sk.

Every subnetwork in an independent decomposition is an independent subnetwork.

Arceo et al. [1] introduced a semigroup structure on the set of kinetics on N via com-

ponentwise multiplication, for any network N = (S ,C ,R). If P (R) = {R1,R2, . . . ,Rk}

is a partition of R, then for any kinetics K on N , we have the kinetic factor Ki of K

on Ri to be the kinetics Ki : RS → RR with Ki,r(x) = Kr(x) if r ∈ Ri, and 1 otherwise.
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Definition 12. A decomposition of the chemical kinetic system (N , K) consists

of the network decomposition N = N1 + N2 + · · · + Nk and kinetics factorization K =

K1K2 · · ·Kk generated by a partition P (R) = {R1,R2, . . . ,Rk}. We will denote the CKS

decompositions with (N , K) = (N1, K1) + (N2, K2) + · · ·+ (Nk, Kk).

On the level of the species formation rate function, a network decomposition induces

the formation of partial sums, i.e. f = f1 + f2 + · · · + fk, where fi = NiKi, where

(Ni)u,v = Nu,v for v ∈ Ri, and 0 otherwise. Equivalently, fi(x) is the partial sum con-

sisting of summands Ki(x)(y′i − yi) for reactions yi → y′i ∈ Ri. For any subnetwork

of a decomposition, we define E+(Ni, Ki) to be the set of positive equilibria of its

embedded representation (Si,Ci,Ri) , i.e. the set {x ∈ RS
>0|fi(x) = 0}.

Feinberg [6] established the relationship between the positive equilibria of the “parent

network” and those of the subnetworks of a decomposition in the following result.

Theorem 2 (Feinberg Decomposition Theorem, [6]). Let P (R) = {R1,R2, . . . ,Rk} be a

partition of a CRN N and let K be a kinetics on N . If N = N1 + N2 + · · ·+ Nk is the

network decomposition of P (R) and E+(Ni, Ki) = {x ∈ RS
>0|NiKi(x) = 0}, then

(i) E+(N1, K1) ∩ E+(N2, K2) ∩ · · · ∩ E+(Nk, Kk) ⊆ E+(N , K).

(ii) If the network decomposition is independent, then equality holds.

For reference, we consider a special network decomposition:

Definition 13. A network decomposition N = N ′ + N ′′ is said to be trivial if N ′ is

a subnetwork whose stoichiometric subspace coincides with that of the whole network.

This allows us to interpret the following Joshi-Shiu Equilibria Lifting Theorem [11] as a

result about a trivial decomposition of a network:

Theorem 3 (Joshi-Shiu Equilibrium Lifting Theorem, [11]). Let N be a subnetwork

of a chemical reaction network G such that they have the same stoichiometric subspace:

SN = SG . Let K be a parametrized family of kinetics on the species of G . Then if N

admits multiple nondegenerate positive K steady states, then G does as well. Additionally,

if N admits finitely many such steady states, then G admits at least as many.

Remark 3. Arceo et al. [3] showed that in the context of power-law kinetics, the set of

parametrized family of kinetics points to the power-law kinetic system with non-negative

kinetic orders.
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3 Main Result

3.1 A Deficiency Zero Theorem Beyond PL-RDK Systems

As a requirement to prove our main result, we state the following basic result, which has

not been documented in the CRNT literature:

Lemma 1. If a network has independent decomposition N = N1 + N2 + · · ·+ Nk, then

δ ≤ δ1 + δ2 + · · ·+ δk.

This is a generalization of the well-known fact, that if the decomposition is the linkage

class decomposition, independence implies δ = δ1 + δ2 + · · ·+ δk.

Proof. If Ri is the reaction set of Ni, we claim that

Im Ia = Im Ia,1 + Im Ia,2 + · · ·+ Im Ia,k, (3.1)

where Ia,i is the restriction of Ia to the subspace RRi . Clearly, each of the summands

on the RHS of Equation (3.1) is contained in Im Ia. On the other hand, any element of

Im Ia is of the form
∑
αjIa

(
ωrj
)

with rj ∈ R. Since the Ri’s partition R, we can group

the summands to partial sums with reactions in Ri, and these partial sums are in Im Ia,i.

From Linear Algebra, we have

n− ` = dim(Im Ia) ≤
k∑
i=1

dim(Im Ia,i) =
k∑
i=1

(ni − `i). (3.2)

Subtracting s from the LHS of Equation (3.2) and s1 + s2 + · · · + sk from the RHS (the

subtrahends are equal due to decomposition independence; see Proposition 1), we obtain

the desired result.

