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Abstract

The proposed Structural Formula (SF) concept is a version of GhegainyT
(GT) with different kinds of vertices and edges. Within SF, any médec
depicted according to the IUPAC rules can be analyzed as @usdiThe
construction of SF requires only a slight modification of the graph
definition: a family of sets of vertices and a family of seftedges are
assigned to different kinds of atoms and bonds instead of a singlé set
vertices and a single set of edges. To easily introduce the physical
characteristics of atoms and bonds, we also include a family ghtireg
functions defined on families of vertices and edges. The chartickesase
introduced in analyses of the SF formula through the SF incidencix mat
and then, through simple equations, are transferred to other SEawnatri
such as Zagreb, Rardind distance and, ultimately, SF topological indices.
Finally, we show that the HOMA geometrical aromaticity index can b
treated like the SF topological index.

1. Introduction

There is no chemistry without atoms. Nevertheless, a lot of matggroperties, such
as number of isomers, boiling point, aromaticity arelectron delocalization reveal strong
connections to molecular topology, to such an extent that the kind of atons $e play a
secondary role [1-8]. These properties are modeled well by graply {&brand its various
adaptations to chemistry [e.g., 9-13]. The role of these methods for mba@enistry cannot
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be overestimated. Moreover, some purely chemicagritions to graph theory are now also
studied in the field of mathematics [14-23].

However, it seems that chemists’ initial fascioativith graph theory has worn off a
bit. This is hardly surprising. One can mostly ibtite this decline of interest to the
development of quantum and computational chem[8#y26]. These methods can now be
used in almost every chemical laboratory and cavige justified answers to several
problems that have been posed in the field of treical graph theory (CGT). Another
reason for the approach’s diminished popularithésway CGT is developed. The discipline
has become less chemical, more abstract and ifgadifficult for chemists to understand.
For chemists, there is also a fundamental flaw rietein graph theory: it does not
differentiate atoms or bonds [9].

o/H
(5\ 1,3-dimethylcyclohexane g?lgllohexane—ls—
o/H
o/H
. cyclohex-4-ene-
3,5-dimethylcyclohexene 1 3-diol
o/H
(0]
1,5-dimethylcyclohexa-1,3- cyclohex-4-ene-
diene 1,3-dione
(0]
(0]
1,3-dimethylcyclohexa-1,3,5- N 3H-pyridine-2,6-
triene dione
o
(0]
@\ m-xylene | /’\L uracil
N (0]

Figure 1. Structural formulae of molecules which, in the trfasdamental version of
the graph theory, are all represented by the tibgiaph of 1,3-dimethylcyclohexane
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Many modifications of GT have been proposed to counter this perceiect.de
Weighted graphs [27, 28], graphs with multiple edges and loops (multigraph)d2glete
graphs with a core electron representation [30], hypergraphs, and parzatieins of
topological indices partially fill the gap between the needs of idtgnand the mathematics
behind chemical graph theory. However, none of these seem to be a umnereesdy to the
divergence between the areas of interest in chemistry andpa ¢neory description of
chemical structure. Even if a perfect GT description of cbahstructures does not exist,
searching for a better GT model of molecules still seems worthwhile.

In this paper, we analyze possible improvements in describingustailformulae with
graph-theoretical methods. Structural formulae are the esserdeemical thinking and
reasoning. On the other hand, they are very similar to graphs useenin fialds of
theoretical and applied mathematics. This similarity and the adddevel of graph theory
methods have probably been the main reasons why a more adequate thedbjnglescr
chemical structural formulae has not been needed for decades. Thugt®ds have been
applied to chemical problems without any special adaptation. If a pmolblas not
satisfactorily described, one would use a "chemical paraméinZar a more sophisticated,
yet known, version of the graph theory.

Yet, generalizing graph theory for a better representation of wtaliébrmulae does
not seem to be that difficult. It suffices to: (1) differetdithe vertices so that they represent
the whole periodic table of elements, (2) differentiateetiges so that they can flexibly
represent many different kinds of bonds and (3) facilitate the intioduof chemical
characteristics of atoms and bonds to the newly defined topologiceg¢éndiere, we show
how to formulate such a theory that operates on common structural feremdagenerates
topological indices directly from them. To do this, we consider famdf sets instead of the
sets themselves, as well as IUPAC and some other refatses of atoms and bonds. We
also describe the addition and multiplication of abstract elenBased on a so-defined SF
concept, it becomes clear that, for example, the widely used HOMAaggoal aromaticity

index is a topological index of a certain version of SF theory.
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2. The concept

2.1.1 Structural formula

Let us first recall the definition of a graph.

Definition 1. A graphG is an ordered pair of se@=(V, E) whereV is an arbitrary finite
nonempty set anfl is a subset of its Cartesian prodE&tVxV.

Definition 2. A doubly-weighted graph is a quadrues=(V, E, f, g), wheref andg are
vertex and edge weighting functioh¥— R andg:E— R, respectively, and is the set of
real numbers.

A structural formula can be defined similarly using families of seteansof sets:
Definition 3. A structural formula is an ordered pair of families of §etéV, E), whereV is
an arbitrary finite family of nonempty sets afds a subset of its Cartesian prodict V
x V.

Definition 4. A doubly weighted structural formula is a quadruple=(V, E, f, g) composed
of V, E: EC V xV, and two weighting functiorfsandg overV andE, respectivelyf:V— R
andg:E—R.

The family of setsV={V1,Vz, ..., Vm} is composed of sets of different vertices
(representing different atoms) and the family of &st§E1,E, ..., En} is composed of sets
of different edges (representing different bonds).

