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Abstract 

The proposed Structural Formula (SF) concept is a version of Graph Theory 
(GT) with different kinds of vertices and edges. Within SF, any molecule 
depicted according to the IUPAC rules can be analyzed as it is drawn. The 
construction of SF requires only a slight modification of the graph 
definition: a family of sets of vertices and a family of sets of edges are 
assigned to different kinds of atoms and bonds instead of a single set of 
vertices and a single set of edges. To easily introduce the physical 
characteristics of atoms and bonds, we also include a family of weighting 
functions defined on families of vertices and edges. The characteristics are 
introduced in analyses of the SF formula through the SF incidence matrix 
and then, through simple equations, are transferred to other SF matrices, 
such as Zagreb, Randić and distance and, ultimately, SF topological indices. 
Finally, we show that the HOMA geometrical aromaticity index can be 
treated like the SF topological index. 

 

1. Introduction 

 There is no chemistry without atoms. Nevertheless, a lot of molecular properties, such 

as number of isomers, boiling point, aromaticity and π-electron delocalization reveal strong 

connections to molecular topology, to such an extent that the kind of atom seems to play a 

secondary role [1-8]. These properties are modeled well by graph theory (GT) and its various 

adaptations to chemistry [e.g., 9-13]. The role of these methods for modern chemistry cannot 
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be overestimated. Moreover, some purely chemical inventions to graph theory are now also 

studied in the field of mathematics [14-23].  

 However, it seems that chemists’ initial fascination with graph theory has worn off a 

bit. This is hardly surprising. One can mostly attribute this decline of interest to the 

development of quantum and computational chemistry [24-26]. These methods can now be 

used in almost every chemical laboratory and can provide justified answers to several 

problems that have been posed in the field of the chemical graph theory (CGT). Another 

reason for the approach’s diminished popularity is the way CGT is developed. The discipline 

has become less chemical, more abstract and increasingly difficult for chemists to understand. 

For chemists, there is also a fundamental flaw inherent in graph theory: it does not 

differentiate atoms or bonds [9].  

1,3-dimethylcyclohexane 

 

cyclohexane-1,3-
diol 

3,5-dimethylcyclohexene 

 

 

cyclohex-4-ene-
1,3-diol 

1,5-dimethylcyclohexa-1,3-
diene 

 

cyclohex-4-ene-
1,3-dione 

1,3-dimethylcyclohexa-1,3,5-
triene 

 

3H-pyridine-2,6-
dione 

m-xylene 

 

uracil  

 
Figure 1. Structural formulae of molecules which, in the most fundamental version of 
the graph theory, are all represented by the top left graph of 1,3-dimethylcyclohexane. 
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Many modifications of GT have been proposed to counter this perceived defect. 

Weighted graphs [27, 28], graphs with multiple edges and loops (multigraphs) [29], complete 

graphs with a core electron representation [30], hypergraphs, and parameterizations of 

topological indices partially fill the gap between the needs of chemistry and the mathematics 

behind chemical graph theory. However, none of these seem to be a universal remedy to the 

divergence between the areas of interest in chemistry and a graph theory description of 

chemical structure. Even if a perfect GT description of chemical structures does not exist, 

searching for a better GT model of molecules still seems worthwhile. 

 In this paper, we analyze possible improvements in describing structural formulae with 

graph-theoretical methods. Structural formulae are the essence of chemical thinking and 

reasoning. On the other hand, they are very similar to graphs used in many fields of 

theoretical and applied mathematics. This similarity and the advanced level of graph theory 

methods have probably been the main reasons why a more adequate theory describing 

chemical structural formulae has not been needed for decades. Thus, GT methods have been 

applied to chemical problems without any special adaptation. If a problem was not 

satisfactorily described, one would use a "chemical parametrization" or a more sophisticated, 

yet known, version of the graph theory. 

 Yet, generalizing graph theory for a better representation of structural formulae does 

not seem to be that difficult. It suffices to: (1) differentiate the vertices so that they represent 

the whole periodic table of elements, (2) differentiate the edges so that they can flexibly 

represent many different kinds of bonds and (3) facilitate the introduction of chemical 

characteristics of atoms and bonds to the newly defined topological indices. Here, we show 

how to formulate such a theory that operates on common structural formulae and generates 

topological indices directly from them. To do this, we consider families of sets instead of the 

sets themselves, as well as IUPAC and some other representations of atoms and bonds. We 

also describe the addition and multiplication of abstract elements. Based on a so-defined SF 

concept, it becomes clear that, for example, the widely used HOMA geometrical aromaticity 

index is a topological index of a certain version of SF theory.  
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2. The concept 

2.1.1 Structural formula 

 Let us first recall the definition of a graph.  

Definition 1. A graph G is an ordered pair of sets G=(V, E) where V is an arbitrary finite 

nonempty set and E is a subset of its Cartesian product E⊆V×V.  

Definition 2. A doubly-weighted graph is a quadruple Gf,g=(V, E, f, g), where f and g are 

vertex and edge weighting functions f:V→ ℝ and g:E→ ℝ, respectively, and ℝ is the set of 

real numbers. 

 A structural formula can be defined similarly using families of sets instead of sets: 

Definition 3. A structural formula is an ordered pair of families of sets F=(V, E), where V is 

an arbitrary finite family of nonempty sets and E is a subset of its Cartesian product E ⊆ V 

× V.  

Definition 4. A doubly weighted structural formula is a quadruple Ff,g=(V, E, f, g) composed 

of V, E: E⊆ V × V, and two weighting functions f and g over V and E, respectively, f:V→ℝ 

and g:E→ℝ.  

 The family of sets V={V1,V2, …, Vm} is composed of sets of different vertices 

(representing different atoms) and the family of sets E={E1,E2, …, En} is composed of sets 

of different edges (representing different bonds).  

 The Cartesian product A × B of two families of sets, A={A1, A2, …, Am} and B={B1, 

B2, …, Bn}, is a set of Cartesian products A × B = {A1 × B1, A1 × B2, …, Am × Bn}. The 

function f:A→ℝ over a family of sets A acts on each of the sets in the family. 

 
Remarks: 

 If only one set of vertices and one set of edges is considered, Definitions 3 and 4 are 

reduced to Definitions 1 and 2, respectively, and the SF concept is reduced to the GT 

approach. In contrast, applying the SF formulation allows all the drawings in Fig. 1 to be 

distinct SF objects. 

 The additional introduction of unary and m-ary relations to E would allow both the use 

of more than one type of loops on vertices and hyperedges between m-vertices. Thus, 

generalizing the SF concept towards a hyper structural formula approach requires only the 

additional assumption that E ⸦ Vk, where k=1, 2, …, m. Loops and hyperedges can be helpful 

to characterize functional groups or to distinguish some atoms in the formulae. 
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 There are two ways of modifying the vertices and edges in a graph to construct a 

structural formula. The first would be to declare atomic/bond symbols. The second would be 

assigning weights to them. Applying both approaches simultaneously may seem superfluous, 

but they accomplish different objectives. The former guarantees that any structural formula 

taken from a chemical text can be mathematically analyzed if the meaning of all elements of 

the chemical structural formulae is well explained. The latter allows to flexibly assign atom 

and bond descriptors to vertices and edges of a given type. 

 It seems that classical GT problems such as shortest paths, travelling salesman, vertex 

or edge coloring can be easily transferred to the realm of SF.  

 

2.1.2 Path metrics 

 In a graph G and a structural formula F, a path p from vertex vi to vj is a finite sequence 

of edges (E1, E2,… Es) connecting the corresponding sequence of vertices. A path distance 

dp between vertices [36] can also be defined as follows: 

1 21

0 for  

( , ) 1 for  adjacent to 
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 Observe that dp is non-negative, is zero for the same element, is symmetric since the 

shortest path from i to j and back is the same, and satisfies the triangle inequality. Thus, dp is 

a metric in a graph G or a structural formula F that is called the path metric. Therefore, (G, 

dp) = (V,E, dp) and (F, dp)=(V, E, dp) are metric spaces. 

 A molecular path of distance dp(vk, vl) in G or F can be introduced based on bond 

lengths in the reference molecule embedded in the ℝ3 space. Let M be a molecule composed 

of atoms A=(A1, A2, …, An) and bonds B=(B1, B2, …, Bm). Let the bond lengths (d(B1), d(B2), 

…, d(Bm)) be Cartesian distances in ℝ3 between the bonded atoms, for instance, calculated 

by a structural chemistry method. In the case where only one shortest path p=(E1, E2,… Es) 

from vk to vl exists according to the path metric dp, the molecular path distance dp(vi, vj) is 

the sum of the bond lengths in the corresponding sequence of bonds (B1, B2,… Bs):   

dp(vk, vl) = ∑ �����	�
�  
  

 On the other hand, when two or more the shortest paths, p1, p2, …, pt, exist according 

to the path metric, ��
 = ��� = ⋯ = ���, the shortest molecular path distance dp is taken as 

the minimum value of dp:  
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�� = min�
�,�,..������ 
 The molecular path distance dp is a metric. Indeed, the non-negativity, identity and 

symmetry properties follow the use of ℝ3
 Cartesian bond distances in a molecule. The triangle 

inequality is obvious if vi, vj and vk are placed at the same path. If there are multiple paths 

(with no return) from vi to vk, the triangle inequality follows from the minimality requirement. 

