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Abstract

Let G be a simple connected graph with n vertices, m edges, a sequence of
vertex degrees d1 ≥ d2 ≥ · · · ≥ dn > 0, and D = diag(d1, d2, . . . , dn) the diagonal
matrix of its vertex degrees. If µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0 are the Laplacian
eigenvalues of G, then the Kirchhoff index and Laplacian energy of G are defined as
Kf(G) = n

∑n−1
i=1

1
µi

and LE(G) =
∑n

i=1

∣∣µi − 2m
n

∣∣, respectively. In this paper we
consider relation between Kf(G) and LE(G). Some new lower bounds for Kf(G)
and LE(G) are also obtained.

1 Introduction

Let G = (V,E), V = {1, 2, . . . , n}, be a simple connected graph with n ≥ 2 vertices

and m edges. If vertices i and j are adjacent, we write i ∼ j. Denote by ∆ = d1 ≥

d2 ≥ · · · ≥ dn = δ > 0, di = d(i), a sequence of vertex degrees of G. Let A be the

adjacency matrix of G, and D = diag(d1, d2, . . . , dn) the diagonal matrix of its vertex

degrees. Laplacian matrix of G is defined as L = D − A. Eigenvalues of matrix L,

µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, form the so-called Laplacian spectrum of G.

In graph theory, an invariant is a property of graphs that depends only on the abstract

structure, not on graph representations such as particular labellings or drawings of the

graph. Such quantities are also called topological indices. Topological indices have gained
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considerable popularity in the mathematical chemistry literature in recent years. A large

number of topological indices have been derived depending on vertex degrees. Among the

oldest are the first and the second Zagreb index, M1 and M2, defined as [15, 16]

M1 = M1(G) =
n∑

i=1

d2i and M2 = M2(G) =
∑
i∼j

didj.

Details of the theory and applications of the two Zagreb indices can be found in surveys

[4, 5, 18, 30] and in the references quoted therein.

Generalization of the second Zagreb index, reported in [2], known as general Randić

index, Rα, is defined as

Rα = Rα(G) =
∑
i∼j

(didj)
α,

where α is an arbitrary real number. Here we are interested in two special cases, that is

α = −1 and α = 2. The topological index R−1 is met in the literature under the names

first-order overall index [3], modified second Zagreb index [30], and general Randić R−1

index [7]. The index R2 is referred to as the second hyper Zagreb index [13].

A graph is said to be regular if all its vertices are of the same degree. Otherwise, it

is an irregular. As the quantitative topological characterization of irregularity of graphs

Albertson [1] proposed a measure defined as

Alb = Alb(G) =
∑
i∼j

|di − dj|,

which is usually referred to as the Albertson index (see [20]) although the name ”third

Zagreb index” has also been proposed [14].

Here we are also interested in another irregularity measure which is defined as (see [38])

IRLF = IRLF (G) =
∑
i∼j

|di − dj|√
didj

.

In [22], Klein and Randić introduced the notion of resistance distance, rij. It is defined

as the resistance between the nodes i and j in an electrical network corresponding to the

graph G in which all edges are replaced by unit resistors. The sum of resistance distances

of all pairs of vertices of a graph G is named as the Kirchhoff index, i.e.

Kf(G) =
∑
i<j

rij.
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As Gutman and Mohar [17] proved, the Kirchhoff index has the following connection with
the Laplacian eigenvalues

Kf(G) = n

n−1∑
i=1

1

µi

.

For its basic mathematical properties, including various lower and upper bounds, see
[9, 24–27,31–33].

The Laplacian energy of a graph, LE, was defined in [19] as

LE = LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ .
In [23] Laplacian–energy–like invariant, LEL, was defined as

LEL = LEL(G) =
n−1∑
i=1

√
µi.

Since Kf(G), LE(G) and LEL(G) are all spectrum–based invariants of graph, it is

interesting to find out their relationship. A number of relations between Kf(G) and

LEL(G) as well as LEL(G) and LE(G) have been reported in the literature, see for

example [11, 12, 21, 28, 34, 35]. However, to the best of our knowledge, relations between

Kf(G) and LE(G) have not been studied so far.

The rest of the paper is organized as follows. In Section 2 we give some results reported

in the literature that will be used throughout the paper. In Section 3.1 we prove some

inequalities that establish relations between Kirchhoff index and Laplacian energy of a

graph. The new lower bounds for Kf(G) depending on the structural graph parameters

and some of the above mentioned vertex–degree–based indices are presented in Section

3.2. At the end of the section we give a conjecture with the upper bound for R−1 that

depends solely on n and m. We believe that it is the best possible in its class. We perform

a number of testing to find counterexample(s), but we couldn’t. However, we were not

able to prove it explicitly. Under this assumption, the lower bound for Kf(G) obtained

in this paper that depends on n, m and R−1 is the best possible in its class. Finally, in

Section 3.3 we give some new lower bounds for the LE(G).