The Cartesian produét x B of two families of setsA={A4, Az, ..., Am} and B={Bx,
Bz, ..., Bn}, is a set of Cartesian producdsx B = {A1x B1, A1 X Bz, ..., Am X Bn}. The

functionf:A—R over a family of seté acts on each of the sets in the family.

Remarks:

If only one set of vertices and one set of edges is consideredijtidag 3 and 4 are
reduced to Definitions 1 and 2, respectively, and the SF concept is reuties GT
approach. In contrast, applying the SF formulation allows all the dgswn Fig. 1 to be
distinct SF objects.

The additional introduction of unary andary relations tde would allow both the use
of more than one type of loops on vertices and hyperedges betweertices. Thus,
generalizing the SF concept towards a hyper structural formutaagbprequires only the
additional assumption thEt[1 V¥, wherek=1, 2, ..., m. Loops and hyperedges can be helpful

to characterize functional groups or to distinguish some atoms in the formulae.
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There are two ways of modifying the vertices and edges in a graginstruct a
structural formula. The first would be to declare atomic/bond symbbéssecond would be
assigning weights to them. Applying both approaches simultaneously magseeriiuous,
but they accomplish different objectives. The former guaranteeartfiastructural formula
taken from a chemical text can be mathematically analyzbd iheaning of all elements of
the chemical structural formulae is well explained. The lattews to flexibly assign atom
and bond descriptors to vertices and edges of a given type.

It seems that classical GT problems such as shortest patigliig salesman, vertex

or edge coloring can be easily transferred to the realm of SF.

2.1.2 Path metrics
In a graplG and astructural formuld, a pathp from vertexvi tov is a finite sequence
of edges s, Ez,... Es) connecting the corresponding sequence of vertices. A path distance
dpo between vertices [36] can also be defined as follows:
0 fori=j
d,(v,v;)=41 fori adjacent tg
s =Z; d(E) where (§ ,E ,....E ) is a shortest pathriroito j

Observe thatlp is non-negative, is zero for the same element, is symmeatce the
shortest path fromtoj and back is the same, and satisfies the triangle inequality. dtias,

a metric in a grapl® or a structural formul& that is called the path metric. Therefor®, (
dp) = (V,E, dp) and €, dp)=(V, E, dp) are metric spaces.

A molecular path of distanady(w, vi) in G or F can be introduced based on bond
lengths in the reference molecule embedded iRfrepace. Let M be a molecule composed
of atoms A=A, A, ..., An) and bonds B+, By, ..., Bm). Let the bond lengths (&), d(B2),

..., dBm)) be Cartesian distancesR{ between the bonded atoms, for instance, calculated
by a structural chemistry method. In the case where only one sthoatep=(E1, Ez,... Es)

from w to v existsaccording to the path metrit, the molecular path distana®(vi, vi) is

the sum of the bond lengths in the corresponding sequence of BanBs .(. Bs):

dp(vk, Vi) = X5-, d(B;)

On the other hand, when two or more the shortest path®, ..., p, exist according
to the path metriaf,, = d,,, = - = d,,, the shortest molecular path distargigis taken as

the minimum value ofl,:
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d, = min (d,)

The molecular path distanciis a metric. Indeed, the non-negativity, identity and
symmetry properties follow the useRiCartesian bond distances in a molecule. The triangle
inequality is obvious i, vj andw are placed at the same path. If there are multiple paths
(with no return) fromvi to w, the triangle inequality follows from the minimality requirement.
Hence G=(V, E, dp) andF=(V, E, dp) are metric spaces.

The molecular path metric, which is a special case of a weliglatd metric [36], can
be simply treated as a weighting function assigned to edges. Becdluséngbortant role of
distance-based parameters in GT and its connection to nmgiotogy, the path metrics

defined inG andF seem to be especially interesting.

2.1.3 Atom and bond representations

To define the structural formula, a representation of atemidands is essential, yet
implicit. The atoms can first and foremost be represented byIthekC atomic symbols
(accompanied by pluses, minuses, deltas, full stops, colons etc.,fehofatith or without
integer numbers) [37]. Yet, it is also possible to introduce atoraseptations in many other
ways, such as colors or, for example (Table 1):

(i) different graph representations of atowrs{ Gn,Gc,Gn,Go, ...}, including complete

graphs [38, 39];

(ii) ordered pairs\, Ai)) € VIIVxA wherevi is a vertex and is an atomic number;
(iii) vectors (orderedn-tuples) orkxl dimensional matrices in which non-zero entries
identify the kind of atoms; etc.

Apart from the line or multiple lines representation of the bpatter symbols like
dotted lines, arrows, arcs inside the rings, light and dankglea, waves etc., commonly
used in chemistry [37], physics [40], and in less basic versions of trapty [41-43] are
also used in the structural formulae approach. However, natural bondempt®ns such
as: (i) overlapped atomic, hybrid or molecular orbitals; (i) charge densitgwomiaps, 3D
surfaces or 3D diffused shapes [44]; (iii) bond critical poidts §6], etc. can be used as

well.
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Table 1. A few examples of a potentially vast catalogue of possible atpnegentations
which can be combined with the structural formula approach.

Atomic Atomic Atomic order ordered
symbol multigraph digraph ed n-tuple
pair
H o—de (v,1)  (1,0,0,0,0,0,0,0,0,...)
c D <§ : : (v,6)  (0,0,0,0,0,1,0,0,0,...)
N ﬁ @0 w7 (0,0,0,0,0,0,10,0,..)
o @ @ v 8)  (1,0,0,0,0,0,0,1,0,...)

