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Abstract

Let G be a graph with the vertex set {v1, . . . , vn}. The path matrix P (G) is
an n × n matrix whose (i, j)-entry is the maximum number of internally disjoint
vivj-paths in G, if i 6= j, and zero otherwise. The sum of absolute values of the
eigenvalues of P (G) is called the path energy of G. In this paper the path energy
of bicyclic graphs are investigated. In particular, among bicyclic graphs of a fixed
order, the graphs with maximum and minimum path energy are characterized.
Using these results, we provide affirmative answers to some conjectures proposed
in MATCH Commun. Math. Comput. Chem. 79 (2018) 387–398.

1 Introduction

Throughout this paper, all graphs are simple, that is, with no loops and multiple edges.

Let G be a graph of order n with the vertex set V (G) = {v1, . . . , vn}. In [6], the path

matrix of graph G is defined as an n× n matrix P (G) whose (i, j)-entry is the maximum

number of internally disjoint paths between the vertices vi and vj, when i 6= j and is

zero when i = j. The energy of a graph G, E(G), is defined to be the sum of absolute

values of eigenvalues of adjacency matrix of G, see [3]. Similarly, the path energy of G,
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PE(G), is defined as the sum of absolute values of eigenvalues of P (G). Since P (G) is

a real symmetric matrix, its eigenvalues are real. The all-one column vector and all-one

matrix are denoted by j and J , respectively. Also Jn denotes the all-one n × n matrix.

Let G be a graph. Denote by pr(G) the graph obtained by removing all pendant vertices

of G. If pr(G) still contains pendent vertices, then repeat this operation as many times

as necessary until the resulting graph, pr∗(G), is free of pendent vertices. As in [5], there

are three types of bicyclic graphs without pendent vertices which are shown in Figure 1.

In B(1)(a, b) and B(2)(a, b), we assume that a, b ≥ 3 and in B(3)(a, b, c), a, b ≥ c+ 3.

Figure 1. The types of bicyclic graphs.

For i = 1, 2, 3, we say that a graph G is a bicyclic graph of Type B(i), if pr∗(G) ∈ B(i).

we denote by Bn the set of all bicyclic graphs of order n. In [1], the path energy of

unicyclic graphs are determined. Also in [5] the following conjectures were proposed for

the bicyclic graphs.

Conjecture 1. If G ∈ Bn, then PE(G) is maximal if and only if G ∈ B(3), for n =

a+ b− c− 2, a, b ≥ 3, c ≥ 0.

Conjecture 2. If G ∈ Bn, then PE(G) is minimal if and only if pr∗(G) ∼= B(2)(3, 3).

Motivated by these conjectures, in Section 2 we obtain some lower and upper bounds

on the path energy of bicyclic graphs. Using these bounds, in Section 3 we prove the

validity of Conjectures 1 and 2.

2 Path Energy of Bicyclic Graphs

In this section, we investigate the path energy of bicyclic graphs. To do this, we need the

following theorem.
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Theorem 1. Let A be a matrix as follows:

A =


p11(J − I) p12J · · · p1kJ

p21J p22(J − I) · · · p2kJ
... ... . . . ...

pk1J pk2J · · · pkk(J − I)

 ,

such that the (i, j) block of A is an ni × nj matrix. Then

det(xI − A) = (x+ p11)
n1−1 · · · (x+ pkk)

nk−1 det(xI −B),

where

B =


p11(n1 − 1) p12n2 · · · p1knk

p21n1 p22(n2 − 1) · · · p2knk
... ... . . . ...

pk1n1 pk2n2 · · · pkk(nk − 1)

 .

Proof. For every positive integer m, let Mm be an m× (m− 1) matrix defined as:

Mm =

(
jTm−1

−Im−1

)
.

Now, define the n× k matrix C and n× (n− k) matrix D by:

C =

 jn1 0
. . .

0 jnk

 D =

 Mn1 0
. . .