2 Preliminaries
In this section we recall some results for lower bounds of Kf(G) and LE(G) reported in

the literature and some analytic inequalities for real number sequences that will be used

subsequently. Before we proceed, let us define one special class of d-regular graphs Γd [33].
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Let N(i) be the set of all neighborhoods of the vertex i, i.e. N(i) = {k | k ∈ V, k ∼ i},
and d(i, j) the distance between vertices i and j. Denote by Γd a set of all d-regular

graphs, 1 ≤ d ≤ n− 1, with the properties that diameter is D = 2 and |N(i)∩N(j)| = d

for i � j.
In [40] the following lower bound for Kf(G) was established

Kf(G) ≥ −1 + (n− 1)
n∑

i=1

1

di
. (1)

Equality holds if and only if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c, or G ∈ Γd.

In [25] (see also [26]) it was proven that

Kf(G) ≥ n2(n− 1)− 2m

2m
, (2)

with equality if and only if G ∼= Kn, or G ∈ Γd.

In [26] (see also [27]) the following bound was reported

Kf(G) ≥ −1 + 2(n− 1)R−1 , (3)

with equality holding if and only if G ∼= Kn, or G ∈ Γd.
The following lower bound for the Laplacian energy of simple connected graphs was

proven in [10]

LE(G) ≥ 2 +
n∑

i=1

∣∣∣∣di − 2m

n

∣∣∣∣ . (4)

For the bipartite graphs in [39] it was shown that

LE(G) ≥
n∑

i=1

∣∣∣∣di − 2m

n

∣∣∣∣ . (5)

Let x = (xi) and a = (ai), i = 1, 2, . . . , n, be two positive real number sequences.

In [36] it was proven that for any r ≥ 0,

n∑
i=1

xr+1
i

ari
≥

(
n∑

i=1

xi

)r+1

(
n∑

i=1

ai

)r . (6)

Equality holds if and only if x1

a1
= x2

a2
= · · · = xn

an
.

Let a = (ai), i = 1, 2, . . . , n, be a positive real number sequence. Then, for any real r,

r ≤ 0 or r ≥ 1, holds (see e.g. [29])
n∑

i=1

ari ≥ n1−r

(
n∑

i=1

ai

)r

. (7)
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Equality holds if and only if a1 = a2 = · · · = an. If 0 ≤ r ≤ 1, then the sense of (7)

reverses.

Let p = (pi) and a = (ai), i = 1, 2, . . . , n, be two positive real number sequences with

the properties p1 + p2 + · · · + pn = 1 and 0 < r ≤ ai ≤ R < +∞. In [37] the following

inequality was proven
n∑

i=1

piai + rR

n∑
i=1

pi
ai

≤ r +R. (8)

Denote by p = (pi) and a = (ai), i = 1, 2, . . . , n, real number sequences with the

properties pi ≥ 0, p1+ p2+ · · ·+ pn = 1 and r ≤ ai ≤ R. For such sequences the following

inequalities are valid [8]:

0 ≤
n∑

i=1

pia
2
i −

(
n∑

i=1

piai

)2

≤ 1

2
(R− r)

n∑
i=1

pi

∣∣∣∣∣ai −
n∑

j=1

pjaj

∣∣∣∣∣ . (9)

3 Main results

3.1 Relation between Kirchhoff index and Laplacian energy

In the following theorem we determine relation between Kirchhoff index and Laplacian

energy of a graph.

Theorem 1. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

for any real k such that µn−1 ≥ k > 0, holds((
n+ k − 4m

n

)
(M1 + 2m)− 2nkm+

8m3

n2

)
Kf(G) ≥ n

(
LE(G)− 2m

n

)2

. (10)

Equality holds if k = n and G ∼= Kn.

Proof. For r = 1, n := n− 1, xi :=
∣∣µi − 2m

n

∣∣, ai := 1
µi

, i = 1, 2, . . . , n− 1, the inequality

(6) becomes

n−1∑
i=1

µi

∣∣∣∣µi −
2m

n

∣∣∣∣2 ≥
(

n−1∑
i=1

∣∣∣∣µi −
2m

n

∣∣∣∣
)2

n−1∑
i=1

1

µi

,

that is

n−1∑
i=1

µi

∣∣∣∣µi −
2m

n

∣∣∣∣2 ≥ n

(
LE(G)− 2m

n

)2

Kf(G)
. (11)
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For n := n − 1, pi :=
µ2
i

M1+2m
, ai := µi, r = µn−1, R = µ1, i = 1, 2, . . . , n − 1, the

inequality (8) transforms into

n−1∑
i=1

µ3
i + µ1µn−1

n−1∑
i=1

µi ≤ (µ1 + µn−1)(M1 + 2m),

i.e.
n−1∑
i=1

µ3
i ≤ (µ1 + µn−1)(M1 + 2m)− 2mµ1µn−1. (12)

Consider the function

f(x) = (x+ µn−1)(M1 + 2m)− 2xmµn−1.