The problem of cataloguing atom and bond representations of value in Weesgf
of CGT can be the subject of further research. For this studyeitaugh to keep in mind
that for the vast majority of chemical applications, the IUPA&Cepted atomic and bond
symbols can also have proper mathematical meaning.

2.1.4 Example

Let us consider a neutral, closed shell, vinylacetylene mel@cits ground electronic
state (Fig. 2). The molecule is well characterized [47], & isluable polymerization and
organic chemistry reactant and was proven present in the atmosphi@esnd#f8]. Assume
that this molecule has single bonds between the H and C atoms anddongle, triple, or
delocalized bonds between the C atoms. Two different graphicalseepagions of
vinylacetylene, Fig. 2a and 2b, can be exemplified in terms of pairsnilfefa of sets as
Fa=(Va,Ea) andFu=(V»,Eb), respectively. They have identical families of sets of eestand,
although one of the sets of edges,in Ea and inEy is identical, the two families of sets of

edges are not equinumerous &aandFy are not isomorphic.
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> 2 /3 1= —/ ?
1 2
o T
(Va, Ea): (Vb' Eb):
Va={V1,V2} Ea={E1,E2E3Es}: Vo={V1,Va}; Ex={Ey,Eo}
Vi={C1,C2,Ca.Ca Va={C1,C2.Ca.Cul;
V2={H 5,Hs,H7,Hs} Vo={Hs,He, Hy, He}
and and
E1={Hs-Ca,Hs-Ca, Hi-Ca,He-Cr}; E2={C -} E1={H5-C4,Hs-C2,H7-C1, Ha-Ca}
Es={C1=Cz}, E~{C+=C4} Ez={C2~Cs,Cr=C2 Co=Cal.
(a) (b)

Figure 2. Drawings of vinylacetylene (but-1-en-3-yne) sturat formulae showing (a) the
nominal bonds and (b) the bonds indicatingrtfedectron delocalization. Below the drawings,
the corresponding definitions in terms of famil@ssets of vertices and families of sets of
edges are presented.

2.1.5 Weighted SF

As in the chemical weighted graph theory [e.g-528 in the weighted structural
formula approach, the weights can be derived froyneomic or bond properties. Formally,
in SF, the weighting functions act on domains défe than in GT: they act on families of
sets of different elements, while in GT they acsets of uniform vertices and uniform edges.
Nevertheless, in both cases the result can beathe:swve end up with vertices and edges to
which some numbers are assigned. Indeed, in Tdhléh8 valency and partial charge may
be treated either as a result of acting of a fanfilyeighting function$={f1,f2} on SF, where
f1 andfz act separately on sets of C- and H-atoms, resgédgtin GT, these properties are
the result of the action of a sdte{f} function on the two types of elements. The same c
be said foig acting on different kinds of bonds.

Hence, what sense is there to introduce the neatifirmalism if, from the practical
point of view, the result may remain the same?tFimsour opinion, the SF version of CGT
is worth introducing because it allows the naturalusion of rich information about
chemical composition, topology and structure cargdiin the structural formula. Second,
within the SF concept, the use of weights for atamd bonds is self-explanatory. Third, the
well-developed GT machinery can be easily genezdlip all molecules that can be drawn

as structural formulae.
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2.2.1 Some GT matrices

Here we focus on the practical aim of constructing "more clathtapological indices
based on structural formulae which then may be applied as molecwaptigs in structure-
activity or structure-property studies. A lot of topological indicas be calculated from the
appropriate matrices associated with graphs. Therefore, betodemonstrate changes in
the form of some basic GT matrices when instead of a graplictusal formula is analyzed.
However, first, let us recall the basic relationships between sonmaiices:

The incidence matrix of the gra@) 1(G), is defined as follows:

I1(G) = |limnll, m=1, 2, ...k (vertices)n=1, 2, ...,| (edges):

imn=1 if vm is incident tcen and O otherwise.

@)

Thek rows and columns of[(G) correspond t& vertices and edges, respectively.

There are two squares of thectangulaii(G) matrix:

IT(G) 1,11 = °A(G)1sq + °V(G))x (edge adjacency and valency) )
and

(@)l (@i = YAG)ixk + "V(6) ik (vertex adjacency and valency)  (3)

where squard adjacency matrices are off-diagonal and symmetric, while s§uaaéency
ones are diagonal. The entriesffare either 1 or 0 depending on whether two edges or
vertices are adjacent or not. On the other hand, the entfgaref either all equal to 2¥)

or equal to vertex valencyY). Since the verteXAk«(G) and"V kx(G) matrices are used
much more often, they are written without the superscript "v", iescadere it does not lead

to confusion.

There are some simple equations connecting\( andV (G) matrices with certain
important GT matrices [54], e.g., the first and second Zagreb ma#i€3,andZ2(G); the
Randt connectivity matrix,R(G); the Laplacian matrix[L.(G); and the Distance matrix,
D(G):

Z,(G) = V(G) 4
Z,(G) = V(OAG)V(G) ©)
R(G) = d(6)A(G)d(G) (6)
L(6) = V(6) — A(G) @)

k

D(G) = Z i8:(G) (8)

i=1
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whered(G)=||(v)™]| is a diagonal matrix andig the valency of the vertéxNotice, that, for
instance, to calculate the Harary distance matrix [58 @nough to replace in the last
equation by 1/ The adjacency matrix through 2, 3, kedgesAz(G), As(G), ..., Ak(G), has
an entry equal to 1 if a respective path without repetition of lendgth.2, k exists and it is
the shortest path between these two vertices, and 0 otherwise.df more different paths
exist between two vertices, as in (multi)cyclic graphs, the entry rereqirs to 1.

