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Abstract

Evolution, tends to build complex structures out of protein molecules whschdvantages for
protein function. Few reasons have been proposed to explain this evenprStimemultimers
show cooperativity in which binding of a ligand to a chain affect onititkérig of other ligands.
But it has remained unclear why cooperativity arises in positivegative forms and what is
the advantage of each of these forms. Our analysis, using detammanist stochastic
approaches, shows that the average and the standard deviation of ligamgl dapaiity indeed
differ between positive and negative cooperativity. Considering standaedideds a measure
of noise in the system, our results demonstrate that the tranfsdgimnnegative to positive
cooperativity is accompanied by an increase in the level of nothe system. This source of
noise enables the system to adapt in a fluctuating environment addeaubject to selection
during evolution.
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1 Introduction

It would be easier to contemplate the evolutionary process atdifflevels of life by taking
into account the molecular diversity of vital biological elemenisceScellular scaffold is
mostly composed of proteins, dealing with the development of protein sasiatiuring
evolution would be a worthy starting point [1]. Protein molecules have beeredvolbe more
[2]. Evolutionary modifications in ribosome [3], cytoskeleton [4], spliceasB}) ion channels
[6], and nuclear pore complex [7] are some examples in which highetwsal stability and
significantly longer half-lives have evolved [8-10]. Proteins transition ratesfionomers to
multimers have also increased, and more than 50% of proteins in eekaayok prokaryotes
are multimer complexes [11]. Why does a protein molecule should bemammeecomplex?
During past decades, a myriad of studies have been performed to arisvgerestion; being
easier for multiple number of small proteins to be folded comparéolding a single long
protein, increasing opportunities for allosteric regulation of protinity, reducing protein’s
defenselessness to denaturation because of smaller surfaokinee ratio, increasing the
frequency of productive encounters due to removal of unnecessary proteicesudad
protection of unstable proteins from aggregation are some of teense@spoused for the
observed increase in protein complexity in nature [12-15]. In addition, gaieiwwgfeatures
would be also possible after oligomerization, which affects bothlistand function [16]. For
example, enhancing diversity could create some opportunities for proteinsptesent
allosteric regulation functions, enabling them to perform cooperatieifyaviors [11, 14, 17,
18]. Cooperativity is a biochemical phenomenon in which identical arideatical elements
change their performance. This was first discovered in hemoglobin by C.eBahr where
they found that the affinity of hemoglobin binding sites increases when anmat@ea binds
to one of four binding sites (called positive cooperativity) [19]etat was discovered that
cooperativity could also be negative in some proteins. However ttoanisito multimers (in
order to gain cooperativity function) inevitably enforces an energesicand increases the
probability of certain diseases related to inappropriate proteirgation [14]. Consequently,
one cannot simply conclude that positive cooperativity should alwayvbeefaby selection
[20, 21]. Some studies suggested a thermodynamic-based selectivermefer cooperativity
[22, 23]. Another interesting method is dealing with the kinetic modedsaperativity using
calculated experimental parameters for kinetic constans.r&tewever, finding analytical
solution (deterministic approach) for the differential equatioms/ele in a kinetic model is
always challenging, especially when there is a paucity of experindattal [24]. It becomes
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more problematic when dealing with low number of proteins in diffezeltd where stochastic
effects play an important role [25]. Therefore, various features sebe relevant to proteins
to adjust their cooperativity: some proteins prefer positive cobpiérawhich increases
affinity at a lower cost, some choose negative cooperativity whidhedses affinity but
enhances the transition speed, and some proteins utilize a moreeatlsaategy that involves
choosing cooperative behaviors (negative and positive) based on the environmentahsondit
[20].

So why does cooperativity arise in positive or negative forms? Wlia advantage for each
forms? Are they dependent on the role of proteins in the cel risgative or positive
cooperative behavior of a protein related to the effect of natatatt®n in a fluctuating
environment?

In this study, we have explored some possible reasons for the develogpmetitmer proteins
with cooperative functions, using different approaches such as explaingefrcy distribution
of cooperative proteins, structural stability investigation in the gonfehermodynamics, and
performing kinetic modeling to measure variation in positive/negative catdpty using

deterministic and stochastic approaches.

2 Material and Methods
2.1 Deterministic Approach

For a deterministic insight into the cooperative binding of a proteirhave applied a mass
action kinetic model. Here we use the simplest model, which ¢sdia protein complexv)
with two binding sites where 2 ligand molecule} ¢ould attach [26]:

ky
M+L S ML
k_y
k;
ML+L S ML, (1)
k_,

whereML andML: are proteins contain one and two ligands, respectively.

If Ki=K2 (whereK; :Iii' i=1,2, andki andk. are forward and reverse rate constants for

reactions in the eq. 1, respectively), a protein is non-cooperatives lcatbe, the value of Hill
Y
coefficient 1) would be 1. One could obtamy value by plottinglog(ﬁjversus log k)

where
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1. ML+2ML,
vyt 6
2 M+ML+ML,
The Hill coefficient would be the slope of the graph [27K1£K 2, a protein contains positive
cooperativity and the Hill coefficienn§) would be greater than 1. Finally Ki>K2, a protein
contains negative cooperativity and the Hill coefficiemi (vould be less than 1.

One could also write Ordinary Differential Equations (ODESs) for eq. 1 as follow:

M- iy g

d[L]-—kl[Ml[L]m[MLJ o M[ U+ k[ M- K ]
kMU, M - [ MI[ 0+ k[ ]

d ML]

d[MLZ] =k [~k ®
where M], [L], [ML], and MLz] are concentrations of different species, kndk1, k2, andk-2
are equilibrium constants of forward and reverse reactions.
Similar strategy could be used for proteins with more binding $Mégquations related to
protein complexes with 3 and 4 binding sites are available in the supplement&ifile
It should also be noted that a statistical correction on tkectatstants is necessary since the
binding sites are indistinguishable —i.e., it is only possible to couhhtotiber of the occupied
binding sites regardless of their positions [28]. The correction equation would be:

n-i+l

K= ==K, 4)

where K is statistically corrected rate constamtis total number of protein binding sites,

-k
Tk,

(fori=1,...,n), andki andk. are forward and reverse rate constants for every reactions

in the model, respectively.
For solving ODEs, Copasi software (ver. 4.16) [29] was used on a comjithtérenntel Core-
i7-3770k CPU and 8 GB of RAM.

2.2 Stochastic Approach
To explore the stochastic behavior of a biochemical reaction, lizedtiChemical Master
Equations (CMEs). CMEs belong to a class of statistical Markowmdlism in which the
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number of species in each state is considered as randormiesvidiere their transition matrices
are defined by probability methods. Therefore, number of specieshrstegconly depends on
the number of species in the previous step [30, 31]. Here a stocmasteling approach for

the simplest case (a protein complex with two binding sitesjas.. The reactions are identical
to eg. (1). Transition probabilities for each kind of molecule is shown in Table 1 [30].

Table 1. Transition probability of different molecules ig.€1) wherem, |, ml, andmk, are the number
of free proteins, free ligands, proteins with omgathd, and proteins with two ligands,

respectively.

t+dt t reaction probability

Mt+d)=m  m-1 ki k., (mi+1) it
TR (g

L (t+d)=1 =1 kaorkz i (ml+1)dt+ k,(m+1)di
I+1 kiorke

k (1+2)(m+1) dt+ k ( 1+ ( mi+ 3 dt

ML (t+d)=ml  ml-1 kiorkz I<1(m+1)(l+l)dt+l<_2(mL+l)d1
[ k
mirdoaorie L (misd) der k(1+3(mi+ D o
MLz (t+d)=ml> mk-1 ko kz(l+l)(ml+])dt

mk+1 k2
k., (ml,+1) dt

Based on Table 1, the probability that none of the reactions occur would be:
1-(kymi+ kmi+ k, m+ k mi) d (5)
Now we could write:
P(mimlmp;t+dy= R mlm m; )} 1-( k mb kmt k mk k)l d
+k, (n+1) P(m=1, -1, mk1,m) ;) dt
+ kg (m+)(1+) P(m+ 1 1+ Lmi-1m) ;) dt - (6)
+k,(mL+1) P(m =1, m-1,my+ L} dt
+i, (1 +2)(ml+12) P(m, I+ 1,ml+ 1,m} - 1 dt
whereP(m,I,ml,mi;t + dt) is the probability of being in a state in which thererarg ml, and

mk number of molecules at tinte- dt. So, this could lead to:
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de,I,mI,mb =—k .mlP
—dr ™

dt m,I,mI,mE + k—l( n+1) P

m—l,l—l,mlkl,mi
_klmIF?n,I,mI,mE + k1( ”“'1)( H']) Rk Lk 1my

—k,ml, Prtmt,my * k—z( m5+1) R FLmLmi+ 1
_an.LIPm,I,mI,mE + kz( |+1)( mI+l) R Lk Lmy- 1

wherem, |, ml, andml: are the number of free proteins, free ligands, proteins withigened,

@)

and proteins with two ligands, respectively.

Equation (7) is treated as Stochastic Differential EquatiorEfSbat is continues in time and
discontinues in regards to the number of species.

Similar strategy could be used for protein complexes with 3 and 4ngisites. (For all the
transition probabilities and SDEs see the supplementary file S1-B.)

We used Numerical Stochastic Simulation Algorithm (SSA) to siblgesq. (7), since finding
an analytical solution is daunting and has not been feasible in oro@icated cases [32, 33].
In addition, using the standard SSA method (Gillespie Algorithm) is-tansuming. So, we
have used the most recent version called the Tau-leaping algortituin is much faster and
more suitable for our case [34]. We have used MATLAB soft\{wame R2015b) on a computer
with the Intel Core-i7-3770k CPU and 8 GB of RAM for running the Tau-leaping algorithm

3 Resultsand Discussion

3.1 Cooperativity Distributionsand Ligand Concentrations

First, we browsed the literature (data not shown) to figure outheheny particular type of
cooperativity (positive/negative) is more prevalent in nature. Then,explored ligand
concentrations where cooperativity occurs. Our results show thatrrigjtlee of cooperativity
(positive and negative) is more common in nature. In addition, bothvgositid negative
cooperativity exist in a wide range of ligand concentrations. Howevegems that negative
cooperativity occurs more between®00?! (mol/litre) of ligand concentrations, while positive
cooperativity occurs more between®a.0° (mol/litre) of ligand concentrations (Figure 1).
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Figure 1. Frequency of the experimentally-verified positivedanegative cooperativity behaviors in
different ligand concentrations.

3.2 Deterministic Approach

In the deterministic method, proteins with four binding sites (deta@tgiations are available

in supplementary file S1-A) were considered. Simulations were dong flifferent cases;

negative cooperativitya > K2 > K3 > K4), non-cooperativityi1 = K2 = K3 = K4), and positive

cooperativity K1 < Kz < Kz < Ka), where K; :lii (for i=1,2,3,4) are statistically corrected
—i

rate constants, arld andk.i are forward and reverse rate constants for every reaction in the

model, respectively. Results are shown in Table 2 and Figure 2.

All models can be found in the supplementary file S2, and the rem@tsound in the

supplementary file S3_Table2.

As illustrated in Table 2, the average ligand binding nunider and standard deviatiostd.

dev) increase when moving from negative to positive cooperativity.

In another simulation, we explored the effect of rate constant vaildse andstd. devvalues

while a protein retains its cooperativity type.

For the first case, a with non-cooperative protein with differate constants values was

considered. Results are shown in Table 3. The results show an intakbehavior ifMaveand

std. devwhile increasing rate constant values.
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Figure 2. Distribution histogram of values obtained for aggrdigand binding number at the end of
every simulation, i.e. for 21 different initial Apds number: A) Negative cooperativity, B) Non-
cooperativity, C) Positive cooperativity. The fidtine indicates normal distribution.

Table2. Results of different types of cooperativity gsaeterministic approachl is Hill coefficient,
Maveis average ligand binding number of proteins, stidd devis standard deviation value. Parameters
for the simulations are: initial protein conceriat(Mo) = 8x10° mol/litre, ligand concentrations.d)
=0.0001 to 0.0003 mol/litre, number of points=21.

ki kz ks ka NH Mave  std. dev.
Type of Cooperativity oy (mimmoy  (mimmol)  (mimmol)
Negative 1.4x16 7.5x10 4.5x16G 3.6x1G 0.57 1.86 0.395
Non-cooperativity 4.5x10 4.5x10 4.5x10 4.5x1d 1 2.13 0.572
Positive 3.6x1G 4.5x1d 7.5x1G 1.4x16 3.78 2.37 0.746

Table 3. Results of effect of rate constant values onratefn with non-cooperativity, using
deterministic approaciNy is Hill coefficient, Mais average ligand binding number of proteins, and
std. devis standard deviation value. Other parametergh®simulations are the same as Table 2.

k ko ks ks NH Mae  std. dev.
Type of Cooperativity oy (uimmol)  (mlimmol)  (mi/mmol)
Non-cooperative 45%x16  45x1G 4.5x1G 4.5x16 1 0.29 0.955
Non-cooperative 45%x10  45x1G 4.5x1G 4.5x16 1 1.22 1.84
Non-cooperative 45x1d  4.5x1d 45x1d 45x1d 1 213 1.95

The effect of adding a constant valug (o the rate constants of a protein on positive
cooperativitywas investigated. Results are shown in Table 4. Thesrskalt an incremental

behavior inMave andstd. devwhile increasing rate constant values.
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Table 4. Results of effect of rate constant values on ateim with positive cooperativity using
deterministic approach. Thevalue was 10,000 which meakis/alues in lower rows are 10,000 more
that the above ones\ is Hill coefficient,Maveis average ligand binding number of proteins, sicd
dev.is standard deviation value. Other parameterthiosimulations are the same as Table 2.

k1 ko ks Ka Ny Mave  Std. dev.
Type of Cooperativity (o) (mimmoly  (mimmol)  (mijmmol)
Positive 3.6x10 45x1d 7.5x10 1.4x1¢ 3.78 2.37 0.746
Positive 1.36x1d 5.5x1d 7.6x10 1.41x10 3.625 2.41 0.754
Positive 2.36x10 6.5x1d 7.7x1G 1.42x16 3.526 2.43 0.756

Similarly, we investigated the effect of the rate constant gatuea protein with negative
cooperativity. We subtracted a constant valjefrfom the rate constants of a protein in a
negative cooperativity behavior while the protein retained its negatipperativity. Results
are shown in Table 5. In this case, the results shovivthaandstd. devwould decrease while

the rate constant values decreased.

Table 5 Results of effect of rate constant values on aeprowith negative cooperativity using
deterministic approach. Thevalue was 1,000 which meaksvalues in lower rows are 1,000 less than
the upper oned\y is Hill coefficient,Maveis average ligand binding number of proteins, stad devis
standard deviation value. Other parameters fosithelations are the same as Table 2.

ki ka ks Ka NH Mae  std. dev.
Type of Cooperativity oy (uimmoly  (miimmol)  (mijmmol)
Negative 1.4x160  7.5x1d 4.5x16G 3.6x16 057 1.86 0.395
Negative 1.39x16 7.4x1d 3.5x1G 2.6x16 052 1.83 0.368
Negative 1.38x10 7.3x1d 2.5x16¢ 1.6x1G 0.466 1.79 0.336

All models and results are found in the supplementary files S2 and S3_Table3-5.

3.3 Stochastic Approach

In the stochastic simulations, a protein complex with four bindieg sias considered (detailed
equations are available in supplementary file S1-B). The Taulgabgorithm was used for
the simulation process. Similar to the deterministic approaetperformed simulations for 3
different cases; negative cooperativii & K2 > Kz > Ka), non-cooperativity{a = K2 = K3

= Ka), and positive cooperativitjKg < Kz < Kz < K4), whereKi is statistically corrected rate
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constant. First, we adjusted the rate constants values, simnilae¢ deterministic simulation,

and explored the behavior of the system on just one trajectory (Figure 3).
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Figure 3. Changes in molecules of a stochastic simulatiodifierent types of cooperativity in one
trajectory. [c=200,Mo = 100,M is total number of free proteinis,is total number of free ligandsiL,
ML,, MLs, andML4 are total number of proteins with 1, 2, 3, antydrids attached to, respectively.)

As it is shown in Tabl®, the results do seem to be inaccurate at first, since, fanagstthe
value of Hill coefficient should be equal to 1 in a non-cooperatsiityation. Although the
results are not accurate enough, the system still shows a dirailaition from negative to
positive cooperativityNlaveandstd. devvalues demonstrate increasing behavior from negative
to positive cooperativity).

Table 6. Results of different types of cooperativity usstgchastic approach (tau-leaping algorithm)
for just one trajectoryNy is Hill coefficient,Maveis average ligand binding number of proteins, stad

dev.is standard deviation value. Parameters for tinglsitions are: initial protein numbengd) = 100,
initial ligand numbersl() = 125 to 375, number of points=21.

ki ko ks Ks NH Mave  Std. dev.
Type of Cooperativity oy (uimmoly  (miimmol)  (mijmmol)
Negative 0.1104 0.0584 0.002 0.00128 1.239 1.8538 0.40064
Non-cooperativity 0.036 0.036 0.036 0.036 1.78 2.1314 0.56639
Positive 0.01888 0.052 0.616 1.136 2567 2421 0.74746

The reason why there is a difference between stochastic anthishégéc simulations (where
all rate constants values have been chosen the same based on conwecemdration into

number unit), is probably due to stochastic behavior of the systaoe 8ie results were
calculated for a single trajectory. Unlike a deterministioulation of a system, one would

expect some differences between the results for every runto€leastic simulation. To see
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similar results, number of replicates (here number of trajesfoshould increase. Therefore,
the stochastic simulations were repeated for 10 trajectditiesresults are shown in Table 7
and one could see closer similarity to the deterministidteesecause increasing the number
of trajectories would reduce stochastic behavior of the system.

Table 7. Results of different types of cooperativity usstgchastic approach (tau-leaping algorithm)
for 10 trajectoriesNy is Hill coefficient,Maveis average ligand binding number of proteins, stdd dev.

is standard deviation value. Parameters for thelsitions are: initial protein numbevig) = 100, ligand
numbers (o) = 125 to 375, number of points=21.

ki ko ks ks N Mae  std. dev.
Type of Cooperativity oy (mimmol)  (miimmol)  (miimmol)
Negative 0.1104 0.0584 0.002 0.00128 0.5678 1.8678 0.3987

Non-cooperativity 0.036 0.036 0.036 0.036 0.9657 2.1261 0.57

Positive 0.01888 0.052 0.616 1.136 3.36 2.3736  0.7499

Similar to the deterministic approach, we explored the effeitieofate constant values blave
and std. dev.values while a protein retains its cooperativity type. Here,ltsesar 10
trajectories, to compare them the deterministic resultshanen. Results of just one trajectory
can be found in the supplementary file S1-C.

For a protein with non-cooperativity behavior, results are shown in Babidich show an

incremental behavior iMave andstd. devwhile increasing the rate constant values.

Table 8. Results of effect of rate constant values oncaem with non-cooperativity using stochastic
approach for 10 trajectorielly is Hill coefficient,Maveis average ligand binding number of proteins,
andstd. devis standard deviation value. Other parameterth®simulations are the same as Table 7.

ki kz ks ka Ny Mae  std. dev.

Type of Cooperativity

(ml/mmol) (ml/mmol) (ml/mmol) (ml/mmol)

Non-cooperative ~ 3.6x10* 3.6x10° 3.6x10° 3.6x10° 1.1 0.29  0.0926
Non-cooperative ~ 3.6x10° 3.6x10°  3.6x10° 3.6x10° 0.9949 1.2221 0.3161

Non-cooperative  3.6x10° 3.6x10°  3.6x10° 3.6x10> 0.9657 2.1261 0.57

For a protein in a positive cooperativity behavior, we added a cinsthue §) to the rate
constants. Results are shown in Table 9, which show an incrememi&idyein Mave andstd.

dev.while increasing the rate constant values.
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Table9. Results of effect of rate constant values oroésm with positive cooperativity using stochastic
approach for 10 trajectories. Thealue was 0.008 which meakwalues in lower rows are 0.008 more
that the above oneBly is Hill coefficient,Maeis average ligand binding number of proteins, st
dev.is standard deviation value. Other parameterthiosimulations are the same as Table 7.

ka ko ks Ka Nu Mave std. dev.
Type of Cooperativity gy mimmoy  (mimmol)  (mifmmo)
Positive 2.88x10 3.6x10° 6x10* 1.12 3.36 2.3736 0.7499
Positive 1.088x1F 4.4x10° 6.08x10" 1.128 2.842 2.4118 0.7539
Positive 1.888x1¢ 5.2x10° 6.16x10" 1.136 3.064 2.4193 0.755

Finally, for a protein with negative cooperativity, we subtracted ataongalue £) from the
rate constants. Results are shown in Table 10 which shdsedand std. dev.would be
decreased while there is a reduction in the rate constant values.

It is possible to compare the results of Tables 8, 9, and 1MtesT3, 4, and 5, respectively, to
see similar behaviors between stochastic and deterministic approaches.

The complete results of all the stochastic simulations \aa#ahle in the supplementary file
S1-C.

Table 10. Results of effect of rate constant values orraiefn with negative cooperativity using
stochastic approach for 10 trajectories. #lralue was 0.0008 which meakawalues in lower rows are
0.0008 less than the upper orésis Hill coefficient,Maveis average ligand binding number of proteins,
andstd. devis standard deviation value. Other parameterthidsimulations are the same as Table 7.

ki ko ks ks m Mave  std. dev.
Type of Cooperativity vy (uimmoly  (miimmol)  (mismmol)
Negative 1.12x1¢  6x102 3.6x10° 2.88x10° 0.5678 1.8678 0.3978
Negative 1.112x16¢ 5.92x10* 2.8x10° 2.08x10° 0.5336 1.8228 0.3714
Negative 1.104x16  5.84x10* 2x10° 1.28x10° 0.4626 1.7808 0.3364

4 Discussion

One of the properties of proteins is their ability to regulate twivities, in order to function
appropriately in the face of varied physiological environment that migie duaring the life of
a cell [35]. Among different kinds of proteins, multimer proteins hhedriteresting property

of cooperativity. More than 50% of proteins are in complex forms andfitkem have more
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than just one binding site for ligands [27,28, 36]. It has been demonstratedrtbas binding
behaviors exist in multimer proteins; a) non-cooperativity in which bindinigands is

completely independent, that is, the binding of the first ligand doesfeot #fe affinity of the
next ligand, b) positive cooperativity in which binding of each ligaedeimses the affinity for

the next binding, and c) negative cooperativity in which binding of bgahd decreases the
affinity for the next binding. In this study, we attempted to answermiyimer proteins are

needed and why a specific cooperativity type is seen?
First, we explored the different kinds of cooperativity. Our study atdatthat there is not any
significant preference for a specific type (Figure 1). Inrtbet step, we considered stability

advantage as a key criterion for cooperativity selection. Thus, wetigatesl cooperativity
from a thermodynamic point of view [22].

A few studies illustrated thatG would be decrease in a positive cooperativity situation, which
makes the system more stable [37]. However, it not clearly obviousuttatiecrement is due
to the decrease in enthalpy term or the increase in entropyoteboth [38,39]. If a protein

choose its type of cooperativity solely based on stability, it wouldysviee suitable to select
positive cooperativity. But based the literature on this subjecttiy@siooperativity is not

dominant in nature (Figure 1). Also, few studies demonstratedothdigand concentrations
would result in negative cooperativity[37]. Again, based the litezatthere is not any

preference based on ligand concentrations (Figure 1).
We believe that cooperativity, introduced by changing in rate constant, skeultin some

advantages beyond stability, ligand concentrations, and likes. Consequenpgrforened
deterministic simulations to explore the effect of rate consfard specific kind of
cooperativity. When the system reached steady-state, we caldhiagterage number and the
standard deviatiors{d. dev). of bound protein moleculeMéve), Here, we considerestd. dev
values as a measure of noise in the cooperative system. One ceulldres reasonable
conclusions based on the simulation result$/4d} andstd. devvalues increase from negative
to positive cooperativity, 2) in a positive and non-cooperativity behawbsg,andstd. dev.
would increase while increasing the rate constant values, andch&8yative cooperativitflave
andstd. devvalues decrease when there is a reduction in the rate constant values.
However, when molecules are few (which is the norm in cells)rrdetistic approaches can
not capture all the characteristics of the system and stazihaptays an important role [37].
Therefore, simulations were repeated using a stochastic appnoi@cbsiingly, we have seen
the same behavior; increasing Mave and std. dev.values from negative to positive
cooperativity, increasing iMave andstd. devvalues when increasing the rate constant values
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for positive and non-cooperativity conditions, and decreasiMypisandstd. devvalues when
reducing the rate constant values for negative cooperativity condition.

Based on the simulation results, it could be inferred thatdoperative proteins, the rate
constants might be the regulators. Rate constant values can be claiogeairt a desired
cooperativity behavior, not only because of stability or ligand coratémis, but also
influencing thestd. dev.values. It seems rate constant values are a way to tuneite
(represented agd. devin our study) of a system. In a more stable environment, a systes) nee
to be less flexibility, so it prefers negative cooperativity, which leadgtecti®n in noise (i.e.
std. devvalue). In a fluctuating environment, positive cooperativity and intrgdke noise
would be preferred. In biology, noise is not necessarily a destructes fostead, it could be
advantageous in the hands of natural selection. A wider rastg oevvalue would guarantee
robustness and stability of a system in different situations [41]st0dy reveals that for model
of cooperativity, the biochemical rate constant values actsmue of intrinsic noise. So,
changing intrinsic noisesstd. dev.values) would affect the cell function and provide the
necessary variation in a population of cells.

Finally, we came back to our previous questions: why multimer praesnseeded and why a
specific cooperativity type is chosen? Our answer to this iqueist that, although multimer
proteins require more energy to assemble and increase the Iggssibflaws (such as
aggregations), but they enable the system to tune the noise in flogteatironments, which
can be a valuable trait during evolution. So, it would be benefmia protein to be capable
of changing cooperativity behavior under different conditions, e.g., positive ctoipgraight
lead to an increase in stability and a protein could bind more lighmddtaneously, whereas
negative cooperativity would be useful where ligand concentratiowisThis study suggests
that the rate constants can be viewed as tools for adjustimpitein a cooperative protein.
An adjustment that affect the flexibility of the protein irtledype of cooperativity. However,

our results raises more questions, which would benefit from further studies
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