This is an increasing function. Hence, for x = µ1 ≤ n holds f(x) = f(µ1) ≤ f(n). From

(12) we get
n−1∑
i=1

µ3
i ≤ (n+ µn−1)(M1 + 2m)− 2nmµn−1. (13)

Since the function

g(x) = (n+ x)(M1 + 2m)− 2nmx

is decreasing, for x = µn−1 ≥ k > 0 holds g(x) = g(µn−1) ≤ g(k). Therefore from (13)

follows
n−1∑
i=1

µ3
i ≤ (n+ k)(M1 + 2m)− 2nmk. (14)

On the other hand, the following identity is valid

n−1∑
i=1

µi

∣∣∣∣µi −
2m

n

∣∣∣∣2 = n−1∑
i=1

µ3
i −

4m

n

n−1∑
i=1

µ2
i +

4m2

n2

n−1∑
i=1

µi

=
n−1∑
i=1

µ3
i −

4m

n
(M1 + 2m) +

8m3

n2
.

(15)

The inequality (10) is obtained according to inequalities (14) and (11) and equality (15).

Corollary 1. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then(
M1 + 2m− 4m2(n+ 1)

n2

)
Kf(G) ≥

(
LE(G)− 2m

n

)2

. (16)

Equality holds if G ∼= Kn.
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Proof. Since µ1 ≤ n, it follows
n−1∑
i=1

µi

∣∣∣∣µi −
2m

n

∣∣∣∣2 ≤ n

n−1∑
i=1

∣∣∣∣µi −
2m

n

∣∣∣∣2 = n

(
M1 + 2m− 4m2(n+ 1)

n2

)
.

From the above and (11) we arrive at (16).

Corollary 2. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then(
2m2

n− 1
+mn− 4m2(n+ 1)

n2

)
Kf(G) ≥

(
LE(G)− 2m

n

)2

. (17)

Equality holds if G ∼= Kn.

Proof. The inequality (17) is obtained according to (16) and inequality

M1 ≤ m

(
2m

n− 1
+ n− 2

)
,

which was proven in [6].

3.2 Some new lower bounds for Kf(G)

In the following theorem we establish lower bound for Kf(G) in terms of structural graph

parameters n, m, and topological index R−1.

Theorem 2. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

Kf(G) ≥ n2(n− 1)−m

m
− 2(n− 1)R−1. (18)

Equality holds if and only if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c, or G ∈ Γd.

Proof. The following equalities hold
n∑

i=1

1

di
=
∑
i∼j

(
1

d2i
+

1

d2j

)
=
∑
i∼j

(
di + dj
didj

)2

−
∑
i∼j

2

didj
=
∑
i∼j

(
di + dj
didj

)2

− 2R−1. (19)

For r = 2, ai := di+dj
didj

, where the summation is performed over all edges of graph G,

the inequality (7) becomes∑
i∼j

(
di + dj
didj

)2

≥ m−1

(∑
i∼j

di + dj
didj

)2

=
n2

m
. (20)

According to (19) and (20) follows
n∑

i=1

1

di
≥ n2

m
− 2R−1. (21)
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From the inequalities (1) and (21) we get

Kf(G) ≥ −1 + (n− 1)

(
n2

m
− 2R−1

)
,

wherefrom (18) is obtained.

Equality in (20) holds if and only if for any two pairs of adjacent vertices i ∼ j and

u ∼ v, i.e. for any two edges of graph G holds

1

di
+

1

dj
=

1

du
+

1

dv
.

Let j and u be two vertices that are adjacent to vertex i. From the last equality we have

that dj = du. Since G is connected, equality in (20) holds if and only if G is regular

or semiregular bipartite graph. Equality in (1) is attained if and only if G ∼= Kn, or

G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c, or G ∈ Γd. This means that equality in (18) holds if and only

if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c, or G ∈ Γd.

Remark 1. According to (3) and (18) follows

2Kf(G) ≥ −1 +
n2(n− 1)−m

m
,

wherefrom we obtain (2).

Remark 2. The inequality (18) is stronger than the inequality (3), for example, when

G ∼= Pn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c. We could not find any connected graph for which

the inequality (3) is stronger than the inequality (18). However, it is an open question

whether the inequality (18) is always stronger than the inequality (3).

Remark 3. Let G be a connected d-regular graph, 1 ≤ d ≤ n − 1. According to (18)

follows

Kf(G) ≥ n(n− 1)− d

d
,

with equality holding if and only if G ∈ Γd. This inequality was proven in [31].

In the following theorem we determine lower bound for Kf(G) in terms of parameters

n, m, and topological indices M2 and IRLF .

Theorem 3. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

Kf(G) ≥ n2(n− 1)− 2m

2m
+

(n− 1)(IRLF )2

2M2

. (22)

Equality holds if and only if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c, or G ∈ Γd.
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Proof. The following identity holds
n∑

i=1

1

di
=
∑
i∼j

(
di − dj
didj

)2

+
∑
i∼j

2

didj
=
∑
i∼j

(
di − dj
didj

)2

+ 2R−1. (23)

For r = 1, xi :=
|di−dj |√

didj
, ai := didj, where the summation is performed over all edges

of graph G, the inequality (6) transforms into

∑
i∼j

(
|di−dj |√

didj

)2
didj

≥

(∑
i∼j

|di−dj |√
didj

)2∑
i∼j didj

=
(IRLF )2

M2

. (24)

From (23) and (24) follows

n∑
i=1

1

di
≥ (IRLF )2

M2

+ 2R−1.

From the above and (21) we get

n∑
i=1

1

di
≥ n2

2m
+

(IRLF )2

2M2

.

The inequality (22) is obtained from the above and inequality (1).

Equality in (24) holds if and only if for any two pairs of adjacent vertices i ∼ j and

u ∼ v holds
|di − dj|
(didj)3/2

=
|du − dv|
(dudv)3/2

.

Let j and u be two vertices that are adjacent to vertex i. Then

|di − dj|
d
3/2
j

=
|di − du|
d
3/2
u

. (25)

Equality in (21) holds if and only if dj = du. In that case in (25) equality is attained, also.

Together, the equalities in (24) and (21) hold if and only if G is regular or semiregular

bipartite graph. Equality in (1) is attained if and only if G ∼= Kn, or G ∼= Kr,n−r,

1 ≤ r ≤ bn
2
c, or G ∈ Γd, therefore equality in (22) holds under the same conditions.

Remark 4. Since
(n− 1)(IRLF )2

2M2

≥ 0,

the inequality (22) is stronger than (2).

By the similar arguments as in case of Theorem 3, the following result can be proved.
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Theorem 4. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

Kf(G) ≥ n2(n− 1)− 2m

2m
+

(n− 1)(Alb)2

2R2

. (26)

Equality holds if and only if G ∼= Kn, or G ∼= Kr,n−r, 1 ≤ r ≤ bn
2
c, or G ∈ Γd.

Remark 5. Since
(n− 1)(Alb)2

2R2

≥ 0,

the inequality (26) is stronger than (2).

Since 2R2 ≤ n(n− 1)5 (see [16]), we have the following corollary of Theorem 4.

Corollary 3. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

Kf(G) ≥ n2(n− 1)− 2m

2m
+

(Alb)2

n(n− 1)4
.

Equality holds if and only if G ∼= Kn, or G ∈ Γd.

As we have adduced in Remark 2, even by exhaustive testing we couldn’t find a graph

for which the inequality (3) is stronger than (18), however we could not explicitly prove

that. Having this in mind, we give the following conjecture for the equivalent problem.

Conjecture 1. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

R−1 ≤
n2

4m
≤ n2

4(n− 1)
.

3.3 Some new lower bounds for the Laplacian energy of a graph

In the next theorem we establish lower bound for LE(G) in terms of parameters n,m,∆, δ

and the first Zagreb index.

Theorem 5. Let G be a simple connected graph with n ≥ 2 vertices and m edges, with

the property ∆ 6= δ. Then

LE(G) ≥ 2 +
2(nM1 − 4m2)

n(∆− δ)
.

Proof. For pi =
1
n
, ai = di, r = δ, R = ∆, i = 1, 2, . . . , n, the inequality (9) becomes

1

n

n∑
i=1

d2i −

(
1

n

n∑
i=1

di

)2

≤ 1

2n
(∆− δ)

n∑
i=1

∣∣∣∣∣di − 1

n

n∑
j+1

dj

∣∣∣∣∣ ,
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that is

nM1 − 4m2 ≤ n

2
(∆− δ)

n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣ . (27)

Bearing in mind (4) and (27) we have that

nM1 − 4m2 ≤ n

2
(∆− δ)(LE(G)− 2) .

Since ∆ 6= δ, from the above follows the required result.

In the case of bipartite graphs, by a similar procedure, according to (5) and (27), the

following result can be proved.

Theorem 6. Let G be a simple bipartite graph with n ≥ 2 vertices and m edges, with

∆ 6= δ. Then

LE(G) ≥ 2(nM1 − 4m2)

n(∆− δ)
.
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