The distance matri®(G) plays a central role in chemical GT, as the basic topological
Wiener index is calculated from it. Therefore, it is importhat theAi(G) adjacency matrix
can be expressed using th§G) maitrix, which is the-th power ofA(G) = Ay(G). Ther,s
entry of theA(G) matrix is equal to the number of paths with repetition of lentitween
verticesr ands. The unit entries of(G) indicate vertices connected by a path without
repetition and are in the same positions af\i{@), while all the otherA/(G) entries

correspond to zeros li(G):
Ai(6) = A (G)jx1-0 )
wherej#1—0 denotes that each entry different from Ai(G) is set equal to 0 iAi(G).

However, one can also skip the condition tha&i{G) the entry is 1 if and only if,
"this is the shortest path between these two vettiged conserve the condition that "
between two vertices there are two or more such paths therentgins equal to"1 Such
"full" adjacency matricedAi(G), may have, s entries equal to 1 for differei1,2,...k,...,
I, wherek is the number of edges ahé ks the longest path without repetition. Based on
the full adjacency matrix without repetition, one can define theudetdjacency matrix,
AAi(G):

2Ai(G)="Ai(G) jz1-0 (10)
wherej=1—0 symbolizes that 1 entry is set 0 when it is also 1 in any n@&iriresponding
to a longer path.

Based on detour adjacency matrices, the detour distance méB){56, 57], can be
defined as follows:

1

AG) =) i+ *A(6) (1)

i=l
wherel 2 k andl =k only for graphs of trees, and summing in the opposite direction is to

emphasize that that if an entry is 1 for a greiatiean for any smaller index, it is set to 0.
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2.2.2 The SF matrices
Let us start from the inciden&€SF) matrices of the simple hydrogen cyanide, ENC
and hydrogen isocyanide, H=lg, molecules (Fig. 3).

H-C C=N H-N N=C
"H Wl e o | 7 H wilen 0o
C | vd enc  vd ecn C 0 vdl enc
N 0 Wl ecn N Wl eHn wnl enc
I(H-C=N) I(H-N=C)

Figure 3. The incidencd(SP matrices of H-EN and H-N=C molecules

In the above example, the SF incidence matrices are defined as follows:

I(SF)isa = Viexk " 1(@kxa * E1xa
I(SF) = llimnll, W71, 2, ...k n=1, 2, ... 1
mn (12|)
Vixk = llvimll and&pg = llenll
imn = Um °sp €n If vmis incident taen and O otherwise.

wherel(G)k« is the incidence matrix of the graph correspondingRand entriearmanden
of the V.« andé&;,; diagonal matrices are treated as abstract elements whichuitiplied
according to an abstract (and not necessarily commutatye)peration. To make use of
Egs. (1)-(11), it is necessary to define thg osp ey, en ogp Um, U5 °sp U7 and eq ogp €
operations, as well as their additions. Notice, that these definitions ntayripdex because
the multiplication and addition depend on the atom and bond representatintisad in
section 2.1.3. However attractive, such an approach seems to go beyantdrtst of the
chemical graph theory and here will not be further considered.

Let us define the incidence matrix of the structural formiiflg¥’), as follows:
I(SF)ix1 = F (0m)iexi - 1@ xa * G (endixa
I(SF) = |limnll, 71, 2, ...k n=1, 2, ... I

F(Um)ixk = If (vm) |l and G (en)1xa = llg(en)l
imn = f (V) - g(ey) if vmis incident toen and O otherwise.

(12)

where F (vp)ixk and G (ey) are diagonal weighting matrices afifv,,) andg(e,) are

respectively atom and bonds weights, which are values éMheR andg:E— R functions.
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Now, the two squares of tHESP matrix,1"(SPixk I(SPkx« andI(SPkxi 1T(SPixk,
contain information on atoms and bond properties in both components: thdiagfhal
adjacency and diagonal valency matrices:

Vvkxk(SF) = ”me”

13
Vmm = fz(vm) ' [gz(emsl) + gz(emsz) + -+ gz(emsl)] ( )
VAka(SF) = ”amm” (14)
amn = f (V) - f() - gz(emn)
Vix1(SF) = |Ivpnll (15)
Von = gz(en) ) [fz(vnrl) + fz(vnrz)]

eAle(SF) = ”amm”

(16)

anm = g(en) " g(em) " f?(Wam)
wheres runs ovel vertices linked to thexth vertex;r indexes two vertices linked through
then-th edgepmn denotes the edge linking vertewith n; andvamdenotes the vertex through
which edges andm are adjacent.
Interestingly, assuming(e)=1 for an arbitrary, YA and"V but als’A and®*V depend
exclusively on vertex properties. And conversely, by seffipg1 for an arbitrary, A and
€V but also¥A and'V depend only on edge properties. A variety of other matrices and

topological indices can be obtained based on the vertex anddeailggV matrices. Thus,
mixing the vertex type of matrix with the edge properties petimtsonstruction of yet other

matrices and topological indices
Matrices (13)-(16) for the structural formula of dimethytbzamic acid (hydrocarbon-

hydrogen-depleted) molecule are labelled according to the IUPACandigsresented in Fig.
3, wheref(e)) andg(v;) are replaced bfy andg, respectively.