0 Mnk


It is not hard to see that AC = CB. Also, if

E =

 −p11In1−1 0
. . .

0 −pkkInk−1

 ,

then AD = DE. Now, define U =
(
C D

)
. It can be seen that U is an n × n matrix

and the columns of U are independent. Therefore U is invertible. Also,

AU =
(
AC AD

)
=

(
CB DE

)
= U

(
B 0
0 E

)
,

which gives U−1AU =

(
B 0
0 E

)
. Therefore det(xI − A) = det(xI − B) det(xI − E),

and this completes the proof.

A multilinear polynomial with variables x1, . . . , xn is a polynomial whose monomials

are of the form xi1 · · ·xik , where 1 ≤ i1 < i2 < · · · < ik ≤ n.
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Lemma 2. Let p(x1, . . . , xn) be a multilinear polynomial. For every r1, . . . , rn ∈ {0, 1}

define:

Sp(r1, . . . , rn) = (−1)
∑

ri
∑

(−1)
∑

tip(t1, . . . , tn),

where the summation is over all t1, . . . , tn ∈ {0, 1} such that 0 ≤ ti ≤ ri, i = 1, . . . , n.

Suppose that for all r1, . . . , rn ∈ {0, 1}, Sp(r1, . . . , rn) ≥ 0. Then, for all c1, . . . , cn ≥ 0,

p(c1, . . . , cn) ≥ 0.

Proof. We apply induction on n. Let n = 1. Since p(x1) = ax1 + b, by assumption we

have b = p(0) ≥ 0 and a = p(1)− p(0) ≥ 0. Thus, for t ≥ 0, p(t) ≥ 0. Now, suppose that

the result holds for n− 1 (n ≥ 2) and p is a multilinear polynomial with n variables that

satisfies the assumption of lemma. Let

g(x1, . . . , xn−1) = p(x1, . . . , xn−1, 0),

h(x1, . . . , xn−1) = p(x1, . . . , xn−1, 1)− p(x1, . . . , xn−1, 0).

Since p is multilinear, ∂p
∂xn

= h. Let r1, . . . , rn−1 ∈ {0, 1}. One can see that:

Sg(r1, . . . , rn−1) = Sp(r1, . . . , rn−1, 0) ≥ 0,

Sh(r1, . . . , rn−1) = Sp(r1, . . . , rn−1, 1) ≥ 0.

So by induction hypothesis, for all c1, . . . , cn−1 ≥ 0, g(c1, . . . , cn−1) ≥ 0 and h(c1, . . . , cn−1) ≥

0. This implies that p(c1, . . . , cn) is an increasing function of cn and p(c1, . . . , cn−1, 0) ≥ 0.

So p(c1, . . . , cn) ≥ 0.

Lemma 2 allows us to prove some inequalities between multilinear polynomials by

computing a finite number of summations. All computations in this paper were done

using the Sage Mathematics Software System [4]. Now, we are in a position to investigate

the path energy of bicyclic graphs.

2.1 Bicyclic Graphs of Type B(1)

In this subsection, we study the path energy of the first type of bicyclic graphs.

Theorem 3. Let a, b ≥ 3 and G be a bicyclic graph of Type B(1)(a, b) of order n = a+b+c.

(i) If c = 0, then PE(G) = 4n− 8.

(ii) If c > 0, then |PE(G)− (4n− 2c− 9)| ≤ 1.
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Proof. (i) Let v1, . . . , va be the vertices of the cycle of length a, and va+1, . . . , va+b be the

vertices of the cycle of length b. The path matrix of G in this ordering is as follows:

P (G) =

(
2(Ja − I) J

J 2(Jb − I)

)
.

Now, by Theorem 1 the characteristic polynomial of P (G) is

(x+ 2)a+b−2 det(xI −B),

where

B =

(
2a− 2 b

a 2b− 2

)
.