By definition, if the decomposition of a network is independent, we cannot find a

nonzero vector in the intersection of the resulting stoichiometric subspaces of the sub-

networks. The following result asserts that the same property can be observed among

the kinetic flux subspaces of the weakly reversible subnetworks generated by independent

decomposition of PL-RLK systems with zero reactant deficiency.

Lemma 2. Let N = N1 + N2 + · · · + Nk be an independent decomposition and K a

kinetics with factorization K = K1K2 · · ·Kk. If the subnetworks are weakly reversible

with zero reactant deficiency and Ki’s are in PL-RLK, then S̃1 ∩ S̃2 ∩ · · · S̃k = {0}.
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Proof. Since the subnetworks are all weakly reversible (each reaction is in a cycle), the

whole network is also weakly reversible, so that T and Y −1res are well defined. The re-

strictions of T and Y −1res to each Ni yields an isomorphisms between the kinetic flux and

stoichiometric subspaces. If a non-zero x, say is in S̃1 ∩ S̃2, then Yres(T
−1(x)) would be a

non-zero element in S1 ∩S2, a contradiction to the independence of the decomposition.

We now state and prove our main result. The theorem includes a statement about the

existence of positive equilibria. The proof of this statement is adapted from Feinberg’s

derivation of the Lemma 8.2.1 in [7]. Our theorem also includes a statement about the

parametrization of the set of positive equilibria, which is derived directly from the DZT

for PL-TIK of Talabis et al. [18]. Unlike the DZT for mass-action systems, we do not

formulate a uniqueness statement in each stoichiometric class since this would also depend

on the latter, and would contain only statements with respect to the kinetic classes, and

not the stoichiometric classes. Moreover, in contrast to the previous DZTs, the weak

reversibility and zero deficiency of the network need not be explicitly assumed since these

properties follow from those of the independent decomposition.

Theorem 4. If a PLK system (N , K) has an independent decomposition into weakly

reversible subnetworks N1,N2, . . . ,Nk with zero reactant deficiency and PL-RLK kinetics

K1, K2, . . . , Kk, then

(i) N is a weakly reversible network with δ = 0;

(ii) E+(N , K) 6= ∅; and

(iii) If x∗ is a positive equilibrium, then

E+(N , K) = {x ∈ RS
>0| log x− log x∗ ∈ (S̃1 + S̃2 + · · ·+ S̃k)

⊥}. (3.3)

Proof. Since each subnetwork is weakly reversible, every reaction in a subnetwork must be

in a cycle. Moreover, since the subnetwork reaction sets partition the network’s reaction

set, the entire network must be weakly reversible. Since on weakly reversible networks,

δρ ≥ δ (see Remark 1), each subnetwork has zero deficiency. By Lemma 1, the network

has zero deficiency. To prove (ii) and (iii), we consider the case where k = 2. By the first

statement of Theorem 1(DZT for PL-RLK),

E+(N1, K1) 6= ∅ and E+(N2, K2) 6= ∅.
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Moreover, if x1 ∈ E+(N1, K1) and x2 ∈ E+(N2, K2), then

E+(N1, K1) = {x ∈ RS | log x− log x1 ∈ (S̃1)
⊥}, and

E+(N2, K2) = {x ∈ RS | log x− log x2 ∈ (S̃2)
⊥}.

Since the decomposition is independent, by Theorem 2 (Feinberg Decomposition Theory),

E+(N , K) = E+(N1, K1) ∩ E+(N2, K2).

Thus, to show that the whole network admits positive equilibria, we must show that

E+(N1, K1) ∩ E+(N2, K2) is non-empty. That is, x∗ ∈ E+(N , K) if and only if x∗ ∈

E+(N1, K1) ∩ E+(N2, K2). Equivalently,

log x∗ ∈ [log x1 + (S̃1)
⊥] ∩ [log x2 + (S̃2)

⊥].

That [log x1 + (S̃1)
⊥] ∩ [log x2 + (S̃2)

⊥] is non-empty follows from the following result

involving cosets:

[log x1 + (S̃1)
⊥] ∩ [log x2 + (S̃2)

⊥] 6= ∅ if and only if log x1 − log x2 ∈ (S̃1)
⊥ + (S̃2)

⊥. (3.4)

Statement (3.4) can be proven easily and straightforwardly from the definition of a left

coset (see [8] to recall the definition of a left coset). From Lemma 2, we have S̃1∩S̃2 = {0}.

Hence,

(S̃1)
⊥ + (S̃2)

⊥ = (S̃1 ∩ S̃2)
⊥ = {0}⊥ = RS .