6 fig; figz  figs O 0 0
| 2 f01 0O 0 0 0 0
E°/4N§f0 0 fagg O o 0 fags
5 b e 0 0 fags  fags fags O
3H 0 0 0 fsga O 0
7 0 0 0 0 figs O
0 0 0 0 0 f7ge
dimethylcarbamic acid (DMCA) I(SFomca)
fo(gP+gletg?s)  fifegs  fifage fifagPs 0 0 0
fafags f20%1 0 0 0 0 0
fifag? 0 f23(g%+g%) O 0 0 faf7g%

fafag?s 0 0 f2(g%t+g2tg®s) fafsga  fafeg’s O
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0 0 0 fafsga f%g% O 0

0 0 0 fafeg?s 0 f%g% O

0 0 fafrg% 0 0 0 f219%
VA(SFomca)+'V(SFomca)

gA(f 2+ %)  qugf2 019sf 21 0 0 0

0102f 21 g2(fa+f %) 0 0 0 0206f %3

gugsf 41 0 Q%(f 21+ 2%)  Qagaf % 0 0

0 0 g3g4f2a g%(f %4+ 2%)  gagsf % 0

0 0 0 g30sf % Ps(f2+f%) O

0 gogsef % 0 0 0 oPe(f 23+f %)
€A (SFomca)+V(SFomca)

Figure3. The incidence, edge, vertex adjacency and valency matrices fyrditeearbon-
hydrogel-depleted structural formula of the dimethylcarbamic acid mole

Now, the vertex and edge first Zagreb SF matritEBsand®Zi, have the following
forms:
VZ1(SF) = |[vimll
Vim = fib(Ghs, + Ghus, + -+ Ghs)” (17)
Z1(SF) = |IVanll

2
Vrzm = g;tz(fnzrl + fner)
where the simplified index notation is similar to that in Bidecause in Eq. (17) and (18)

(18)

only powers of the valency matrix entries are present, it sémnhese two Zagreb matrices
do not introduce more information than do Yieand®V valency matrices.

The vertex and edge second Zagreb SF mattiZeandZz, have the following forms:

VZ,(SF) = || zo,mnl|

v, _ v v, v,
Zzmn = Vm @mn Vn

Vamn = [f2(gs, + Gs, + -+ Ghs) | Unfa Gl 2 (0%, + 92, + -+ g2)] (19
Vzgmn = frfn Gan(Ghs, + Ghs, + 1 + Gs) (Ghe, + Ghe, + -+ G2)
eZz(SF) = ” eZz,nm”
eZZ,nm = eVn E!anm evm
eZz,nm = [grzl(fnzrl + fnzrz)][gngmfnzm] [grzn(fnqu + fnzqz)] (20)

eZZ,nm = ggg%fnzm(fnzrl + fnzrz)(fnqu + fnzqz)

where the indices have analogous meanings to those used for (13)-(16).
The Randi matrix can be defined analogously to the second Zagreb matrix using the
2(SP=||(4)™¥]| matrix instead of the valency matrix. Thus:
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VRESF) = || Vrmnl|

-1 -1
vrmn = (Vme) 2( Vamn)( vVnn) 2=

1 -1 21
on = [2(gBs, + G, + -+ G )] UnfagBul 12003, + g3, + -+ g2 )] F @D
-1
Vrmn = fngtfnzgrznn[(.grznsl + grznsz +ot grznsl)(grzltl + .grzltz +ot ggtl)] 2
*R(SF) = || *roml|
1 1
ernm =( eVnn)_E( eanm)( eme)_E (22)

o = (9305, + )] (900 il 95y + )]
ernm = g?%grznfnzm [(fnzn + fnzrz)(fnzm + fn2q2 )] 2

Expressions for the Laplacian matricdsSF) anc’L(SF), are simple (7) and require
no comments.
On the other hand, calculation of the SF distamagicesD(SF and°D(SF), requires

determining the subsequéti(SF) and®Aj(SF matrices and then summation as in (9):

K
D(SF) = Z A (SF) 23)
i=1
6 vift  wafy vifi 0 0 0
ele é vof2 0 0 0 0 0
e4 es
“a 0 vafsgz O 0 0 vafs
5 Y 0 o vafa  vafa  vafa O
O 0 o 0 wiks 0 0
e 7 0 0 0 0 vefs O
0 0 0 0 0 vif7
dimethylcarbamic acid (DMCA) V(SFomea) f (SFopmca)l(Gppca)
0 aroofifog?s  arosfifsg?2  aaadfafag?s O 0 0
aazfif2g?s 0 0 0 0 0
a1a3fifsg? 0O 0 0 0 0 azarfafrg?s
atoafifag?s 0 0 0 asosfafsg?a  aaosfafeg’s O
0 0 0 aaosfafsg’s 0 0 0
0 0 0 aaacfafeg’s O 0 0
0] 0 azsarfsfrg%e O 0 0 0
VZ2(SFomca) if am="Vmm or YR (SFomca) am="8m
Carfo201gof 21 Canasgugaf? O 0 0
Conagugf 21 0 0 0 0 Coofaegogefl %3
Corfosgigaf 21 O 0 Cos®oagagaf 4 0 0
0 0 €osfaagagaf 4 0 Casfosgagsf 4 0
0 0 0 Cosfasgagst % 0 0
0 Cofasggef 23 0 0 0 0
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eZz(SFDMCA) if on=Svnn Or e[R(SFDMCA) an=%6nn

fafag?s ffag? fifag’s 2ffagPafafsPs 2hfagPafafocPs 2hifa%faf0%

1f20%1 0 2fifag?ififag’s 2fifagPififags 3ffag?ififagafafsg? 3hfag?ififagPafafeg’s 3ffag?ififagafafrg%

