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Abstract

Let G be a connected simple graph with n vertices. The eigenvalues of G can be
ordered as λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G). The two eigenvalues λH(G) and λL(G)
with H = b(n+ 1)/2c and L = d(n+ 1)/2e are called median eigenvalues of G. The
HOMO-LUMO gap of a graph G is defined as ∆HL(G) = λH(G) − λL(G), which
has physical meaning in chemistry. In this note, we show that all bipartite graphs
with at most one perfect matching have median eigenvalues in [−1, 1]. A corollary
of our result is that all trees have median eigenvalues in [−1, 1].

1 Introduction

A great deal of attention has been focused on the HOMO-LUMO gap of molecules (see

[8, 9, 11]), the difference between the energies of the highest occupied molecular orbital
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and lowest unoccupied molecular orbital in conjugated-carbon structures. Many physico-

chemical parameters of molecules are determined by or are dependent upon their HOMO-

LUMO gaps [3, 11]. In 1950s, Günthard and Primas [6] discovered that the HMO π-

electron energy levels of a molecule are in a simple linear manner related to the eigenvalues

of the skeleton graph of the molecule, in which vertices correspond to atoms of the molecule

and edges represent the bonds between two atoms. Many physical properties of a molecule

can be interpreted by topological indices of its skeleton graph [10].

Let G be a graph with n vertices. The adjacency matrix of G is an n × n-matrix

A = [aij] such that aij = 1 if ij ∈ E(G), and aij = 0 if ij /∈ E(G). The eigenvalues

of A are also called the eigenvalues of G. Denote these eigenvalues of G in decreasing

order by λ1(G) ≥ λ2(G) ≥ · · ·λH(G) ≥ λL(G) · · · ≥ λn(G), where H = b(n + 1)/2c and

L = d(n + 1)/2e. The eigenvalues λH(G) and λL(G) are called median eigenvalues of

G. The difference λH(G) − λL(G) is called the HOMO-LUMO gap of graph G, denoted

by ∆HL(G). Note that, if n ≡ 1 (mod 2), then H = L and hence λH(G) = λL(G).

So ∆HL(G) = λH(G) − λL(G) = 0 if G has an odd number of vertices. For bounding

HOMO-LUMO gap, only graphs with an even number of vertices are interesting.

By the HMO model [2, 6], the π-electron energy levels Ei (i = 1, 2, . . . , n) of a molecule

obey a linear relation Ei = α + βλi(G) where G is the skeleton graph of the molecule

and, α and β < 0 are constants. Then the HOMO-LUMO gap of a molecule is equal to

β∆HL(G).

The computational results of Fowler and Pisanski [3, 4] suggest that most subcubic

graphs (also called chemical graphs), graphs with maximum degree at most 3, have their

median eigenvalues belonging to the interval [−1, 1]. The only known exceptional graph

is the Heawood graph which has median eigenvalues λH(G) =
√

2 and λL(G) = −
√

2.

Fowler and Pisanski [3] conjectured that there are finitely many subcubic graphs with

median eigenvalues beyond the interval [−1, 1]. Based on a result of Zhang and Chang

[25] on eigenvalues of trees, Fowler and Pisanski obtained the following result.

Theorem 1.1 (Fowler and Pisanski [3]) Let G be a tree with maximum degree at

most 3. Then λH(G), λL(G) ∈ [−1, 1].

The above result was generalized to all subcubic bipartite graphs by Mohar [19, 21]

as follows.
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Theorem 1.2 (Mohar [21]) Let G be a subcubic bipartite graph. Then λH(G), λL(G) ∈

[−1, 1].

Using a graph partition method, Mohar [20] proved that all subcubic graphs have me-

dian eigenvalues in [−
√

2,
√

2], which is the smallest interval for subcubic graphs because

of the Heawood graph, and he further conjectured that every plane subcubic graph has

median eigenvalues in [−1, 1]. Gao and Mohar [7] constructed infinitely many regular

bipartite graphs with median eigenvalue 1. Without the degree condition, Jaklič, Fowler

and Pisanski [13] show that for any constant K, there is a graph with median eigenvalues

beyond [−K,K].