Hence, G=(V, E, dp) and F=(V, E, dp) are metric spaces. 

 The molecular path metric, which is a special case of a weighted path metric [36], can 

be simply treated as a weighting function assigned to edges. Because of the important role of 

distance-based parameters in GT and its connection to metric topology, the path metrics 

defined in G and F seem to be especially interesting. 

 

2.1.3 Atom and bond representations 

 To define the structural formula, a representation of atoms and bonds is essential, yet 

implicit. The atoms can first and foremost be represented by their IUPAC atomic symbols 

(accompanied by pluses, minuses, deltas, full stops, colons etc., all of them with or without 

integer numbers) [37]. Yet, it is also possible to introduce atom representations in many other 

ways, such as colors or, for example (Table 1): 

(i)  different graph representations of atoms V={GH,GC,GN,GO, …}, including complete 

graphs [38, 39]; 

(ii)  ordered pairs (vi, Ai) ∈ V⸦V×A where vi is a vertex and Ai is an atomic number;  

(iii) vectors (ordered n-tuples) or k×l dimensional matrices in which non-zero entries 

identify the kind of atoms; etc. 

 Apart from the line or multiple lines representation of the bonds, other symbols like 

dotted lines, arrows, arcs inside the rings, light and dark triangles, waves etc., commonly 

used in chemistry [37], physics [40], and in less basic versions of graph theory [41-43] are 

also used in the structural formulae approach. However, natural bond representations such 

as: (i) overlapped atomic, hybrid or molecular orbitals; (ii) charge density contour maps, 3D 

surfaces or 3D diffused shapes [44]; (iii) bond critical points [45, 46], etc. can be used as 

well.   
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Table 1. A few examples of a potentially vast catalogue of possible atom representations 
which can be combined with the structural formula approach. 
 

Atomic 
symbol 

Atomic 
multigraph 

Atomic 
digraph 

order
ed 

pair 

ordered 
n-tuple 

 

 
H 
 

  

  

(v, 1) (1,0,0,0,0,0,0,0,0,…) 

 
C 
 

(v, 6) (0,0,0,0,0,1,0,0,0,…) 

 
 

N 
 
 

(v, 7) (0,0,0,0,0,0,1,0,0,…) 

  

 
 

O (v, 8) (1,0,0,0,0,0,0,1,0,…) 

 

 The problem of cataloguing atom and bond representations of value in the SF version 

of CGT can be the subject of further research. For this study, it is enough to keep in mind 

that for the vast majority of chemical applications, the IUPAC accepted atomic and bond 

symbols can also have proper mathematical meaning. 

 

2.1.4 Example 

 Let us consider a neutral, closed shell, vinylacetylene molecule in its ground electronic 

state (Fig. 2). The molecule is well characterized [47], it is a valuable polymerization and 

organic chemistry reactant and was proven present in the atmosphere of Titan [48]. Assume 

that this molecule has single bonds between the H and C atoms and single, double, triple, or 

delocalized bonds between the C atoms. Two different graphical representations of 

vinylacetylene, Fig. 2a and 2b, can be exemplified in terms of pairs of families of sets as 

Fa=(Va,Ea) and Fb=(Vb,Eb), respectively. They have identical families of sets of vertices and, 

although one of the sets of edges, E1, in Ea and in Eb is identical, the two families of sets of 

edges are not equinumerous and Fa and Fb are not isomorphic.  
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(Va, Ea): 
Va={V1,V2} Ea={E1,E2,E3,E4}: 

V1={C1,C2,C3,C4}; 
V2={H 5,H6,H7,H8} 

and 
E1={H 5-C4,H6-C2,H7-C1,H8-C1}; E2={C2-C3} 

E3={C1=C2}, E4={C3≡C4} 

(Vb, Eb): 
Vb={V1,V2}; Eb={E1,E2} 

V1={C1,C2,C3,C4}; 
V2={H 5,H6,H7,H8} 

and 
E1={H 5-C4,H6-C2,H7-C1, H8-C1} 

E2={C2≈C3,C1≈C2,C3≈C4}. 
  

(a) (b) 
 

Figure 2. Drawings of vinylacetylene (but-1-en-3-yne) structural formulae showing (a) the 
nominal bonds and (b) the bonds indicating the π-electron delocalization. Below the drawings, 
the corresponding definitions in terms of families of sets of vertices and families of sets of 
edges are presented. 

 
  

2.1.5 Weighted SF 

 As in the chemical weighted graph theory [e.g., 49-52], in the weighted structural 

formula approach, the weights can be derived from any atomic or bond properties. Formally, 

in SF, the weighting functions act on domains different than in GT: they act on families of 

sets of different elements, while in GT they act on sets of uniform vertices and uniform edges. 

Nevertheless, in both cases the result can be the same: we end up with vertices and edges to 

which some numbers are assigned. Indeed, in Table S1, the valency and partial charge may 

be treated either as a result of acting of a family of weighting functions f={ f1,f2} on SF, where 

f1 and f2 act separately on sets of C- and H-atoms, respectively. In GT, these properties are 

the result of the action of a sole f={ f} function on the two types of elements. The same can 

be said for g acting on different kinds of bonds. 

 Hence, what sense is there to introduce the modified formalism if, from the practical 

point of view, the result may remain the same? First, in our opinion, the SF version of CGT 

is worth introducing because it allows the natural inclusion of rich information about 

chemical composition, topology and structure contained in the structural formula. Second, 

within the SF concept, the use of weights for atoms and bonds is self-explanatory. Third, the 

well-developed GT machinery can be easily generalized to all molecules that can be drawn 

as structural formulae. 
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2.2.1 Some GT matrices 

 Here we focus on the practical aim of constructing "more chemical" topological indices 

based on structural formulae which then may be applied as molecular descriptors in structure-

activity or structure-property studies. A lot of topological indices can be calculated from the 

appropriate matrices associated with graphs. Therefore, below we demonstrate changes in 

the form of some basic GT matrices when instead of a graph, a structural formula is analyzed. 

However, first, let us recall the basic relationships between some GT matrices: 

 The incidence matrix of the graph G, I(G), is defined as follows: 
 

���� = ‖i!"‖, m=1, 2, …, k (vertices); n=1, 2, …, l (edges): 
(1) 

imn=1 if vm is incident to en and 0 otherwise. 
 

 The k rows and l columns of �(G) correspond to G vertices and edges, respectively. 

There are two squares of the rectangular �(G) matrix: 
 

�#���$×&����&×$ = '���$×$( + *���$×$(  (edge adjacency and valency) (2) 

and  

�#���&×$����$×& = '���&×&+ + *���&×&+ (vertex adjacency and valency) (3) 
 

where square ' adjacency matrices are off-diagonal and symmetric, while square * valency 

ones are diagonal. The entries of ' are either 1 or 0 depending on whether two edges or 

vertices are adjacent or not. On the other hand, the entries of * are either all equal to 2 (e*) 

or equal to vertex valency (v*). Since the vertex v'k×k(G) and v* k×k(G) matrices are used 

much more often, they are written without the superscript "v", in cases where it does not lead 

to confusion. 

 There are some simple equations connecting the '(G) and * (G) matrices with certain 

important GT matrices [54], e.g., the first and second Zagreb matrices, ℤ1(G) and ℤ2(G); the 

Randić connectivity matrix, ℝ(G); the Laplacian matrix, -(G); and the Distance matrix, 

.(G): 

ℤ���� = *���� (4) 

ℤ���� = *���'���*��� (5) 

ℝ��� = /���'���/��� (6) 

-��� = *��� − '��� (7) 

.��� = 1 i∙'����
3

�
�
 (8) 
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where /(G)=||(vi)-½|| is a diagonal matrix and vi is the valency of the vertex i. Notice, that, for 

instance, to calculate the Harary distance matrix [55] it is enough to replace i in the last 

equation by 1/i. The adjacency matrix through 2, 3, …, k edges, '2(G), '3(G), …, 'k(G), has 

an entry equal to 1 if a respective path without repetition of length 2, 3, …, k exists and it is 

the shortest path between these two vertices, and 0 otherwise. If two or more different paths 

exist between two vertices, as in (multi)cyclic graphs, the entry remains equal to 1.  

 The distance matrix .(G) plays a central role in chemical GT, as the basic topological 

Wiener index is calculated from it. Therefore, it is important that the 'i(G) adjacency matrix 

can be expressed using the 'i(G) matrix, which is the i-th power of '(G) = '1(G). The r,s 

entry of the 'i(G) matrix is equal to the number of paths with repetition of length i between 

vertices r and s. The unit entries of 'i(G) indicate vertices connected by a path without 

repetition and are in the same positions as in 'i(G), while all the other 'i(G) entries 

correspond to zeros in 'i(G):  

'4��� = '4���56�→8 (9) 
 

where j≠1→0 denotes that each entry different from 1 in 'i(G) is set equal to 0 in 'i(G). 
 