Note that tr(B) = 2a+ 2b− 4 > 0 and det(B) = 3ab− 4a− 4b+ 4. By defining

p(x, y) = 3(x+ 3)(y + 3)− 4(x+ 3)− 4(y + 3) + 3,

and using Lemmas 2, we find that det(B) > 0. So the eigenvalues of B are positive. So

PE(G) = 2(a+ b− 2) + tr(B) = 4a+ 4b− 8 = 4n− 8.

(ii) Let v1, . . . , va be the vertices of the cycle of length a, va+1, . . . , va+b be the vertices

of the cycle of length b, and va+b+1, . . . , va+b+c be the other vertices of G. The path matrix

of G with in this ordering is as follows:

P (G) =

 2(Ja − I) J J
J 2(Jb − I) J
J J Jc − I

 ,

and by Theorem 1, the characteristic polynomial of P (G) is

(x+ 2)a+b−2(x+ 1)c−1 det(xI −B),

where

B =

 2a− 2 b c
a 2b− 2 c
a b c− 1

 .

Let f(x) = det(xI−B) = x3+c1x
2+c2x+c0 = (x−λ1)(x−λ2)(x−λ3), and λ1 ≥ λ2 ≥ λ3.

Note that λ1 > 0. We have:

λ1λ2 + λ1λ3 + λ2λ3 = 3ab+ ac+ bc− 6a− 6b− 4c+ 8.

Now by defining

p(x, y, z) = 3(x+3)(y+3)+(x+3)(z+1)+(y+3)(z+1)−6(x+3)−6(y+3)−4(z+1)+7
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and using Lemma 2, we find that λ1λ2 + λ1λ3 + λ2λ3 > 0. If λ2 ≤ 0, then λ3 ≤ 0 and

λ1 + λ2 = tr(B)− λ3 > 0, which implies that

λ1λ2 + λ1λ3 + λ2λ3 = λ1λ2 + (λ1 + λ2)λ3 ≤ 0,

a contradiction. So, λ2 > 0 and f has at most one negative root. On the other hand, the

constant term of f(x− 1), i.e., minus of the product of its roots, is

−(λ1 + 1)(λ2 + 1)(λ3 + 1) = −c(b− 1)(a− 1) < 0,

so λ3 > −1. Now, two cases can be considered. If λ3 ≥ 0, then

PE(G) = 2(a+ b− 2) + (c− 1) + tr(B) = 4a+ 4b+ 2c− 10 = 4n− 2c− 10,

and if −1 < λ3 ≤ 0, then

PE(G) = 2(a+ b− 2) + (c− 1) + tr(B)− 2λ3 = 4n− 2c− 10− 2λ3,

which implies that 4n− 2c− 10 ≤ PE(G) < 4n− 2c− 8.

Corollary 4. Let G be a bicyclic graph of Type B(1)(a, b) of order n = a+ b+ c such that

a, b ≥ 4 and c ≥ 1, or a, b ≥ 3 and c ≥ 7. Then PE(G) = 4n− 2c− 10.

Proof. By the notation used in the proof of Theorem 3,

λ1λ2λ3 = −c0 = abc− 3ab− 2ac− 2bc+ 4a+ 4b+ 4c− 4.

By defining

p(x, y, z) =(x+ 4)(y + 4)(z + 1)− 3(x+ 4)(y + 4)− 2(x+ 4)(z + 1)− 2(y + 4)(z + 1)+

4(x+ 4) + 4(y + 4) + 4(z + 1)− 4

and using Lemma 2, we find that for a, b ≥ 4 and c ≥ 1, λ1λ2λ3 ≥ 0. Similarly, for a, b ≥ 3

and c ≥ 7, we have λ1λ2λ3 ≥ 0, and this gives the result.

2.2 Bicyclic Graphs of Type B(2)

In this subsection, some bounds on path energy of the second type of bicyclic graphs are

obtained.

Theorem 5. Let a, b ≥ 3 and G be a bicyclic graph of Type B(2)(a, b) of order n =

a+ b+ c− 1.
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(i) If c = 0, then |PE(G)− (4n− 7)| < 1.