Besides graph partition, there are several other methods have been developed to bound

median eigenvalues of graphs, such as graph inverse [14, 24] and graph square [15], etc.

By using graph inverse, it has been shown that the median eigenvalues of all stellated

trees and so-called corona graphs belong to [−1, 1]. By using graph square, it has been

shown that the median eigenvalues of benzenoid systems and nanotubes are bounded by

the fraction of total number of degree two vertices over total number of vertices [15], which

shows that, in most of cases, the HOMO-LUMO gaps of benzenoid systems approach to

zero as their sizes grow. Li et. al. [17] show that almost all trees have median eigenvalues

zero. In this paper, we show the following result.

Theorem 1.3 Let G be a bipartite graph with at most one perfect matching. Then

λH(G), λL(G) ∈ [−1, 1].

A tree is a bipartite graph with at most one perfect matching. The following result is

a direct corollary of Theorem 1.3, which generalizes Theorem 1.1.

Corollary 1.4 Every tree has median eigenvalues in [−1, 1].

In the next section, we introduce some definitions and preliminary results for graph

inverse. In Section 3, we prove our main result, Theorem 1.3.

2 Graph inverse

A graph G is invertible if its adjacency matrix A is invertible. The inverse of a graph G

is a weighted graph (G−1, w) such that V (G−1) = V (G) and for i, j ∈ V (G−1), the weight

function w(ij) = [A−1]ij, the ij-entry in the inverse of A.
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A 2-matching S is a subgraph of G such that each component of S is either a cycle

or K2. A 2-matching is perfect if S is spanning. For convenience, a perfect 2-matching

is denoted by S = C ∪M where C consists of the cycles of S (including loops), and M

consists of all components of S isomorphic to K2. A 2-matching is a perfect matching if

it has no cycle component, and a 2-matching is a 2-factor if it has no K2 component. Let

M be a perfect matching of G, and let x and y be two vertices of G. Then an (x, y)-path

P is M -alternating if M ∩ P is a perfect matching of P . The following result shows how

to compute the determinant of the adjacency matrix of a graph.

Theorem 2.1 (Harary, [12]) Let G be a graph and A be the adjacency matrix of G.

Then

det(A) =
∑
S

2|C|(−1)|C|+|E(S)|,

where S = C ∪M is a perfect 2-matching.

By Theorem 2.1, an invertible bipartite graph always has a perfect 2-matching. Note

that, a cycle in a bipartite graph always has even length and can be decomposed into two

disjoint matchings. So an invertible bipartite graph always has a perfect matching. If the

determinant of an adjacency matrix A of a graph G is not zero, then G has an inverse

(G−1, w). The following result characterizes the weight function of the inverse of bipartite

graphs G with a unique perfect matching.

Theorem 2.2 ([23]) Let G be a bipartite graph with a unique perfect matching M . Then

G has an inverse (G−1, w) such that

w(ij) =


∑
P∈Pij

(−1)|E(P )\M | if i 6= j;

0 otherwise,

where Pij is the set of all M-alternating (i, j)-paths.

If G is a bipartite graph, the set of eigenvalues of G is symmetric with respect to the

origin. It follows that λH(G) = −λL(G) and hence ∆HL(G) = 2λH(G). If a bipartite

graph G is not invertible, then λH(G) = 0 and ∆HL(G) = 0. In order to bound the

median eigenvalues of bipartite graph, we need only pay attention to invertible bipartite

graphs.
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A graph has a split spectrum if the half number of eigenvalues of G are positive and the

other half number of eigenvalues are negative. A molecular system with a split spectrum

is a proper closed shell. For further discussions, readers may refer to [3, 4]. All non-

singular bipartite graphs have split spectra. It is interesting but may be very challenging

to characterize all non-bipartite graphs with split spectra. Manolopoulos, Woodall and

Fowler [18] show that all leapfrog fullerenes have split spectra (see also Section 9.9 in

[11]). The following proposition is given in [24], which is the key idea to use graph inverse

to bound the median eigenvalues.

Proposition 2.3 ([24]) Let G be an invertible graph and let (G−1, w) be its inverse. If

G has a split spectrum, so does its inverse (G−1, w) and λH(G) = 1/λ1(G
−1, w) and

λL(G) = 1/λn(G−1, w).

By Proposition 2.3, a lower bound for λ1(G
−1, w) will give an upper bound of λH(G),

and a upper bound for λn(G−1, w) will give a lower bound for λL(G). The following result

generalizes a result in [24] for signed graphs, which gives rough bounds for the largest

eigenvalue and the smallest eigenvalue of weighted graphs with weights being rational

numbers.

Theorem 2.4 Let (G,w) be a weighted graph such that w : E(G)→ R\{0}. Let G+ and

G− be spanning subgraphs of G in which every component is a vertex-induced subgraph

with only positive edges and negative edges respectively. Then

λ1(G,w) ≥ 2w(G+)

|V (G)|
and λn(G,w) ≤ 2w(G−)

|V (G)|
,

where w(G+) =
∑

e∈E(G+)w(e) and w(G−) =
∑

e∈E(G−)w(e).

Proof. Let G+ be the spanning subgraph of (G,w) such that every component of G+ is a

vertex-induced subgraph with only positive edges. Such spanning subgraphs exist, as the

spanning subgraph without edges is a trivial example. Let Q1, ..., Qk be all components

of the spanning subgraph G+ of (G,w). Let (Q,w) be the weighted multi-graph obtained

from (G,w) by contracting all edges in G+, and let q1, ..., qk be all vertices of Q and define

w(qγqα) =
∑

ij∈E(Qγ ,Qα)
w(ij) where E(Qγ, Qα) is the set of all edges of G joining a vertex
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in Qγ and a vertex in Qα. For each vertex qi, let E(qα) := {qγqα|qγqα ∈ E(Q) and γ < α}.

Assign x(qα) ∈ {−1, 1} to each vertex qα such that∑
qγqα∈E(qα)

x(qγ)w(qγqα)x(qα) ≥ 0.

The weight-function x : V (Q)→ {−1, 1} does exist because the sign of x(qα) can always

be adjusted to maintain the above inequality. So (Q,w) has a weight-function x : V (Q)→

{−1, 1} such that ∑
qγqα∈E(Q)

x(qγ)w(qγqα)x(qα) ≥ 0.

Let i, j ∈ V (G) and ij ∈ E(G+). Assume that ij is contracted to a vertex qα of Q.

Now, extend the weight-function x to V (G) such that x(i) = x(j) = x(qα), and define

the vector x : V (G) → { − 1, 1}n such that xi = x(i). Let A be the adjacency matrix of

(G,w). Note that E(G) = E(G+) ∪ E(Q). Then it follows that

〈Ax,x〉 = 2
∑

ij∈E(G)

(A)ijxixj = 2
∑

ij∈E(Q)

(A)ijxixj + 2
∑

ij∈E(G+)

(A)ijxixj

= 2
∑

ij∈E(Q)

xiw(ij)xj + 2
∑

ij∈E(G+)

xiw(ij)xj

≥ 2
∑

ij∈E(G+)

w(ij).

Further,

λ1(G,w) ≥
2
∑

ij∈E(G)(A)ijxixj

‖ x ‖
≥

2
∑

ij∈E(G+)w(ij)

|V (G)|
=

2w(G+)

|V (G)|
.

For second inequality, consider the weighted graph (G,−w). Then λ1(G,−w) =

−λn(G,w). Therefore,

λn(G,w) = −λ1(G,−w) ≤ 2w(G−)

|V (G)|

since G− is a spanning subgraph of (G,−w) in which every component is vertex-induced

subgraph with only positive edges. This completes the proof. �

The above theorem is very useful to bound median eigenvalues. A special case of above

result has been used in [24] to bound median eigenvalues of stellated trees and corona

graphs. In the next section, we use it to prove that all bipartite graphs with at most one

perfect matching have median eigenvalues in [−1, 1].
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3 Bipartite graphs

Let G be a bipartite graph. If G has at most one perfect matching, then the determinant of

its adjacency matrix is -1, 0 or 1 by Theorem 2.1. So such bipartite graphs are unimodular

(cf. [1]). Bipartite graphs with a unique perfect matching have other combinatorial

interest (see [23]) and include all acyclic graphs [8, 14]. The HOMO-LUMO gap of acyclic

graphs has been studied in [14, 22, 25].

Let (G,w) be a weighted graph with n vertices. A weight-function w′ is equivalent to

w if there exists an edge cut S such that w′ is obtained from w by switching the signs

of edges in S, i.e., w′(e) = −w(e) if e ∈ S and w′(e) = w(e) otherwise. Two weighted

graphs (G,w) and (G′, w′) are equivalent if G = G′ and w is equivalent to w′.

Proposition 3.1 ([24]) Let (G,w) be a weighted graph and w′ be an equivalent weight-

function of w. Then λi(G,w) = λi(G,w
′).

Now, we are going to prove our main result, Theorem 1.3.

Proof of Theorem 1.3. Let G be a bipartite graph with at most one perfect matching. If

G has no perfect matching, then G is not invertible by Theorem 2.1. Therefore, λH(G) =

λL(G) = 0 and the theorem holds.

So in the following, assume that G is a bipartite graph with a unique perfect matching

M . By Theorem 2.2, G has an inverse (G−1, w) such that w : E(G) → Z\{0}. For any

edge ij ∈ M , there is exactly one M -alternating path joining i and j which is the edge

ij. So w(ij) = 1 by Theorem 2.2. Hence all edges of M are positive edges of (G−1, w).

In (G−1, w), let G−1+ be the spanning subgraph induced by edges in M . Then it follows

from Theorem 2.4 that

λ1(G
−1, w) ≥ 2w(G−1+ )

|V (G)|
=

2|M |
|V (G)|

= 1.

So λH(G) = 1/λ1(G
−1, w) ≤ 1 by Proposition 2.3.

On the other hand, let (G−1, w′) be a weighted graph obtained from (G−1, w) by

switching operation along the edge-cut E(A,B), where (A,B) is a bipartition of G and

E(A,B) is the set of all edges with end-vertices from two different partitions of G. Then,

λn(G−1, w′) = λn(G−1, w) by Proposition 3.1. In the (G−1, w′), all edges in M have
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negative weight, and let G−1− be the spanning subgraph induced by edges in M . Then it

follows from Theorem 2.4 that

λ1(G
−1, w′) ≤ 2

w′(G−1− )

|V (G)|
= − 2|M |
|V (G)|

= −1.

So λL(G) = 1/λn(G−1, w) = 1/λn(G−1, w′) ≥ −1 by Proposition 2.3. This completes the

proof. �

Remark. Note that, a bipartite graph with a unique perfect matching always has a cut

edge [16]. A result of [24] characterizes all graphs with a unique perfect 2-matching and

the characterization provides a linear time algorithm to recognize such graphs, including

bipartite graphs with a unique perfect matching.

Shao and Hong [22] characterized all trees with the largest HOMO-LUMO gap, which

are so-called combs obtained by attaching a pendant edge to each vertex of a path.

Gutman [8] proved that among all trees with fixed number of vertices, paths maximize

the energy which is defined as the sum of absolute eigenvalues. Among all trees with

an even number of vertices, K2 and P4 are the only graphs maximizing both energy and

HOMO-LUMO gap. We conclude by mentioning a specific open question: which bipartite

graphs with a unique perfect matching maximize the HOMO-LUMO gap?
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[3] P. Fowler, T. Pisanski, HOMO-LUMO maps for chemical graphs, MATCH Commun.

Math. Comput. Chem. 64 (2010) 373–390.

-860-



[4] P. Fowler, T. Pisanski, HOMO-LUMO maps for fullerenes, Acta Chim. Slov. 57

(2010) 513–517.

[5] C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York, 2001.

[6] H. H. Günthard, H. Primas, Zusammenhang von Graphentheorie und MO-Theorie

von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta 39 (1956)

1645–1653.

[7] K. Guo, B. Mohar, Large regular bipartite graphs with median eigenvalue 1, Lin.

Algebra Appl. 449 (2014) 68–75.

[8] I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim.

Acta 45 (1977) 79–87.
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