1fag?2 2fsfag?afifag 0 2fsfag?fifag?s 3fafogafrfag?af1fag?% 3fafegsfrfag?afifag% faf10%

gt 2hfagfatitac?s 2ifsg?hitacfs 0 fufeg fefec?s Bhufugfilsgfge

fifugPafafoq®s 3ffoghififagPofafog?  3fafsgafifag?afifag?  fafsgPs 0 2fafsgPafafoq’s Afsf2af12afr0%20%0%0°
]

fifag?afafeq?s  SfafagPafifagPofafeg®  3fafeg?sfifagafifag?e  fafeg?s 2fafsg?afafeq?s 0 Afef2af?1 707207070
s

fifag?fafrg%  Sfafaghafifag?fafig%  fafig% 3fufag?afifag?fafrg%  Afsfaftaf?afrg?ag?ag?ag?  Afefafiaf?afrg?ag?a0%0% O

VD(SFomca)

ol [eileniiy 0193f1? 20103f12ggafs? 20103f12gsgsfa? 20192f12g206f3?

0102112 0 020sf1? 20203f12gagaf4? 20203f12gsgsfa? 0206f3?

010sf12 g2gsf1? 0 g3g4fa? g3Qsfa? 202g3f12g2gefs?

20103f12030af4?  20203f12ga0afs?  gagafa? 0 303gafa?ggsfigogefs?

20105120305t 2020sf1%gsgsfa®  gagsfa? gagsfa? 0 3930sfa?g20sf1°g2gefs?

20102f170206f3?  gogefa® 20203f12g206f>  3930afs?g20sf120206fa®  3gagsfa?gegsfi’gogefz? O

“D(SFomca)

Figure4. The second Zagreb and Rahdértex matrices and the vertex and edge distance
matrices for the hydrocarbon-hydrogen-depleted structural formula of the
dimethylcarbamic acid molecu
It can be useful to know that théedik entry inYA2(SF) has the following form:
(.92 1) (fi92 fi) = (fif? fi) (g2 g?). which indicates that the path from the veritéa the
vertexk goes through the vertg)by the edgep (fromi toj) andr (fromj to k). Similarly,
the (ag)i entry invA 3(SF corresponding to the paih»j—k—l through the edggs—r—s

has the following form(f; g3 ;) (f;9%fi) (g2 f)) = (fif i £1) (9397 92)-
Analogously, the ®g)ps entry in °A2(SP) eqals: (g,fi79-)(9-f79s) =
(9p9%295)(f2f7) (the pathp—r—s by the vertices andj), and Eas)pt in °As(SP) is as

follows: (g,f%9r)(9rf7 95)(9sf¢ 9e) = (9p9%929:)(f7 £ fi) (pathp—r—s—t through
i—j—K).

Yet, the following question still remains unanswered: what if diffe paths connect
the same two pointsandk but go through different verticgsandj"? We can see this
phenomenon in cyclic structures, such as the paths betweens/éréoe 3 in cyclobutane:
1-2—3 and 1>4—3. In unweighted graphs, the corresponding entry is simply 1, b8Ffor
we would obtain two different matrices describing the same staldbrmula. Therefore,
we propose that for structural formulae of a cyclic moleculexiit8F) entries in theX(SFH

matrix can be understood as arithmetic means over all paths of the same length:

r

x;;(SF) = %Z X (SF) (24)

p=1
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wherer is the number of different paths of the same lefigtim i to j. Assume that in edge

matrices, we understand a path as a way througtequknt vertices.

2.2.3 The SF topological indices

For graphs several topological indices are obthiag half of the sum of the off-
diagonal elements of topological square symmetritrion B (Croatian D with a stroke)
p(B(G)) [54]. For any square symmetricn&® matrix of the structural formulasuch

topological indicep(B(SP) can be defined analogously:

n

1
POSFN =5 Y dy(SP) (25)

i=1,j=1,i#j

Indeed, the WieneDetour, Zagreb 2, Rantdtonnectivity and Laplacian topological
indices of a structural formula can be obtainednfrdistance and the other mentioned SF
matrices. However, three versions of the weightecidence SF matrix (12) can be
constructed, be it vertex or edge type of the matn consequence, for each pair of atom
and bond properties, three versions of the topoldgndices can be formulated: (i) the
atomic-property-weighted index; (ii) the bond-prageneighted index; and (iii) the mixed
atomic-and-bond-properties-weighted index. Thus ifstance, three weighted distance
vertex matrices can be written and three appragyiaveighted Wiener indices can be
calculated. The same holds true for the edge distaratrix. Moreover, for the Zagreb 2 and
Randt indices, Eq. (19)-(22), even more complex inditey be calculated.

Table 3. The second Zagreb, Raadind Wiener vertex (v) and edge (e) indices for the
hydrocarbon-hydrogen-depleted structural formuladohethylcarbamic acid (DMCA),
isobutyric acid (IBA) and two representations afyliacetylene (VA) molecules using NBO
partial charges, g, and bond lengths, R (A), Wiberg atom indicesa@ bond orders (bo)
(Table S1) as the weights for atoms and bonds baisé&tBO calculations at the B3LYP/6-
31G** level (Table S2).