Clearly, log x1 − log x2 ∈ RS and so, [log x1 + (S̃1)
⊥] ∩ [log x2 + (S̃2)

⊥] 6= ∅. Let

w ∈ [log x1 + (S̃1)
⊥] ∩ [log x2 + (S̃2)

⊥],

and take x∗ := ew. Since w ∈ log x1 + (S̃1)
⊥, we can see that x∗ ∈ E+(N1, K1). Simi-

larly, x∗ ∈ E+(N2, K2). Therefore, x∗ ∈ E+(N , K). From Algebra (see [14]), we have[
(S̃1)

⊥ ∩ (S̃2)
⊥
]

=
(
S̃1 + S̃2

)⊥
. Hence,

[log x1 + (S̃1)
⊥] ∩ [log x2 + (S̃2)

⊥] = log x∗ +
[
(S̃1)

⊥ ∩ (S̃2)
⊥
]

= log x∗ +
(
S̃1 + S̃2

)⊥
.

It follows that{
x ∈ RS | log x− log x∗ ∈

(
S̃1 + S̃2

)⊥}
= E+(N1, K1) ∩ E+(N2, K2) = E+(N , K).

An inductive argument can be carried out to prove for the general case.
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3.2 Application to a Carbon Cycle Model

The Earth system of Schmitz [15] is a simple mass balance model which accounts for the

movement of carbon among different pools that represent major parts of the Earth. In the

pre-industrial state, six major carbon pools are considered. Figure 1 provides a schematic

diagram of the model. The state variables Mi, in petagrams of carbon (PgC), stand for

the mass of carbon in the pool at time t. The arrows represent the transfer of carbon, in

petagrams of carbon per year (PgC/y), among the different carbon pools. These arrows

are labelled by their fluxes Fij, which indicates the rate of transfer of carbon from Mi

to Mj. A detailed motivation of the model design and underlying assumptions are given

in [15].

Figure 1. Schematic diagram of Schmitz’s carbon cycle model at pre-industrial
state [15].

The transfer functions provided by Schmitz are all power-law functions (the major-

ity being mass-action kinetics) with the exception of F15. We constructed a power-law

approximation of the exception using a standard method from Biochemical Systems The-

ory (BST) to obtain a Generalized Mass Action (GMA) system, i.e. a system with only

power law rate functions. More precisely, GMA system is a modelling format, based on

ordinary differential equations (ODEs), wherein every mass transfer rate is approximated

separately with a power-law term, and these terms are added together, with a plus sign for

incoming fluxes and a minus sign for outgoing fluxes [21,22]. The aforementioned approxi-

mation method is based on Taylor approximation in logarithmic coordinates. By applying

such approach, the function F15 results to a power-law function of M1, i.e. F15 = k′15M
0.36
1 ,

where k′15 is a rate constant. The resulting GMA system is provided in Equation (3.5).

-633-



Ṁ1 = k21M
9.4
2 + k31M

10.2
3 + k51M5 + k61M6 − k12M1 − k13M1 − k′15M0.36

1

Ṁ2 = k12M1 + k42M4 − k23M2 − k24M2 − k21M9.4
2

Ṁ3 = k13M1 + k23M2 + k43M4 − k34M3 − k31M10.2
3

Ṁ4 = k24M2 + k34M3 − k42M4 − k43M4

Ṁ5 = k′15M
0.36
1 − k51M5 − k56M5

Ṁ6 = k56M5 − k61M6


(3.5)

Instead of confronting this GMA system, we identify the kind of dynamics that this

system admits by analyzing its dynamically equivalent CRN representation. By dynam-

ical equivalence, we mean that the two systems – the GMA system and the CRN

representation– both have the same set of differential equations [3].The procedure to ob-

tain a dynamically equivalent CRN representation for any GMA system can be found

in [3]. Particularly, the GMA system in (3.5) is dynamically equivalent to the CRN in

(1.1) (on page 3) with associated power-law kinetics encoded in the following kinetic order

matrix:

F =

M1 M2 M3 M4 M5 M6



1 0 0 0 0 0 M1 →M2

1 0 0 0 0 0 M1 →M3

0.36 0 0 0 0 0 M1 →M5

0 9.4 0 0 0 0 M2 →M1

0 1 0 0 0 0 M2 →M3

0 1 0 0 0 0 M2 →M4

0 0 10.2 0 0 0 M3 →M1

0 0 1 0 0 0 M3 →M4

0 0 0 1 0 0 M4 →M2

0 0 0 1 0 0 M4 →M3

0 0 0 0 1 0 M5 →M1

0 0 0 0 1 0 M5 →M6

0 0 0 0 0 1 M6 →M1

. (3.6)

To verify their dynamic equivalence, one may apply Equations (2.1) and (2.2) to see that

the SFRF of the CRN representation is, in fact, similar to the ODE system in (3.5).

The analysis of the system’s CRN representation and associated power-law kinetics

allows us to use tools from CRNT, particularly its deficiency-oriented analysis. Consider

now the following trivial decomposition (see Definition 13) G = N + N ′ of the whole
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network:

G =
M1

M2

M3

M4

M5

M6

+ M1

M2

M3

M4

1

0.36

1

1

9.4

1 1

1

1

1

1

110.2

N N ′

(3.7)

Note that in (3.7) the arrow labels refer to the kinetic orders. Observe that the

subnetwork N of the whole CRN is weakly reversible with δ = 0, and whose kinetic

system is of type PL-NDK. Furthermore, an independent decomposition of N can be

found by partitioning its reactions into two sets

R1 = {M1 →M5,M5 →M1,M5 →M6,M6 →M1} and

R2 = {M1 →M3,M3 →M4,M4 →M2,M2 →M1}.

This results to two zero reactant-deficiency PL-RLK subnetworks, N1 and N2:

N =
M1

M5

M6

+ M1

M2

M3

M4

1

0.36

1

1

9.4

1 1

1

N1 N2

(3.8)

By Theorem 4, E+(N , K) is non-empty. Furthermore, if x∗ ∈ E+(N , K), then

E+(N , K) =

{
x ∈ RS | log x− log x∗ ∈

(
S̃1 + S̃2

)⊥}
, (3.9)

where (
S̃1 + S̃2

)⊥
= S̃⊥1 ∩ S̃⊥2 =

〈
[1, 0.1064, 1, 1, 0.36, 0.36]>

〉
.

Finally, to show that a positive steady state for the entire network G exists, we ap-

peal to the Joshi-Shiu Equilibrium Lifting Theorem (Theorem 3). It remains show that

equilibrium points E+(N , K) are non-degenerate. Computations show that

E+(N ,K) =

〈[
M1,

(
k13
k21

M1

)9.4−1

,
k13
k34

M1,
k13
k42

M1,
k′15

k51 + k56
M0.36

1 ,
k′15k56

k61(k51 + k56)
M0.36

1

]>〉
.

(3.10)

Suppose f is the species formation rate function associated with N , and let x∗ ∈
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E+(N , K). The Jacobian matrix of f at x∗ is computed to be

Jx∗(f) =



−k13 − pk′15M
p−1
1 βk21M

β−1
2 0 0 k51 k61

0 −βk21Mβ−1
2 0 k42 0 0

k13 0 −k34 0 0 0
0 0 k34 −k42 0 0

pk′15M
p−1
1 0 0 0 −(k51 + k56) 0

0 0 0 0 k56 −k61


, (3.11)

with β = 9.4 and p = 0.36. It can be verified that Ker Jx∗(f) ∩ S = {0}, where S is the

stoichiometric subspace of N . Hence, N has non-degenerate set of positive equilibrium

points. Furthermore, the entire network G corresponding to the CRN representation

of the power-law approximation of the pre-industrial carbon cycle of Schmitz admits

positive equilibria. In fact, G has at least as many non-degenerate positive equilibria as

its subnetwork N .

4 Conclusion and Outlook

In conclusion, we summarize our results and outline some perspectives for further research.

1. We presented an extension of the well-known characterization of independent linkage

class decomposition δ = δ1 + δ2 + · · ·+ δ` to an inequality δ ≤ δ1 + δ2 + · · ·+ δk for

an independent decomposition.

2. Our main result is the first Deficiency Zero Theorem that is valid for a class of kinet-

ics with non-reactant determined kinetic orders. The theorem includes statements

about the existence of positive equilibria of the system and the parametrization of

the set of positive equilibria. However, there is no general uniqueness statement

with respect to a stoichiometric class. Unlike previous DZTs, the weak reversibil-

ity and zero deficiency of the network may not be explicitly assumed since these

properties follow from those of the independent decomposition.

3. We applied the results to characterize the positive equilibria of a power law ap-

proximation of R. Schmitz’s model of the Earth’s carbon cycle in its pre-industrial

state.

The application of other decomposition schemes for the inference of positive equilibria

for the corresponding chemical kinetic systems is a promising area of study. Moreover,

exploring the extension of CRN decomposition to incorporate concepts such as modularity
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widely used in the Theory of Complex Networks and Systems Biology offers a further

interesting research perspective.
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