(ii) If c > 0, then |PE(G)− (4n− 2c− 6)| < 4.

Proof. (i) The path matrix of G can be written as follows:

P (G) =

 2(Ja−1 − I) J 2J
J 2(Jb−1 − I) 2J
2J 2J 01×1

 .

Using Theorem 1, the characteristic polynomial of P (G) is

(x+ 2)a+b−4 det(xI −B),

where

B =

 2a− 4 b− 1 2
a− 1 2b− 4 2
2a− 2 2b− 2 0

 .

Suppose that f(x) = det(xI − B) = (x − λ1)(x − λ2)(x − λ3), and λ1 ≥ λ2 ≥ λ3. Note

that λ1 > 0. On the other hand, f(−3− x) = −(x3 + c1x
2 + c2x+ c3) such that

c1 = 2a+ 2b+ 1, c2 = 3ab+ a+ b+ 2, c3 = ab+ a+ b.

Thus, for all x ≥ 0, f(−3− x) < 0, which implies that all roots of f are greater than −3.

Also, f(−3) = −ab− a− b < 0 and f(−2) = 2ab− 2a− 2b+ 2 = 2(a− 1)(b− 1) > 0, so

by the intermediate value theorem, λ3 ∈ (−3,−2). The constant term of f(x) is

−λ1λ2λ3 = 8ab− 16a− 16b+ 24 = 8 ((a− 2)(b− 2)− 1) ≥ 0.

Therefore λ2 ≥ 0. Now,

PE(G) = 2(a+ b− 4) + tr(B)− 2λ3 = 4n− 12− 2λ3,

which implies that, 4n− 8 < PE(G) < 4n− 6.

(ii) The path matrix of G can be written as follows:

P (G) =


2(Ja−1 − I) J 2J J

J 2(Jb−1 − I) 2J J
2J 2J 01×1 J
J J J Jc − I

 .

By Theorem 1, the characteristic polynomial of P (G) is

(x+ 2)a+b−4(x+ 1)c−1 det(xI −B),
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where

B =


2a− 4 b− 1 2 c
a− 1 2b− 4 2 c
2a− 2 2b− 2 0 c
a− 1 b− 1 1 c− 1

 .

Assume that f(x) = det(xI−B) = (x−λ1)(x−λ2)(x−λ3)(x−λ4), and λ1 ≥ λ2 ≥ λ3 ≥ λ4.

Note that λ1 > 0. Let f(−3− x) = x4 + c1x
3 + c2x

2 + c3x+ c4, and

c1 = 2a+ 2b+ c+ 3,

c2 = 3ab+ ac+ bc+ 5a+ 5b+ 2c+ 4,

c3 = abc+ 7ab+ ac+ bc+ 3a+ 3b+ 2c+ 4,

c4 = 2ab+ ac+ bc+ 2a+ 2b.

So, for x ≥ 0, f(−3− x) > 0 which implies that all roots of f are greater than −3. Also,

f(−3) = 2ab+ ac+ bc+ 2a+ 2b > 0 and by Lemma 2, f(−2) = −abc− 2ab+ ac+ bc+

2a + 2b − c − 2 < 0. Now, the intermediate value theorem implies that λ4 ∈ (−3,−2).

Note that the path matrix of Part (i) is a principal sub-matrix of the path matrix of Part

(ii). So, if λ2 < 0, then by the interlacing theorem [2, p. 17], the path matrix of Part (i)

has exactly one non-negative eigenvalue, a contradiction. Thus λ2 ≥ 0 and

PE(G) = 2(a+ b− 4) + c− 1 + tr(B) + 2
∑
λi<0

|λi|

= 4n− 2c− 14 + 2
∑
λi<0

|λi| ∈ (4n− 2c− 10, 4n− 2c− 2).