DMCA IBA VAl VA2
\ ./ /"
index /\f /Lf index A // A _/é/
O\H O\H H H H ’ H
v € v e \ € v e

Zy(q,R) | -17.329  26.879| -9.363 17.519 Zy(a,bo | 3850240 | 573440/ 2670179.9 649548.9
R(q,R) | -0.752 3.742| -0.768 9.699 R(a,bo 1.984 1.008 1.410 1.006

D(q,R) | -2.370  20.712| 4.252 14.141 D(a,bo | 449248 3152 416634.8 3430.2
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As an example, observe the Zagreb 2, Raadd Wiener vertex and edge indices
determined for the hydrocarbon-hydrogen-depleted structural formulakee oflimethyl
carbamic acid, isobutyric acid and vinyl acetylene (Table 8utzted based on NBO partial
charges, bond lengths, atom indices and bond orders (Tables S1 and S2pe&tionf
Table 3 indicates that:

(i) molecules exhibiting the same graphs but different structioahulae have
significantly different SF topological indices;

(ii) both the vertex and edge topological indices significantly diffeatnthe structural
formulae;

(iii) the values of the indices, including the Wiener index, cavolie negative or positive.

Basic knowledge of computational and structural chemistry also tediti@atthe SF

topological indices depend on:

(iv) the method with which weighting parameters were obtained; and thus
(v) the conformation or the physical state in which they were estimated.

The latter two remarks provoke the question of whether SF topolauiiozts can still
be called "topological" if they depend on geometrical and/or physicaigderization. Note,
however, that SF are objects in spaces without a scalar prodecthogonality: neither
angles nor solid angles are necessary to calculate basic topbladices. Thus the spaces
used in the SF approach, may, at least, not be standard Cartesian Bbf@esver, the
influence of the physical property of the weight on SF topological indeleaninimized
by the weight standardization, or by using parameters of the mblet stalecular form, etc.
Nevertheless eventually, the answer to the above question is autharitety are calculated
in the same way as GT topological indices and thus it is practical to call tyeohotical".

On the other hand, why introduce all those SF topological indicegiathenetrization
requires some physical or quantum chemical studies? Would it not benataral to analyze
the problem based solely on unprocessed quantum chemical data? Innbom,dpe SF
topological indices are worth calculating for the same reasohs asdinary GT topological
indices: they can be calculated quickly and can introduce molechiaracteristics
complementary to the common quantum or physical chemistry data. They diversify the pool
of potentially useful independent variables in QSAR/QSPR. Thusijkélyg that using them
allows one to better model some specific molecular propertigsstiie SF approach than

with only GT methods or quantum-chemistry data. However, the selectioroletular
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characteristics useful in serious QSAR or QSPR modelling shouydebeded by a careful
introductory inspection of experimental and SF data.

2.2.4 The HOMA index

Aromaticity is a concept extensively referred to in chengcaph theory [e.g., 58-62]
and in physical organic chemistry [e.g., 63-68]. It seems that its&fsition is enumerative
and comprised of four criteria: 1. energetic, 2. geometric, 3. magmaiic 4. chemical
reactivity [63]. The second most used index after NICS (magasdinaticity) [64, 66, 69]
is probably the HOMA (geometric aromaticity) index [64, 65, 70, 71]défied as follows:

n
a
HOMA =1 — ZZ(Ri — Rope)? (26)
i=1

whereR andRopt stand for distances of thh ring bond in the analyzed structure and the
reference optimal bond in benzene (1.388 A), migithe number of CC bonds in the ring,
whereast = 257.7 A2 is a normalization factor guaranteeing that the unitless H@déx

of an aromatic compound approaches 1 and that of its Kekulé non-arstatiture
approaches 0.

Recently we have shown that the HOMA index expresses much mareotiha
aromaticity, because it reasonably characterizes cyclic moleculedlesgeof whether they
are aromatic, non-aromatic, unsaturated or saturated [70]. \Wedn#his generalized
aromaticity property thesavoricity Moreover, we have also demonstrated that HOMA
valuably characterizes acyclic structures, whether delocalized ofhotg].

Hence, HOMA is a useful, angle-independent, general geometrieal. ittdcan be
used to any molecule if the HOMA parametrization for heteroatsnmtroduced [73, 74].
However, it becomes useless as a GT topological index, becausy fadanary graptir =
Ropt= 1 and HOMA=1. Yet, HOMA does not equal 1 for SF with differeaatiaatoms and/or
bonds. Such a SF is a metric space with the molecular patie (8ction 2.1.2). It is worth
adding that not only bond length can constitute the molecular path metRef.I70, we
demonstrated that HOMA can be treated as a function, HOMA(-)otleér bond
characteristics such as, for example, electron demgityr (its Laplacian in the bond critical
point. Thus, HOMA(R), HOMA(), and others may provide precious information and a clear
distinction between structures for which pure topological data are degehnerate
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2.2.5 An alternative to the presented SF approach

Here, the SF version of GT is constructed based on the modifiedrceid®trix Eq.
(12). After this adjustment no further intervention into the SFineatis made. Although the
incidence matrix contains all information about the described graphsibeen relatively
infrequently exploited in the chemical graph theory [75]. Thereforey Jeiostowski, the
first reader of this paper, rightly noticed that grounding the SFepbnon a modified
adjacency matrix would probably be more intuitive for the chemggaph theorists
community. Indeed, the CGT reasoning usually begins with presentatibe afifacency
matrix. Moreover, for ther -electronic systems, the adjacency matrix looks like the Huickel
hamiltonian matrix [76-79]. In such SRpproach, the atom properties would be present at
diagonal of theVa valency matrix and the bond properties would be located at the off-
diagonal elements of then adjacency matrix. All the next steps can be identical as dedcribe
in equations (4)-(11). As a side effect, the entries imthenatrix would not be the second
powers of the incidence matrix elements which could simplify furgtxgressions. This is
indeed good and natural way to construct the SF concept. Nevertheledspwlgnk that
the Sk approach has some deficiencies or, at least, the approach piesetitis paper
exhibits some advantages over the 8ke.