 However, one can also skip the condition that in 'i(G) the entry is 1 if and only if, 

"this is the shortest path between these two vertices" and conserve the condition that "if 

between two vertices there are two or more such paths the entry remains equal to 1". Such 

"full" adjacency matrices, f'i(G), may have r, s entries equal to 1 for different i=1,2,…,k,…, 

l, where k is the number of edges and l ≥ k is the longest path without repetition. Based on 

the full adjacency matrix without repetition, one can define the detour adjacency matrix, 
∆'i(G): 
 

∆' i(G)= f	' i(G) j=1→0  (10) 

where j=1→0 symbolizes that 1 entry is set 0 when it is also 1 in any matrix corresponding 

to a longer path. 

 Based on detour adjacency matrices, the detour distance matrix, ∆(G) [56, 57], can be 

defined as follows: 

Δ��� = 1; ∙ '����∆
�

�
=
 (11) 

where l ≥ k and l = k only for graphs of trees, and summing in the opposite direction is to 

emphasize that that if an entry is 1 for a greater i than for any smaller index, it is set to 0.  
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2.2.2 The SF matrices 

 Let us start from the incidence �(SF) matrices of the simple hydrogen cyanide, H-C≡N, 

and hydrogen isocyanide, H-N≡C, molecules (Fig. 3). 

 
 

 H-C C≡N 

H vH� eHC 0 

C vC� eHC vC� eCN 

N 0 vN� eCN 

 

 H-N N≡C 

H vH� eHN 0 

C 0 vC� eNC 

N vN� eHN vN� eNC 

I(H-C≡N) I(H-N≡C) 
 

Figure 3. The incidence �(SF) matrices of H-C≡N and H-N≡C molecules 
 

In the above example, the SF incidence matrices are defined as follows:  
 

��>?�&×$ = @&×& ∙ ����&×$ ∙ ℰ$×$ 

(12') 
��>?� = ‖;!"‖, m=1, 2, …, k; n=1, 2, …, l: 

@&×& = ‖BC‖ and ℰ$×$ = ‖ℯE‖ 
;!" = B! ∘GH 	ℯ" if Bm is incident to ℯn and 0 otherwise. 

 

where �(G)k×l is the incidence matrix of the graph corresponding to SF and entries Bm and ℯn 

of the @&×& and ℰ$×$ diagonal matrices are treated as abstract elements which are multiplied 

according to an abstract (and not necessarily commutative) ∘GH operation. To make use of 

Eqs. (1)-(11), it is necessary to define the B! ∘GH 	ℯ", 	ℯ" ∘GH B!, BI ∘GH BJ and 	ℯK ∘GH 	ℯL 
operations, as well as their additions. Notice, that these definitions may be complex because 

the multiplication and addition depend on the atom and bond representations mentioned in 

section 2.1.3. However attractive, such an approach seems to go beyond the interest of the 

chemical graph theory and here will not be further considered.  

 Let us define the incidence matrix of the structural formula, ��>?�, as follows: 
 

��>?�&×$ = ?�M!�&×& ∙ ����&×$ ∙ ��N"�$×$ 

(12) 
��>?� = ‖;!"‖, m=1, 2, …, k; n=1, 2, …, l: 

?�M!�&×& = ‖O�M!�‖	and	��N"�$×$ = ‖R�N"�‖ 
;!" = O�M!� ∙ R�N"�	 if vm is incident to en and 0 otherwise. 

 

where ?�M!�&×& and ��N"�$×$ are diagonal weighting matrices and O�M!� and R�N"� are 

respectively atom and bonds weights, which are values of the f:V→ℝ and g:E→ℝ functions.  
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 Now, the two squares of the �(SF) matrix,	�T(SF)l×k �(SF)k×l and �(SF)k×l �T(SF)l×k, 

contain information on atoms and bond properties in both components: their off-diagonal 

adjacency and diagonal valency matrices: 
 

*&×&+ �>?� = ‖v!!‖ 
(13) v!! = O��M!� ∙ TR��N!I
� + R��N!I�� + ⋯+ R��N!IU�V 

  

'&×&+ �>?� = ‖a!!‖ 

(14) a!" = O�M!� ∙ O�M"� ∙ R��N!"� 
  

*$×$( �>?� = ‖v""‖ 

(15) v"" = R��N"� ∙ TO��M"J
� + O��M"J��V 
  

'$×$( �>?� = ‖a!!‖ 

(16) a"! = R�N"� ∙ R�N!� ∙ O��M"!� 
where s runs over l vertices linked to the m-th vertex; r indexes two vertices linked through 

the n-th edge; emn denotes the edge linking vertex m with n; and vnm denotes the vertex through 

which edges n and m are adjacent. 

 Interestingly, assuming g(ei)=1 for an arbitrary i, v' and v* but also e' and e* depend 

exclusively on vertex properties. And conversely, by setting f(vj)=1 for an arbitrary j, e' and 
e* but also v' and v* depend only on edge properties. A variety of other matrices and 

topological indices can be obtained based on the vertex and edge ' and * matrices. Thus, 

mixing the vertex type of matrix with the edge properties permits the construction of yet other 

matrices and topological indices 

 Matrices (13)-(16) for the structural formula of dimethyl-carbamic acid (hydrocarbon-

hydrogen-depleted) molecule are labelled according to the IUPAC rules and presented in Fig. 

3, where f(ei) and g(vj) are replaced by fi and gj, respectively. 

 

f1g1 f1g2 f1g3 0 0 0 
f2g1 0 0 0 0 0 
0 f3g2 0 0 0 f3g6 
0 0 f4g3 f4g4 f4g5 0 
0 0 0 f5g4 0 0 
0 0 0 0 f6g5 0 
0 0 0 0 0 f7g6 

 

  

dimethylcarbamic acid (DMCA) �(SFDMCA) 

f 21(g2
1+g2

2+g2
3) f1f2g2

1 f1f3g2
2 f1f4g2

3 0 0 0 
f1f2g2

1 f 22g2
1
 0 0 0 0 0 

f1f3g2
2 0 f 23(g2

2+g2
6) 0 0 0 f3f7g2

6
 

f1f4g2
3 0 0 f 24(g2

3+g2
4+g2

5) f4f5g2
4 f4f6g2

5 0 

e1
e2

e3e4

e5

e6
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0 0 0 f4f5g2
4 f 25g2

4
 0 0 

0 0 0 f4f6g2
5 0 f 26g2

5
 0 

0 0 f3f7g2
6 0 0 0 f 27g2

6
 

 
 

v'(SFDMCA)+v*(SFDMCA) 
 

 
 

g2
1(f 21+f 22) g1g2f 21 g1g3f 21 0 0 0 

g1g2f 21 g2
2(f 21+f 23) 0 0 0 g2g6f 23 

g1g3f 21 0 g2
3(f 21+f 24) g3g4f 24 0 0 

0 0 g3g4f24 g2
4(f 24+f 25) g3g5f 24 0 

0 0 0 g3g5f 24 g2
5(f 24+f 26) 0 

0 g2g6f 23 0 0 0 g2
6(f 23+f 27) 

e'(SFDMCA)+e*(SFDMCA) 

 

 

Figure 3. The incidence, edge, vertex adjacency and valency matrices for the hydrocarbon-
hydrogen-depleted structural formula of the dimethylcarbamic acid molecule. 

 

 Now, the vertex and edge first Zagreb SF matrices, vℤ1 and eℤ1, have the following 

forms: 

ℤ�+ �>?� = ‖v!!� ‖ 

v!!� = O!W�R!I

� + R!I�

� +⋯+ R!IU
� �� (17) 

 

ℤ�( �>?� = ‖v""� ‖ 

v""� = REW�O"J
� + O"J�� �� (18) 

where the simplified index notation is similar to that in Fig 3. Because in Eq. (17) and (18) 

only powers of the valency matrix entries are present, it seems that these two Zagreb matrices 

do not introduce more information than do the v* and e* valency matrices.  

 The vertex and edge second Zagreb SF matrices, vℤ2 and eℤ2, have the following forms: 
 

ℤ�+ �>?� = X z+ �,!"X 

(19) 
z+ �,!" = v+ ! a+ !" v+ " 

z+ �,!" = TOC��R!I

� + R!I�

� +⋯+ R!IU
� �VZOCOERCE� [TOE��R"L
� + R"L�� +⋯+ R"LU� �V 

z+ �,!" = OC\OE\RCE� �R!I

� + R!I�

� +⋯+ R!IU
� ��R"L
� + R"L�� +⋯+ R"LU� � 

  
ℤ�( �>?� = X z( �,"!X 

z( �,"! = v( " a( "! v( ! 

(20) z( �,"! = TRE��O"J
� + O"J�� �VZRERCOEC� [TRC� �O"K
� + O"K�� �V 
z( �,"! = RE\RC\ OEC� �O"J
� + O"J�� ��O"K
� + O"K�� � 

 

where the indices have analogous meanings to those used for (13)-(16). 

 The Randić matrix can be defined analogously to the second Zagreb matrix using the 

/(SF)=||(vi)-½|| matrix instead of the valency matrix. Thus: 
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ℝ+ �>?� = X r+ !"X 

(21) 
r+ !" = � v+ !!�^



�� a+ !"�� v+ ""�^



�= 

r+ !" = TOC��R!I

� + R!I�

� +⋯+ R!IU
� �V^



�ZOCOERCE� [TOE��R"L
� + R"L�� +⋯+ R"LU� �V^



� 

r+ !" = OC�OE�RCE� T�R!I

� + R!I�

� +⋯+ R!IU
� ��R"L
� + R"L�� +⋯+ R"LU� �V^



�
 

   ℝ( �>?� = X r( "!X 

(22) 
r( "! = � v( ""�^



�� a( "!�� v( !!�^



� 

r( "! = TRE��O"J
� + O"J�� �V^


�ZRERCOEC� [TRC� �O"K
� + O"K�� �V^



� 

r( "! = RE�RC� OEC� T�O"J
� + O"J�� ��O"K
� + O"K�� �V^


� 

  

Expressions for the Laplacian matrices, v-(SF) and e-(SF), are simple (7) and require 

no comments. 

 On the other hand, calculation of the SF distance matrices, v.(SF) and e.(SF), requires 

determining the subsequent v'i(SF) and e'j(SF) matrices and then summation as in (9):  

.�>?� = 1 i∙'��>?�
3

�
�
 (23) 

 

 

v1f1 v1f1 v1f1 0 0 0 
v2f2 0 0 0 0 0 
0 v3f3g2 0 0 0 v3f3 
0 0 v4f4 v4f4 v4f4 0 
0 0 0 v5f5 0 0 
0 0 0 0 v6f6 0 
0 0 0 0 0 v7f7 

 

  

dimethylcarbamic acid (DMCA) *(SFDMCA)O�>?_`ab���G_`ab� 
  

0 α1α2f1f2g2
1 α1α3f1f3g2

2 α1α4f1f4g2
3 0 0 0 

α1α2f1f2g2
1 0 0 0 0 0 0 

α1α3f1f3g2
2 0 0 0 0 0 α3α7f3f7g2

6
 

α1α4f1f4g2
3 0 0 0 α4α5f4f5g2

4 α4α6f4f6g2
5 0 

0 0 0 α4α5f4f5g2
4 0 0 0 

0 0 0 α4α6f4f6g2
5 0 0 0 

0 0 α3α7f3f7g2
6 0 0 0 0 

 

 
vℤ2(SFDMCA) if αm=vvmm or vℝ (SFDMCA) αm=vδm 

 

 
0 e

α1
e
α2g1g2f 21 e

α1
e
α3g1g3f 21 0 0 0 

e
α1

e
α2g1g2f 21 0 0 0 0 e

α2
e
α6g2g6f 23 

e
α1

e
α3g1g3f 21 0 0 e

α3
e
α4g3g4f 24 0 0 

0 0 e
α3

e
α4g3g4f 24 0 e

α3
e
α5g3g5f 24 0 

0 0 0 e
α3

e
α5g3g5f 24 0 0 

0 e
α2

e
α6g2g6f 23 0 0 0 0 
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eℤ2(SFDMCA) if αn=evnn or eℝ(SFDMCA) αn=eδnn
 

  

0 f1f2g2
1 f1f3g2

2 f1f4g2
3 2f1f4g2

3f4f5g2
4 2f1f4g2

3f4f6g2
5 2f1f3g2

2f3f7g2
6 

f1f2g2
1 0 2f1f2g2

1f1f3g2
2 2f1f2g2

1f1f4g2
3 3f1f2g2

1f1f4g2
3f4f5g2

4 3f1f2g2
1f1f4g2

3f4f6g2
5 3f1f2g2

1f1f3g2
2f3f7g2

6 
f1f3g2

2 2f1f2g2
1f1f3g2

2 0 2f1f3g2
2f1f4g2

3 3f4f5g2
4f1f4g2

3f1f3g2
2 3f4f6g2

5f1f4g2
3f1f3g2

2 f3f7g2
6
 

f1f4g2
3 2f1f2g2

1f1f4g2
3 2f1f3g2

2f1f4g2
3 0 f4f5g2

4 f4f6g2
5 3f1f4g2

3f1f3g2
2f3f7g2

6 
2f1f4g2

3f4f5g2
4 3f1f2g2

1f1f4g2
3f4f5g2

4 3f4f5g2
4f1f4g2

3f1f3g2
2 f4f5g2

4 0 2f4f5g2
4f4f6g2

5 4f5f24f21f23f7g2
2g2

3g2
4g2

6 
2f1f4g2

3f4f6g2
5 3f1f2g2

1f1f4g2
3f4f6g2

5 3f4f6g2
5f1f4g2

3f1f3g2
2 f4f6g2

5 2f4f5g2
4f4f6g2

5 0 4f6f24f21f23f7g2
2g2

3g2
5g2

6 
2f1f3g2

2f3f7g2
6 3f1f2g2

1f1f3g2
2f3f7g2

6 f3f7g2
6 3f1f4g2

3f1f3g2
2f3f7g2

6 4f5f24f21f23f7g2
2g2

3g2
4g2

4 4f6f24f21f23f7g2
2g2

3g2
5g2

6 0 
 

 

v.(SFDMCA) 

 

 

0 g1g2f12 g1g3f12 2g1g3f12g3g4f42 2g1g3f12g3g5f42 2g1g2f12g2g6f32 
g1g2f12 0 g2g3f12 2g2g3f12g3g4f42 2g2g3f12g3g5f42 g2g6f32 
g1g3f12 g2g3f12 0 g3g4f42 g3g5f42 2g2g3f12g2g6f32 
2g1g3f12g3g4f42 2g2g3f12g3g4f42 g3g4f42 0  3g3g4f42g2g3f12g2g6f32 
2g1g3f12g3g5f42 2g2g3f12g3g5f42 g3g5f42 g3g5f42 0 3g3g5f42g2g3f12g2g6f32 
2g1g2f12g2g6f32 g2g6f32 2g2g3f12g2g6f32 3g3g4f42g2g3f12g2g6f32 3g3g5f42g2g3f12g2g6f32 0 

 

 

e.(SFDMCA) 

 

Figure 4. The second Zagreb and Randić vertex matrices and the vertex and edge distance 
matrices for the hydrocarbon-hydrogen-depleted structural formula of the 
dimethylcarbamic acid molecule.  

 It can be useful to know that the (va2)ik entry in v'2(SF) has the following form: 

�O�R��O5��O5Rd�O3� = �O�O5�O3��R��Rd��, which indicates that the path from the vertex i to the 

vertex k goes through the vertex j by the edges p (from i to j) and r (from j to k). Similarly, 

the (va3)il entry in v' 3(SF) corresponding to the path i→j→k→l through the edges p→r→s 

has the following form: �O�R��O5��O5Rd�O3��O3R	�O=� = �O�O5�O3�O=��R��Rd�R	��.  
 Analogously, the (ea2)ps entry in e'2(SF) eqals: �R�O��Rd��RdO5�R	� =
�R�Rd�R	��O��O5�� (the path p→r→s by the vertices i and j), and (ea3)pt in e'3(SF) is as 

follows: �R�O��Rd��RdO5�R	��R	O3�R�� = �R�Rd�R	�R���O��O5�O3�� (path p→r→s→t through 

i→j→k). 

 Yet, the following question still remains unanswered: what if different paths connect 

the same two points i and k but go through different vertices j ' and j ''? We can see this 

phenomenon in cyclic structures, such as the paths between vertices 1 and 3 in cyclobutane: 

1→2→3 and 1→4→3. In unweighted graphs, the corresponding entry is simply 1, but for SF 

we would obtain two different matrices describing the same structural formula. Therefore, 

we propose that for structural formulae of a cyclic molecule, the xij(SF) entries in the X(SF) 

matrix can be understood as arithmetic means over all paths of the same length: 

e�5�>?� =
1
g1e�5� �>?�

d

�
�
 (24) 
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where r is the number of different paths of the same length from i to j. Assume that in edge 

matrices, we understand a path as a way through subsequent vertices. 

 

2.2.3 The SF topological indices 

 For graphs several topological indices are obtained as half of the sum of the off-

diagonal elements of topological square symmetric matrix Ð (Croatian D with a stroke) 

p(Ð(G)) [54]. For any square symmetric Ðn×n matrix of the structural formula, such 

topological indices p(Ð(SF)) can be defined analogously:  

h�Ð�>?�� = 1
2 1 đ�5�>?�

E

�
�,5
�,�65
 (25) 

 

 Indeed, the Wiener, Detour, Zagreb 2, Randić connectivity and Laplacian topological 

indices of a structural formula can be obtained from distance and the other mentioned SF 

matrices. However, three versions of the weighted incidence SF matrix (12) can be 

constructed, be it vertex or edge type of the matrix. In consequence, for each pair of atom 

and bond properties, three versions of the topological indices can be formulated: (i) the 

atomic-property-weighted index; (ii) the bond-property-weighted index; and (iii) the mixed 

atomic-and-bond-properties-weighted index. Thus for instance, three weighted distance 

vertex matrices can be written and three appropriately weighted Wiener indices can be 

calculated. The same holds true for the edge distance matrix. Moreover, for the Zagreb 2 and 

Randić indices, Eq. (19)-(22), even more complex indices may be calculated. 

 
Table 3. The second Zagreb, Randić and Wiener vertex (v) and edge (e) indices for the 
hydrocarbon-hydrogen-depleted structural formula of dimethylcarbamic acid (DMCA), 
isobutyric acid (IBA) and two representations of vinyl acetylene (VA) molecules using NBO 
partial charges, q (e), and bond lengths, R (Å), Wiberg atom indices (a) and bond orders (bo) 
(Table S1) as the weights for atoms and bonds based on NBO calculations at the B3LYP/6-
31G** level (Table S2).  
 

index 

DMCA 

 

IBA 

 

index 

VA1 

 

VA2 

 
v e v e v e v e 

          
Z2(q,R) -17.329 26.879 -9.363 17.519 Z2(a,bo) 3850240 573440 2670179.9 649548.9 

          
R(q,R) -0.752  3.742 -0.768  9.699 R(a,bo) 1.984 1.008 1.410 1.006 

          
D(q,R) -2.370 20.712  4.252 14.141 D(a,bo) 449248 3152 416634.8 3430.2 
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 As an example, observe the Zagreb 2, Randić and Wiener vertex and edge indices 

determined for the hydrocarbon-hydrogen-depleted structural formulae of the dimethyl 

carbamic acid, isobutyric acid and vinyl acetylene (Table 3) calculated based on NBO partial 

charges, bond lengths, atom indices and bond orders (Tables S1 and S2). An inspection of 

Table 3 indicates that: 

(i)  molecules exhibiting the same graphs but different structural formulae have 

significantly different SF topological indices;  

(ii)  both the vertex and edge topological indices significantly differentiate the structural 

formulae; 

(iii) the values of the indices, including the Wiener index, can be both negative or positive. 

 Basic knowledge of computational and structural chemistry also indicates that the SF 

topological indices depend on: 
 

(iv) the method with which weighting parameters were obtained; and thus 

(v) the conformation or the physical state in which they were estimated. 
 

 The latter two remarks provoke the question of whether SF topological indices can still 

be called "topological" if they depend on geometrical and/or physical parameterization. Note, 

however, that SF are objects in spaces without a scalar product or orthogonality: neither 

angles nor solid angles are necessary to calculate basic topological indices. Thus the spaces 

used in the SF approach, may, at least, not be standard Cartesian spaces. Moreover, the 

influence of the physical property of the weight on SF topological index can be minimized 

by the weight standardization, or by using parameters of the most stable molecular form, etc. 

Nevertheless eventually, the answer to the above question is authoritative: they are calculated 

in the same way as GT topological indices and thus it is practical to call them "topological".  

 On the other hand, why introduce all those SF topological indices if the parametrization 

requires some physical or quantum chemical studies? Would it not be more natural to analyze 

the problem based solely on unprocessed quantum chemical data? In our opinion, the SF 

topological indices are worth calculating for the same reasons as the ordinary GT topological 

indices: they can be calculated quickly and can introduce molecular characteristics 

complementary to the common quantum or physical chemistry data. They diversify the pool 

of potentially useful independent variables in QSAR/QSPR. Thus, it is likely that using them 

allows one to better model some specific molecular properties with the SF approach than 

with only GT methods or quantum-chemistry data. However, the selection of molecular 
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characteristics useful in serious QSAR or QSPR modelling should be preceded by a careful 

introductory inspection of experimental and SF data. 

 

2.2.4 The HOMA index 

 Aromaticity is a concept extensively referred to in chemical graph theory [e.g., 58-62] 

and in physical organic chemistry [e.g., 63-68]. It seems that its best definition is enumerative 

and comprised of four criteria: 1. energetic, 2. geometric, 3. magnetic, and 4. chemical 

reactivity [63]. The second most used index after NICS (magnetic aromaticity) [64, 66, 69] 

is probably the HOMA (geometric aromaticity) index [64, 65, 70, 71]. It is defined as follows: 

lmno = 1 − p
q1�r� − rs����

E

�
�
 (26) 

 

where Ri and Ropt stand for distances of the i-th ring bond in the analyzed structure and the 

reference optimal bond in benzene (1.388 Å), and n is the number of CC bonds in the ring, 

whereas α = 257.7 Å-2 is a normalization factor guaranteeing that the unitless HOMA index 

of an aromatic compound approaches 1 and that of its Kekulé non-aromatic structure 

approaches 0. 

 Recently we have shown that the HOMA index expresses much more than only 

aromaticity, because it reasonably characterizes cyclic molecules regardless of whether they 

are aromatic, non-aromatic, unsaturated or saturated [70]. We named this generalized 

aromaticity property the savoricity. Moreover, we have also demonstrated that HOMA 

valuably characterizes acyclic structures, whether delocalized or not [71, 72].  

 Hence, HOMA is a useful, angle-independent, general geometrical index. It can be 

used to any molecule if the HOMA parametrization for heteroatoms is introduced [73, 74]. 

However, it becomes useless as a GT topological index, because for any ordinary graph Ri = 

Ropt = 1 and HOMA=1. Yet, HOMA does not equal 1 for SF with differentiated atoms and/or 

bonds. Such a SF is a metric space with the molecular path metric (Section 2.1.2). It is worth 

adding that not only bond length can constitute the molecular path metric. In Ref. 70, we 

demonstrated that HOMA can be treated as a function, HOMA(·), of other bond 

characteristics such as, for example, electron density (ρ) or its Laplacian in the bond critical 

point. Thus, HOMA(R), HOMA(ρ), and others may provide precious information and a clear 

distinction between structures for which pure topological data are degenerated.  
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2.2.5 An alternative to the presented SF approach 

 Here, the SF version of GT is constructed based on the modified incidence matrix Eq. 

(12). After this adjustment no further intervention into the SF matrices is made. Although the 

incidence matrix contains all information about the described graph, it has been relatively 

infrequently exploited in the chemical graph theory [75]. Therefore, Jerzy Ciosłowski, the 

first reader of this paper, rightly noticed that grounding the SF concept on a modified 

adjacency matrix would probably be more intuitive for the chemical graph theorists 

community. Indeed, the CGT reasoning usually begins with presentation of the adjacency 

matrix. Moreover, for the π-electronic systems, the adjacency matrix looks like the Hückel 

hamiltonian matrix [76-79]. In such SFA approach, the atom properties would be present at 

diagonal of the *A valency matrix and the bond properties would be located at the off-

diagonal elements of the 'A adjacency matrix. All the next steps can be identical as described 

in equations (4)-(11). As a side effect, the entries in the 'A matrix would not be the second 

powers of the incidence matrix elements which could simplify further expressions. This is 

indeed good and natural way to construct the SF concept. Nevertheless, we also think that 

the SFA approach has some deficiencies or, at least, the approach presented in this paper 

exhibits some advantages over the SFA one. 

 First, by modifying the incidence matrix in our SF version, we obtain not only the 

vertex but also the edge adjacency and valency matrices. In contrast, in the SFA construction, 

obtaining the edge matrices needs new definitions of the diagonal elements in the e*A matrix 

and the off-diagonal elements of the e'A ones. Despite at the moment only little attention is 

being paid to the edge-matrices-derived topological indices, this may be changed since within 

the SF approach such indices can be better differentiated (Table 3). Notice that obtaining the 

rectangular incidence matrix through an operation similar to a square root of 'A, and 

indirectly generate the edge variants of the adjacency matrix, is not easy. Such an operation 

is not unequivocal although the algorithms for similar procedure are developed quite some 

time ago [80-82]. Second, using two different diagonal weighting matrices O�M!� and R�N"� 
to define the SF incidence matrix makes it possible to easily generate a large number of 

closely related, but different, matrices and topological indices. This may significantly 

improve the pool of topological descriptors for use in QSAR/QSPR analyses. Third, in the 

SFA construction, the atom and bond properties are separated in the *A and 'A matrices, 

respectively, whereas in the SF version presented here, the * matrix elements contain some 

contributions from bonds formed by given atoms and the ' matrix elements contain some 

contributions from atoms linked by the bonds. 
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 Eventually, both approaches are slightly different but seem to be good enough to 

introduce the structural formula version of the graph theory. After all, good codes for 

calculating the SF topological indices can help in forgetting about some inconveniences of 

the formalism behind the approaches and in focusing on examining potential profits that can 

be earned from using new descriptors. Series of computational experiments and successful 

applications of topological indices obtained within one or the other formalism can promote 

one approach over the other.   

 

3. Conclusions 

 The aim of this paper has been to better connect graph theory to chemistry. It is 

desirable that in such a modified GT, any molecule considered in chemistry can be studied 

without loss of information about atoms and bonds present in its structural formula and 

topological indices can be calculated directly from the formula. To do this we proposed the 

Structural Formula (SF) approach in which different kinds of vertices and edges are possible. 

Only a slight modification of GT is sufficient to construct SF: the SF is a pair (V, E) where 

V is a family of sets of vertices and E is a family of sets of edges instead of single V and E 

sets in definition of a graph. The weighting functions defined on the families of sets allow 

for easy introduction of atoms and bonds properties to the SF incidence matrix. Then, through 

simple equations, the chemical information is transferred to other SF matrices such as Zagreb, 

Randić and distance, and to the corresponding SF topological indices. Finally, we show that 

the HOMA geometrical aromaticity index can be treated as the SF topological index.  

 In the SF concept, there is room to color vertices and edges or to use other 

representations of vertices and/or edges. The SF concept can further be modified. For 

example, it is easy to include unary and n-ary relations between vertices or use hypervertices 

and obtain a hyper structural formula approach or include a chirality property within a SF. 

Families of sets can also be replaced by multisets. Finally, it seems that classical GT 

problems, such as shortest paths, travelling salesman, vertex or edge coloring, can be easily 

transferred to the SF framework. 

 

Acknowledgments: A critical reading of the manuscript by Prof. Jerzy Ciosłowski from the 
Institute of Physics at the University of Szczecin is gratefully acknowledged. The author 
thanks Mr. Mateusz Nawara for his help in English language corrections. This work was 
supported by the National Science Centre in Poland Grant No. 2017/25/B/ST5/02267. 
 

 

  

-546-



 

References 
 
[1] Cayley, On the mathematical theory of isomers, Philosoph. Mag. 67 (1874) 444–446. 

[2] W. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 

(1947) 17–20. 

[3] H. Hosoya, Topological index. A newly proposed quantity characterizing the 

topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. 

Jpn. 44 (1971) 2332–2339. 

[4] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 

6609–6615. 

[5] I. Gutman, B. Ruscić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular 

orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 1692–1704. 

[6] F. Harary, E. M. Palmer, R. W. Robinson, R. C. Read, Pólya's contribution to 

chemical enumeration, in: A. T. Balaban (Ed.), Chemical Applications of Graph 

Theory, Academic Press, London, 1976, pp. 11–24. 

[7] I. Gutman, M. Milun, N. Trinajstić, Graph theory and molecular orbitals. 19. 

Nonparametric resonance energies of arbitrary conjugated systems, J. Am. Chem. 

Soc. 99 (1977) 1692–1704.  

[8] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 

(2003) 3449–3605. 

[9] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, 

Berlin, 1986. 

[10] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1992. 

[11] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley, 

Weinheim, 2009. 

[12] S. C. Basak, G. Restrepo, J. L. Villaveces (Eds.), Advances in Mathematical 

Chemistry and Applications, Bentham, Sharjah, 2014. 

[13] R. Chauvin, C. Lepetit, B. Silvi, E. Alikhani (Eds.), Applications of Topological 

Methods in Molecular Chemistry, Springer, Switzerland, 2016. 

[14] L. H. Clark, J. W. Moon, On the general Randić index for certain families of trees, 

Ars Comb. 54 (2000) 223–235. 

[15] Y. Hou, On acyclic systems with minimal Hosoya index, Discr. Appl. Math. 119 

(2002) 251–257. 

[16] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and 

applications, Acta Appl. Math. 66 (2001) 211–249. 

[17] C. Delorme, O.Favaron, D.Rautenbach, On the Randić index, Discr. Math. 257 

(2002) 29–38. 

[18] G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener 

-547-



 

index, Appl. Math. Lett. 15 (2002) 893–895. 

[19] H. Wang, The extremal values of the Wiener index of a tree with given degree 

sequence, Discr. Appl. Math. 156 (2008) 2647–2654. 

[20] S. Wagner, I. Gutman, Maxima and minima of the Hosoya index and the Merrifield-

Simmons index, a survey of results and techniques, Acta Appl. Math. 112 (2010) 323–

346. 

[21] L. Feng, A. Ilić, Zagreb, Harary and hyper-Wiener indices of graphs with a given 

matching number, Appl. Math. Lett. 23 (2010) 943–948. 

[22] M. Knor, P. Potočnik, R. Škrekovski, Relationship between the edge-Wiener index 

and the Gutman index of a graph, Discr. Appl. Math. 167 (2014) 197–201. 

[23] H. Lei, H. Yang, Bounds for the sum-Balaban index and (revised) Szeged index of 

regular graphs, Appl. Math. Comput. 268 (2015) 1259–1266. 

[24] L. Piela, Ideas of Quantum Chemistry, Elsevier, Amsterdam, 2013. 

[25] T. Helgaker, W. Klopper, D. P. Tew, Quantitative quantum chemistry, Mol. Phys. 

106 (2008) 2107–2143. 

[26] R. A. Friesner, Ab initio quantum chemistry: Methodology and applications, Proc. 

Natl Acad. Sci. USA 102 (2005) 6648–6653. 

[27] O. E. Polansky, Graphs in chemistry, MATCH Commun. Math. Comput. Chem. 1 

(1975) 183–196. 

[28] A. Graovac, O. E. Polansky, N. Trinajstić, N. Tyutyulkov, Graph theory in chemistry 

II. Graph-theoretical description of heteroconjugated molecules, Z. Naturforsch. A 30 

(1975) 1696–1699. 

[29] J. Aihara, General rules for constructing Hückel molecular orbital characteristic 

polynomials, J. Am. Chem. Soc. 98 (1976) 6840–6844. 

[30] I. Gutman, S. Bosanac, Topological studies on heteroconjugated molecules. The 

stability of alternant systems with one heteroatom, Chem. Phys. Lett. 43 (1976) 371–

373. 

[31] I. Gutman, Topological studies on heteroconjugated molecules – Alternant systems 

with one heteroatom, Theor. Chim. Acta 50 (1979) 287–297. 

[32] L. H. Hall, B. Mohney, L. B. Kier, The electrotopological state: an atom index for 

QSAR, Quant. Struct. Activ. Rel. 10 (1991) 43–51. 

[33] B. Ren, New atom-type-based AI topological indices: Application to QSPR studies 

of aldehydes and ketones, J. Comp. Aided Mol. Des. 17 (2003) 607–620. 

[34] L. Pogliani, Core electrons and hydrogen atoms in chemical graph theory, J. Math. 

Chem. 43 (2008) 1233–1255. 

[35] L. Pogliani, From molecular connectivity indices to semiempirical connectivity 

terms: recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827–

3858. 

-548-



 

[36] M. M. Deza, E. Deza, Encyclopedia of Distances, Springer, Berlin, 2009.  

[37] A.D. McNaught, A. Wilkinson, IUPAC. Compendium of Chemical Terminology (the 

"Gold Book"), Blackwell, Oxford, 1997. 

[38] L. Pogliani, Model of the physical properties of halides with complete graph-based 

indices, Int. J. Quant. Chem. 102 (2005) 38–52. 

[39] L. Pogliani, A natural graph-theory model for partition and kinetic coefficients, New 

J. Chem. 29 (2005) 1082–1088. 

[40] D. Kaiser, Physics and Feynman’s diagrams, Am. Sci. 93 (2005) 156–165. 

[41] F. Harary, R. Z. Norman, D. Cartwright, Structural Models: An Introduction to the 

Theory of Directed Graphs, Wiley, New York, 1965. 

[42] J. M. Gilbert, Strategies for multigraph edge coloring, Johns Hopkins Appl. Techn. 

Digest 23 (2002) 187–201. 

[43] C. Berge, Hypergraphs, North–Holland, Amsterdam, 1989. 

[44] D. Stalke, Charge density and chemical bonding, in:  D. Mingos, P. Michael (Eds.), 

The Chemical Bond I: 100 Years Old and Getting Stronger, Springer, Berlin, 2016, 

pp. 57–88. 

[45] R. F. W. Bader, A quantum theory of molecular structure and its applications, Chem. 

Rev. 91 (1991) 893–928. 

[46] H. Jacobsen, Hypovalency – a kinetic-energy density description of a 4c–2e bond, 

Dalton Trans. (2009) 4252–4258. 

[47] E. Tørneng, C. J. Nielsen, P. Klaeboe, H. Hopf, H. Priebe, The i.r., Raman and 

microwave spectra of 1-butene-3-yne (vinylacetylene) and 1-butene-3-yne-4d, 

Spectrochim. Acta A 36 (1980) 975–987. 

[48] Y. S. Kim, R. I. Kaiser, An infrared spectroscopic study of amorphous and crystalline 

ices of vinylacetylene and implications for Saturn's satellite Titan, Astrophys. J. 

Suppl. Ser. 181 (2009) 543–547. 

[49] E. Estrada, L. A. Montero, Bond order weighted graphs in molecules as structure-

property indices, Mol. Eng. 2 (1993) 363–373. 

[50] E. Estrada, Three-dimensional molecular descriptors based on electron charge 

density weighted graphs, J. Chem. Inf. Comput. Sci. 35 (1995) 708–713. 

[51] O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, A. T. Balaban, Comparison of weighting 

schemes for molecular graph descriptors: application in quantitative structure-

retention relationship models for alkylphenols in gas-liquid chromatography, J. 

Chem. Inf. Comput. Sci. 40 (2000) 732–743. 

 

 

 

 

-549-



 

[52] C. F. Matta, I. Sumar, R. Cook, P. W. Ayers, Localization-delocalization matrices 

and electron density-weighted adjacency/connectivity matrices: A bridge between 

the quantum theory of atoms in molecules and chemical graph theory, in: R. Chauvin, 

C. Lepetit, B. Silvi, E. Alikhani (Eds), Applications of Topological Methods in 

Molecular Chemistry, Springer, Switzerland, 2016, pp. 53–88. 

[53] K. B. Wiberg, Application of the Pople-Santry-Segal CNDO method to the 

cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, Tetrahedron 24 

(1968) 1083–1096. 

[54] J. C. Dobrowolski, The chiral graph theory, MATCH Commun. Math. Comput. Chem. 

73 (2015) 347–374. 

[55] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić, On Harary index for the 

characterization of chemical graphs, J. Math. Chem. 12 (1993) 235–250. 

[56] D. Amić, N. Trinajstić, On the detour matrix, Croat. Chem. Acta 68 (1995) 53–62. 

[57] N. Trinajstić, S. Nikolić, B. Lucić, D. Amić, Z. Mihalić, The detour matrix in 

chemistry, J. Chem. Inf. Comput. Sci. 37 (1997) 631–638. 

[58] I. Gutman, Total π-electron energy of benzenoid hydrocarbons, Top. Curr. Chem. 

162 (1992) 30–63. 

[59] M. Randić, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev. 103 

(2003) 3449–3605. 

[60] I. Lukovits, A. Graovac, E. Kálmán, G. Kaptay, P. Nagy, S. Nikolić, J. Sytchev, N. 

Trinajstić, Nanotubes: Number of Kekulé structures and aromaticity, J. Chem. Inf. 

Comput. Sci. 43 (2003) 609–614. 

[61] P. Schwerdtfeger, L. N Wirz, J. Avery, The topology of fullerenes, WIREs Comput. 

Mol. Sci. 5 (2015) 96–145. 

[62] J. Aihara, Graph theory of ring-current diamagnetism, Bull. Chem. Soc. Jpn. 91 

(2018) 274–303. 

[63] T. M. Krygowski, H. Szatylowicz, Aromaticity: what does it mean? Chem. Texts 1 

(2015) 1–12. 

[64] M. K. Cyrański, T. M. Krygowski, A. R. Katritzky, P. von Ragué Schleyer, To what 

extent can aromaticity be defined uniquely? J. Org. Chem. 67 (2002) 1333–1338. 

[65] T. M. Krygowski, M. K. Cyrański, Structural aspects of aromaticity, Chem. Rev. 101 

(2001) 1385–1420. 

[66] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. von Ragué Schleyer, 

Nucleus-independent chemical shifts (NICS) as an aromaticity criterion, Chem. Rev. 

105 (2005) 3842–3888. 

[67] E. Steiner, P. W. Fowler, A. Soncini, L. W. Jenneskens, Current-density maps as 

probes of aromaticity: global and Clar π ring currents in totally resonant polycyclic 

aromatic hydrocarbons, Faraday Discuss. 135 (2007) 309–323. 

-550-



 

[68] P. W. Fowler, C. M. Gibson, D. E. Bean, Writing with ring currents: selectively 

hydro-genated polycyclic aromatics as finite models of graphene and graphane, Proc. 

R. Soc. A 470 (2013) #0617. 

[69] J. C. Dobrowolski, P. F. J. Lipiński, On splitting of the NICS(1) magnetic aromaticity 

index, RSC Adv. 6 (2016) 23900–23904. 

[70] S. Ostrowski, J. Cz. Dobrowolski, What does the HOMA index really measure? RSC 

Adv. 4 (2014) 44158–44161. 

[71] J. C. Dobrowolski, S. Ostrowski, On the HOMA index of some acyclic and 

conducting systems, RSC Adv. 5 (2015) 9467–9471. 

[72] J. C. Dobrowolski, P. F. J. Lipiński, S. Ostrowski, M. H. Jamróz, J. E. Rode, The 

influence of the position of a chiral substituent on undecathiophene chain. A DFT 

study, Synth. Met. 242 (2018) 73–82. 

[73] T. M. Krygowski, M. K. Cyrański, Separation of the energetic and geometric 

contributions to the aromaticity. Part IV. A general model for the π-electron systems, 

Tetrahedron 52 (1996) 10255–10264. 

[74] K. K. Zborowski, I. Alkorta, J. Elguero, L. M. Proniewicz, HOMA parameters for 

the boron–boron bond: How the introduction of a BB bond influences the aromaticity 

of selected hydrocarbons, Struct. Chem. 24 (2013) 543–548. 

[75] D. Janežič, A. Mili čević, S. Nikolić, N. Trinajstić, Graph Theoretical Matrices in 

Chemistry, Univ. Kragujevac, Kragujevac, 2007, pp. 50–61. 

[76] E. Hückel, Grundzüge der Theorie ungesättigter und aromatischer Verbindungen, Z. 

Elektrochem. 43 (1937) 752–788. 

[77] H. H. Günthard, H. Primas, Zusammenhang von Graphentheorie und MO‐Theorie 

von Molekeln mit Systemen konjugierter Bindungen, Helv.Chim. Acta 39 

(1956)1645–1653. 

[78] A. J. Sadlej, Elementary methods of quantum chemistry, PWN, Warsaw, 1966, (in 

Polish). 

[79] D. H. Rouvray, Graph theory in chemistry, R. Inst. Chem. Rev. 4 (1971) 173–195. 

[80] R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51 (1955) 

406–413. 

[81] M. Warmus, Generalized Inverses of Matrices, PWN, Warsaw, 1972, (in Polish). 

[82] M. Warmus, Vectors and Matrices, PWN, Warsaw, 1981, (in Polish).  

-551-



 

APPENDIX 
DMCA IBA 

  
 

1.145 1.281 1.276 0 0 0 
-0.819 0 0 0 0 0 

0 -1.016 0 0 0 -0.720 
0 0 -0.671 -0.717 -0.716 0 
0 0 0 -0.699 0 0 
0 0 0 0 -0.697 0 
0 0 0 0 0 0.497 

 

 

1.014 1.137 1.272 0 0 0 
-0.730 0 0 0 0 0 

0 -0.98 0 0 0 -0.701 
0 0 -0.546 -0.554 -0.549 0 
0 0 0 -1.052 0 0 
0 0 0 0 -1.051 0 
0 0 0 0 0 0.488 

 

I(SF)(q,R) 
 

4.580 -0.938 -1.301 -0.856 0 0 0 
-0.938 0.671 0 0 0 0 0 
-1.301 0 1.551 0 0 0 -0.358 
-0.856 0 0 1.477 0.501 0.499 0 

0 0 0 0.501 0.489 0 0 
0 0 0 0.499 0 0.486 0 
0 0 -0.358 0 0 0 0.247 

 

 

3.939 -0.740 -1.114 -0.695 0 0 0 
-0.740 0.533 0 0 0 0 0 
-1.114 0 1.452 0 0 0 -0.342 
-0.695 0 0 0.906 0.583 0.577 0 

0 0 0 0.583 1.107 0 0 
0 0 0 0.577 0 1.105 0 
0 0 -0.342 0 0 0 0.238 

 

vA(SF) (q,R)+vV(SF) (q,R) 
 

1.982 1.467 1.461 0 0 0 
1.467 2.673 1.635 0 0 0.732 
1.461 1.635 2.078 0.481 0.480 0 

0 0 0.481 1.003 0.513 0 
0 0 0.480 0.513 0.998 0 
0 0.732 0 0 0 0.765 

 

 
1.561 1.153 1.290 0 0 0 
1.153 2.253 1.446 0 0 0.687 
1.290 1.446 1.916 0.302 0.300 0 

0 0 0.302 1.414 0.304 0 
0 0 0.300 0.304 1.406 0 
0 0.687 0 0 0 0.730 

 

eA(SF) (q,R)+eV(SF) (q,R) 
 

0 -2.882 -9.242 -5.789 0 0 0 
-2.882 0 0 0 0 0 0 
-9.242 0 0 0 0 0 -0.137 
-5.789 0 0 0 0.362 0.359 0 

0 0 0 0.362 0 0 0 
0 0 0 0.359 0 0 0 
0 0 -0.136 0 0 0 0 

 

 

0 -1.553 -6.372 -2.482 0 0 0 
-1.553 0 0 0 0 0 0 
-6.372 0 0 0 0 0 -0.118 
-2.482 0 0 0 0.584 0.578 0 

0 0 0 0.584 0 0 0 
0 0 0 0.578 0 0 0 
0 0 -0.118 0 0 0 0 

 

vZ2(SF) (q,R) 
 

0 7.772 6.017 0 0 0 
7.772 0 9.082 0 0 1.497 
6.017 9.082 0 1.002 0.995 0 

0 0 1.002 0 0.514 0 
0 0 0.995 0.514 0 0 
0 1.497 0 0 0 0 

 

 

0 4.055 3.859 0 0 0 
4.055 0 6.242 0 0 1.131 
3.859 6.242 0 0.819 0.808 0 

0 0 0.819 0 0.605 0 
0 0 0.808 0.605 0 0 
0 1.131 0 0 0 0 

 

eZ2(SF) (q,R) 
Figure S1. Comparison of incidence, adjacency, valency and second Zagreb matrices for 
hydrocarbon-hydrogen-depleted structural formula of the dimethylcarbamic acid (DMCA) 
and isobutyric acid (IBA) based on NBO partial charge q and bond distance R. 
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DMCA IBA 

  
 

0 -0.535 -0.488 -0.329 0 0 0 
-0.535 0 0 0 0 0 0 
-0.488 0 0 0 0 0 -0.578 
-0.329 0 0 0 0.589 0.589 0 

0 0 0 0.589 0 0 0 
0 0 0 0.589 0 0 0 
0 0 -0.578 0 0 0 0 

 

 

0 -0.511 -0.466 -0.368 0 0 0 
-0.511 0 0 0 0 0 0 
-0.466 0 0 0 0 0 -0.582 
-0.368 0 0 0 0.582 0.577 0 

0 0 0 0.582 0 0 0 
0 0 0 0.577 0 0 0 
0 0 -0.582 0 0 0 0 

 

vR(SF) (q,R) 
 

0 0.637 0.720 0 0 0 
0.637 0 0.694 0 0 0.512 
0.720 0.694 0 0.333 0.333 0 

0 0 0.333 0 0.513 0 
0 0 0.333 0.513 0 0 
0 0.512 0 0 0 0 

 

 
0 2.163 2.231 0 0 0 

2.163 0 3.005 0 0 0.882 
2.231 3.005 0 0.497 0.493 0 

0 0 0.497 0 0.428 0 
0 0 0.493 0.428 0 0 
0 0.882 0 0 0 0 

 

eR(SF) (q,R) 
 

0 -0.938 -1.301 -0.856 -0.858 -0.854 0.932 
-0.938 0 -0.480 -1.149 -0.863 -0.860 0.938 
-1.301 -0.480 0 2.227 1.674 1.667 -0.358 
-0.856 -1.149 2.227 0 0.501 0.499 -1.196 
-0.858 -0.863 1.674 0.501 0 0.500 -0.799 
-0.854 -0.860 1.667 0.499 0.500 0 -0.796 
0.932 0.938 -0.358 -1.196 -0.799 -0.796 0 

 

 
0 -0.740 -1.114 -0.695 -0.810 -0.802 0.762 

-0.740 0 1.649 1.029 0.900 0.890 -0.528 
-1.114 1.649 0 1.548 1.354 1.340 -0.342 
-0.695 1.029 1.548 0 0.583 0.577 -0.794 
-0.810 0.900 1.354 0.583 0 0.673 -0.617 
-0.802 0.890 1.340 0.577 0.673 0 -0.611 
0.762 -0.528 -0.342 -0.794 -0.617 -0.611 0 

 

vD(SF) (q,R) 
 

0 1.467 1.461 1.405 1.403 2.148 
1.467 0 1.635 1.573 1.570 0.732 
1.461 1.635 0 0.481 0.480 2.394 
1.405 1.573 0.481 0 0.513 1.727 
1.403 1.570 0.480 0.513 0 1.723 
2.148 0.732 2.394 1.727 1.723 0 

 

 
0 1.153 1.290 0.779 0.774 1.584 

1.153 0 1.446 0.873 0.868 0.687 
1.290 1.446 0 0.302 0.300 1.987 
0.779 0.873 0.302 0 0.304 0.900 
0.774 0.868 0.300 0.304 0 0.894 
1.584 0.687 1.987 0.900 0.894 0 

 

eD(SF) (q,R) 
 
Figure S2. Comparison of vertex and edge Randić and distance matrices for hydrocarbon-
hydrogen-depleted structural formula of the dimethylcarbamic acid (DMCA) and isobutyric 
acid (IBA) based on NBO partial charge (q) and bond distance (R). 
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VA1 

 

VA2 

 
8 0 0 
8 4 0 
0 4 12 
0 0 12 

 

7.367 0 0 
7.431 4.452 0 

0 4.505 11.227 
0 0 11.067 

 

I(SF)(a,bo) 
 

64 64 0 0 
64 80 16 0 
0 16 160 144 
0 0 144 144 

 

 

54.273 54.744 0 0 
54.744 75.040 20.056 0 

0 20.056 146.341 124.249 
0 0 124.249 122.478 

 

vA(SF) (a,bo)+vV(SF) (a,bo) 
 

128 32 0 
32 32 48 
0 48 288 

 

 

109.492 33.083 0 
33.083 40.115 50.578 

0 50.578 248.524 
 

eA(SF) (a,bo)+eV(SF) (a,bo) 
 

0 327680 0 0 
327680 0 204800 0 

0 204800 0 3317760 
0 0 3317760 0 

 

 

0 222952.9 0 0 
222952.9 0 220243.5 0 

0 220243.5 0 2226983.5 
0 0 2226983.5 0 

 

vZ2(SF) (a,bo) 
 

0 131072 0 
131072 0 442368 

0 442368 0 
 

 

0 145309.527 0 
145309.527 0 504239.35 

0 504239.35 0 
 

eZ2(SF) (a,bo) 
 

0 0.894 0 0 
0.894 0 0.141 0 

0 0.141 0 0.949 
0 0 0.949 0 

 

 

0 0.858 0 0 
0.858 0 0.191 0 

0 0.191 0 0.361 
0 0 0.361 0 

 

vR(SF) (a,bo) 
 

0 0.500 0 
0.500 0 0.508 

0 0.508 0 
 

 

0 0.499 0 
0.499 0 0.507 

0 0.507 0 
 

eR(SF) (a,bo) 
 

0 64 2048 442368 

64 0 16 4608 

2048 16 0 144 

442368 4608 144 0 
 

 

0 54.744 2195.892 409256 

54.744 0 20.056 4983.876 

2195.892 20.056 0 124.249 

409256 4983.876 124.249 0 
 

vD(SF) (a,bo) 
0 32 3072 

32 0 48 
3072 48 0 

 

0 33.083 3346.544 
33.083 0 50.578 

3346.544 50.578 0 
 

eD(SF) (a,bo) 
Figure S3. Comparison of vertex and edge Randić and distance matrices for hydrocarbon-
hydrogen-depleted two structural formulae of the vinyl acetylene (VA) based on NBO 
calculated atom index (a) and bond order (bo) (Table 2). 
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Table S1. Example of weighting functions for structural formula of vinylacetylene 
based on NBO calculations at the B3LYP/6-31G** level. The Wiberg atom index and 
bond order are sums of square of corresponding elements of the density matrix in NAO 
basis [53]. 

 

atom 

valency partial NBO charge 

bond 

multiplicity 

nominal 
Wiberg 
atom 
index 

summed 
into C- 
atoms 

NBO nominal 
Wiberg 
bond 
order 

        

C1 4 3.906  0.070 -0.381 C1=C2 2 1.886 
C2 4 3.940 -0.049 -0.301 C2-C3 1 1.130 
C3 4 3.987 -0.053 -0.053 C3≡C4 3 2.816 
C4 4 3.930  0.033 -0.211 C1-H8 1 0.929 
H5 1 0.942  0.000  0.244 C1-H7 1 0.931 
H6 1 0.939  0.000  0.252 C2-H6 1 0.889 
H7 1 0.951  0.000  0.225 C4-H5 1 0.926 
H8 1 0.951  0.000  0.226    

        

 
 
 
 
Table S2. The NBO partial charges (e) and bond lengths (Å) as the weighs for atoms 
and bonds for hydrocarbon-hydrogen-depleted structural formula of the 
dimethylcarbamic acid (DMCA) and isobutyric acid (IBA) molecules based on NBO 
calculations at the B3LYP/6-31G** level.  
 

atom 
NBO partial charge 

bond 
bond length  

DMCA IBA DMCA IBA 
      

C1 0.937 0.837 C1=O2 1.222 1.212 
O2 -0.670 -0.602 C1-O3 1.367 1.359 
O3 -0.743 -0.721 C1-N4(C4) 1.362 1.520 
N4(C4) -0.493 -0.359 N4-C5(C4-C5) 1.454 1.543 
C5 -0.481 -0.682 N4-C6(C4-C6) 1.453 1.530 
C6 -0.480 -0.687 O3-H7 0.969 0.972 
H7 0.513 0.502    
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