In the next theorem, we prove tighter bounds for the path energy of bicyclic graphs of

type B(2)(3, 3). These bounds will be used in the next subsection to prove that this type

of graph has minimum path energy among bicyclic graphs of the same order.

Theorem 6. Let G be a graph of order n ≥ 10 and of Type B(2)(3, 3). Then

2n− 3 +
√
17− 1

n
< PE(G) < 2n− 3 +

√
17,

in particular, |PE(G)− (2n+ 1.075)| < 0.055.

Proof. By the notation used in Part (ii) of Theorem 5, the following holds:

PE(G) = 2n− 4 + 2
∑
λi<0

|λi|,
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where λ1 ≥ λ2 ≥ λ3 are the roots of g(x) = f(x)
x

(note that 0 is an eigenvalue of B). Since

c = n− 5, one can see that

g(x) = x3 − (n− 2)x2 − (n+ 15)x+ 4n− 36.

Also one can see that,

g(
−1−

√
17

2
) = 6

√
17− 26 < 0

g(
−1−

√
17

2
+

1

2n
) = 7

√
17−

√
17

4n
− 9

4n
− 3

√
17

8n2
+

1

8n2
+

1

8n3
− 26 > 0

g(0) = 4n− 36 > 0,

g(c) = −4c2 − 16c− 16 < 0,

lim
x→∞

g(x) = +∞,

so g has exactly one negative root contained in (−1−
√
17

2
, −1−

√
17

2
+ 1

2n
). Therefore,

2n− 3 +
√
17− 1

n
< PE(G) < 2n− 3 +

√
17

In particular, since n ≥ 10, 2n+ 1.02 < PE(G) < 2n+ 1.13.

2.3 Bicyclic Graphs of Type B(3)

Now, we investigate the last type of bicyclic graphs, B(3).

Theorem 7. Let a, b ≥ c + 3 and G be a bicyclic graph of Type B(3)(a, b, c) of order

n = a+ b− c+ t− 2.

(i) If t = 0, then PE(G) = 2n− 3 +
√
4n2 − 4n+ 17,

(ii) If t > 0, then |PE(G)− (4n− 2t− 4)| < 2.

Proof. (i) Let c = 0. The path matrix of G is as follows:

P (G) =

 2(Ja−2 − I) 2J 2J
2J 2(Jb−2 − I) 2J
2J 2J 3(J2 − I)

 .

So by Theorem 1, the characteristic polynomial of P (G) can be written as:

(x+ 3)(x+ 2)a+b−6 det(xI −B),

where

B =

 2a− 6 2b− 4 4
2a− 4 2b− 6 4
2a− 4 2b− 4 3

 .
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The characteristic polynomial of B is as follows:

(x+ 2)(x2 − (2a+ 2b− 7)x− 2a− 2b+ 2).

If x1 and x2 are the roots of x2 − (2a+ 2b− 7)x− 2a− 2b+ 2 = 0, then x1x2 < 0 and so

PE(G) = 3 + 2(a+ b− 6) + 2 + |x1 − x2|.

On the other hand,

|x1 − x2| =
√

(x1 + x2)2 − 4x1x2 =
√

(2a+ 2b− 7)2 + 8(a+ b− 1),

and a+ b = n+ 2, which gives the result.

Now, let c > 0. The path matrix of G is as follows:

P (G) =


2(Ja−c−2 − I) 2J 2J 2J

2J 2(Jb−c−2 − I) 2J 2J
2J 2J 3(J2×2 − I) 2J
2J 2J 2J 2(Jc − I)

 .

So, using Theorem 1, the characteristic polynomial of P (G) is

(x+ 3)(x+ 2)a+b−c−7 det(xI −B),

where

B =


2a− 2c− 6 2b− 2c− 4 4 2c
2a− 2c− 4 2b− 2c− 6 4 2c
2a− 2c− 4 2b− 2c− 4 3 2c
2a− 2c− 4 2b− 2c− 4 4 2c− 2

 .

Consider the characteristic polynomial of B, i.e.,

(x+ 2)2(x2 − (2a+ 2b− 2c− 7)x− 2a− 2b+ 2c+ 2).

If x1, x2 are the roots of x2 − (2a+ 2b− 2c− 7)x− 2a− 2b+ 2c+ 2 = 0, then x1x2 < 0.

So we find that,

PE(G) = 3 + 2(a+ b− c− 7) + 4 + |x1 − x2|.

On the other hand,

|x1 − x2| =
√

(x1 + x2)2 − 4x1x2 =
√

(2a+ 2b− 2c− 7)2 + 8(a+ b− c− 1),

and a+ b− c = n+ 2, which implies the result.

(ii) Let c = 0. The path matrix of G is as follows:

P (G) =


2(Ja−2 − I) 2J 2J J

2J 2(Jb−2 − I) 2J J
2J 2J 3(J2 − I) J
J J J Jt − I

 .
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So, by Theorem 1 we obtain the characteristic polynomial of P (G) as:

(x+ 3)(x+ 1)t−1(x+ 2)a+b−6 det(xI −B),

where

B =


2a− 6 2b− 4 4 t
2a− 4 2b− 6 4 t
2a− 4 2b− 4 3 t
a− 2 b− 2 2 t− 1

 .

Let f(x) = det(xI − B). Note that −2 is a root of f(x). Suppose that f(x) =

(x+ 2)g(x). One can see that g(−2− x) = −(x3 + c1x
2 + c2x+ c3), where

c1 = 2a+ 2b+ t− 2,

c2 = at+ bt+ 4a+ 4b− t− 11,

c3 = at+ bt+ 2a+ 2b− 4t− 8.

Note that c1, c2, c3 > 0, so for x ≥ 0, g(−2 − x) < 0, which implies that the roots of

g(x) are contained in (−2,∞). Let λ1 ≥ λ2 ≥ λ3 be the roots of g(x). Note that λ1 > 0

and,

PE(G) = 3 + (t− 1) + 2(a+ b− 6) + tr(B) + 4 + 2
∑
λi<0

|λi|

= 4n− 2t− 8 + 2
∑
λi<0

|λi|.

Also we have,

g(−2) = −at− bt− 2a− 2b+ 4t+ 8 = −t(a+ b− 4)− 2(a+ b− 4) < 0,

g(−1) = 2t > 0,

so g has an odd number of roots (including multiplicities) in (−2,−1). Since λ1 > 0,

there is exactly one root of g in (−2,−1). Therefore, −2 < λ3 < −1 < λ2, which yields

that 1 <
∑

λi<0 |λi| < 3, and so

4n− 2t− 6 < PE(G) < 4n− 2t− 2.

Now, let c > 0. The path matrix of G is as follows:

P (G) =


2(Ja−c−2 − I) 2J 2J 2J J

2J 2(Jb−c−2 − I) 2J 2J J
2J 2J 3(J2 − I) 2J J
2J 2J 2J 2(Jc − I) J
J J J J Jt − I

 .
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Using Theorem 1, the characteristic polynomial of P (G) is as follows:

(x+ 3)(x+ 2)a+b−c−7(x+ 1)t−1 det(xI −B),

where

B =


2a− 2c− 6 2b− 2c− 4 4 2c t
2a− 2c− 4 2b− 2c− 6 4 2c t
2a− 2c− 4 2b− 2c− 4 3 2c t
2a− 2c− 4 2b− 2c− 4 4 2c− 2 t
a− c− 2 b− c− 2 2 c t− 1

 .

The first three rows of B + 2I are the same. Hence, rank(B + 2I) ≤ 3 and so null(B +

2I) ≥ 2, which implies that −2 is an eigenvalue of B with multiplicity at least 2. Let

f(x) = det(xI − B) = (x + 2)2g(x). Suppose that g(−2− x) = −(x3 + c1x
2 + c2x + c3),

where

c1 = 2a+ 2b− 2c+ t− 2,

c2 = at+ bt− ct+ 4a+ 4b− 4c− t− 11,

c3 = at+ bt− ct+ 2a+ 2b− 2c− 4t− 8.

Since a + b− c ≥ 6, c1, c2, c3 > 0. Thus, for x ≥ 0, g(−2− x) < 0, therefore the roots of

g(x) are contained in (−2,∞). Let λ1 ≥ λ2 ≥ λ3 be the roots of g(x). We have

PE(G) = 3 + (t− 1) + 2(a+ b− c− 7) + tr(B) + 8 + 2
∑
λi<0

|λi|

= 4n− 2t− 8 + 2
∑
λi<0

|λi|.

Since

g(−2) = −(t+ 2)(a+ b− c− 4) = −(t+ 2)(n− t− 2) < 0,

g(−1) = 2t > 0,

so g has an odd number of roots (including multiplicities) in (−2,−1). Also λ1 > 0, hence

g has exactly one root in (−2,−1). Therefore −2 < λ3 < −1 < λ2, which implies that

1 <
∑

λi<0 |λi| < 3, and

4n− 2t− 6 < PE(G) < 4n− 2t− 2.

This completes the proof.
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3 Bicyclic Graphs with Maximum and Minimum Path
Energy

In this section, we obtain the types of bicyclic graphs with a fixed order which attain

the maximum and minimum values of path energy. Using these, one can see that the

Conjectures 1 and 2 are valid. First consider bicyclic graphs with the maximum path

energy.

Theorem 8. Among all bicyclic graphs of order n ≥ 4, a graph of type B(3)(a, b, c), with

n = a+ b− c− 2 has maximum path energy.

Proof. Let G be a bicyclic graph of Type B(3)(a, b, c) with n = a+ b− c− 2. By Theorem

7,

PE(G) = 2n− 3 +
√
4n2 − 4n+ 17 > 2n− 3 +

√
4n2 − 4n+ 1 = 4n− 4.

On the other hand, by Theorems 3, 5, and 7, the path energy of all other types of bicyclic

graphs of order n is less than 4n− 4.

Now, in the class of bicyclic graphs with the same order, we identify the graph with

minimum path energy.

Theorem 9. Among all bicyclic graphs of order n ≥ 5, a graph of Type B(2)(3, 3) has

minimum path energy.

Proof. A computer search shows that the result holds for 5 ≤ n ≤ 9. So, suppose that

n ≥ 10 and H be a bicyclic graph of order n and of Type B(2)(3, 3). Let G be a bicyclic

graph of order n and of Type B(1)(a, b). By Theorems 3 and 6, if c = n− a− b = 0, then

PE(G) = 4n− 8 > 2n+ 1.13 > PE(H).

Also if c > 0, then c ≤ n− 6 and

PE(G) ≥ 4n− 2c− 10 ≥ 4n− 2(n− 6)− 10 > 2n+ 1.13 > PE(H).

Now, let G be a bicyclic graph of order n and of Type B(2)(a, b). By Theorems 5 and 6,

if c = n− a− b+ 1 = 0 then

PE(G) > 4n− 8 > 2n+ 1.13 > PE(H).
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Also if c > 0 and at least one of the a and b is greater than 3, then n ≥ c+ 6 and

PE(G) > 4n− 2c− 10 ≥ 4n− 2(n− 6)− 10 > 2n+ 1.13 > PE(H).

Finally, let G be a bicyclic graph of order n and of Type B(3)(a, b, c). By Theorems 6 and

7, if t = n− a− b+ c+ 2 = 0, then

PE(G) = 2n− 3 +
√
4n2 − 4n+ 17 ≥ 2n+ 1.13 > PE(H).

If t > 0, then n ≥ t+ 4 and by Theorems 6 and 7 we have:

PE(G) > 4n− 2t− 6 ≥ 4n− 2(n− 4)− 6 > 2n+ 1.13 > PE(H).

The proof is complete.
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