First, by modifying the incidence matrix in our SF version, we obtaironiyt the
vertex but also the edge adjacency and valency matrices. Ingtoimtithe Sk construction,
obtaining the edge matrices needs new definitions of the diagomarekein théVa matrix
and the off-diagonal elements of i ones. Despite at the momaently little attention is
being paid to the edge-matrices-derived topological indices, tlyibenehanged since within
the SF approach such indices can be better differentiatece(3ptlotice that obtaining the
rectangular incidence matrix through an operation similar to arescraat of Aa, and
indirectly generate the edge variants of the adjacency matrigt sasy. Such an operation
is not unequivocal although the algorithms for similar procedure asdaped quite some
time ago [80-82]. Second, using two different diagonal weighting majfiaes) andg(e,)
to define the SF incidence matrix makes it possible to egsifgrate a large number of
closely related, but different, matrices and topological indicess Ty significantly
improve the pool of topological descriptors for use in QSAR/QSPR/sewl Third, in the
SFa construction, the atom and bond properties are separated ¥ thied Aa matrices,
respectively, whereas in the SF version presented her¥,rtiarix elements contain some
contributions from bonds formed by given atoms andAthmatrix elements contain some
contributions from atoms linked by the bonds.
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Eventually, both approaches are slightly different but seem to be good emough
introduce the structural formula version of the graph theory. Aftiergood codes for
calculating the SF topological indices can help in forgetting about seconveniences of
the formalism behind the approaches and in focusing on examining potentidl {bratfican
be earned from using new descriptors. Series of computational regpésiand successful
applications of topological indices obtained within one or the otirerdlism can promote
one approach over the other.

3. Conclusions

The aim of this paper has been to better connect graph theoheitastry. It is
desirable that in such a modified GT, any molecule considered insthecan be studied
without loss of information about atoms and bonds present in its salédumula and
topological indices can be calculated directly from the formubadd this we proposed the
Structural Formula (SF) approach in which different kinds of westand edges are possible.
Only a slight modification of GT is sufficient to construct Ste SF is a pail, E) where
V is a family of sets of vertices afitlis a family of sets of edges instead of single V and E
sets in definition of a graph. The weighting functions defined onaimdiés of sets allow
for easy introduction of atoms and bonds properties to the SF incidat@e ithen, through
simple equations, the chemical information is transferred to S#heratrices such as Zagreb,
Randt and distance, and to the corresponding SF topological indices. Finabjowethat
the HOMA geometrical aromaticity index can be treated as the SF topdloglex.

In the SF concept, there is room to color vertices and edgde ase other
representations of vertices and/or edges. The SF concept can hethmodified. For
example, it is easy to include unary amdry relations between vertices or use hypervertices
and obtain a hyper structural formula approach or include a chiralitgnyopithin a SF.
Families of sets can also be replaced by multisets. Finalsgats that classical GT
problems, such as shortest paths, travelling salesman, vertex oéatgegccan be easily

transferred to the SF framework.
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Figure S2. Comparison of vertex and edge R&naind distance matrices for hydrocarbon-
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Table S1. Example of weighting functions for structural formula of vinylacetylene
based on NBO calculations at the B3LYP/6-31G** level. The Wiberg atdex and
bond order are sums of square of corresponding elements of the densitymid&O

basis [53].
valency partial NBO charg multiplicity
Wiberg summed Wiberg
atom nominal atom into C- NBO bond nominal bond
index atom: ordel
C1 4 3.90¢ 0.07(C -0.381 | Ci=C2 2 1.88¢
Cz 4 3.94( -0.04¢ -0.301 | Cz-Cs 1 1.13(
Cs 4 3.987 -0.053 -0.053 Cz=Cs 3 2.816
Ca 4 3.93( 0.03: -0.211 | Ci-Hs 1 0.92¢
Hs 1 0.94: 0.00( 0.24¢ | Ci-Hr 1 0.931
He 1 0.93¢ 0.00( 0.252 | Cz-He 1 0.88¢
H7 1 0.951 0.00( 0.22f | Cs-Hs 1 0.92¢
Hs 1 0.951] 0.00( 0.22¢

Table S2. The NBO partial chargeg)(and bond lengths (A) as the weighs for atoms

and bonds

for

hydrocarbon-hydrogen-depleted

structural

formula of the

dimethylcarbamic acid (DMCApnd isobutyric acid (IBA) molecules based on NBO
calculations at the B3LYP/6-31G** level.

NBO partial charg bond lengtt
atom DMCA IBA bond DMCA IBA
c1 0.93: 0.831 C1=0x: 1.22; 1.212
02 0.67¢ 0.60: | C1-03 1.367 1.35¢
03 -0.74¢ 0721 | C1-N4(C4) 1.367 1.52(
N4(C4 -0.49: -0.35¢ N4-C5(CC5) 1.45¢ 1.54%
cs -0.481 -0.68: N4-C6(C-CB) 1.45¢ 1.53(
Cé6 -0.48( 0.681 | O3-H7 0.96¢ 0.97:
H7 0.51¢ 0.50:




