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Abstract 

Energy of a graph is defined as the sum of absolute values of the eigenvalues of its 
adjacency matrix. Remote graphs are the graphs drawn on the remote adjacency matrices, 
built on the corresponding distance matrix by making unity a chosen distance r and zero 
the remaining entries. Energy of hypercubes, their remote graphs and hypercube 
derivatives made on the tetrahedron were computed; results were rationalized and 
analytical formulas derived. Rhombellanes form a class of multi-shell rhombic polytopes, 
of which vertices are k-partite. This property facilitated identification of partitions as 
polyhedra and evaluation of their graph energy. A stabilization energy was calculated for 
the parent graphs with respect to their independent partitions, by analogy with the 
quantum computations in molecular graphs. Energy of C40 fullerenes and their remote 
graphs was computed and used in a QSPR study to predict the total energy per atom, 
computed at the Hartree-Fock level of theory. Ability of graph energy to approach the 
quantum computed energy is discussed in connection with other topological descriptors. 
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1 Introduction 

A graph ( , )G V E  is a pair of two sets, V and E, V=V(G) being a finite nonempty set and 

E=E(G) a binary relation defined on V [1]. Any graph can be expressed in terms of pertinent 

order, real, symmetric matrices, the simplest one being the adjacency A matrix; its entries are 

either 1 if i ≠ j and ( , ) ( )i j E G∈ , or 0 if i = j or ( , ) ( )i j E G∉ . 

Remote graphs are the graphs drawn on the remote adjacency matrices, built on the 

corresponding distance matrix by making unity a chosen distance r and zero the remaining 

entries [2,3]. The half sum of entries in A2 and A3 matrices represents the well-known 

Gordon-Scantlebury [4] or Bertz [5] index and Polarity number [6], respectively. In the above, 

A2 and A3 represent the adjacency at two edge and three edge distance, respectively.  

Cartesian product G×H of two graphs G and H, is a new graph having the vertex set V(G 

× H) = V(G) × V(H), that is, every vertex of G × H is an ordered pair (u,v), where u ∈ V(G) 

and v ∈ V(H); two distinct vertices (u,v) and (x,y) are adjacent in G × H if either: u = x and vy 

∈ E(H), or v = y and ux ∈ E(G). 

Spectral graph theory is a field where graph theory and matrix theory meet with the 

Hückel approach of molecular π-energy. It is focused on the set of eigenvalues (and 

eigenvectors), called the spectrum of a (chosen) graph matrix.  

Energy of a graph is defined as the sum of the absolute values of the eigenvalues of the 

chosen matrix [7]. The most studied is the adjacency matrix A and the related characteristic 

polynomial [8,9]  

Hückel molecular orbital (HMO) method [10] is a simple Linear Combination of 

Atomic Orbitals LCAO for the calculation of energies in π-electron conjugated hydrocarbon 

systems, such as ethylene, butadiene or benzene. It is the theoretical basis for the Hückel’s 

rule.  

The energies of HMOs are just the eigenvalues of A(G), or the roots of the characteristic 

polynomial: 

Ch(G, λ) = det|λI - A | = ∑kak (G ) λ n-k     

The solutions λi : i = 1, 2,.., n of Ch(G, λ) represent the spectrum of the π- MO energies: 

Ei = α + β λi         

Taking α = 0 (the reference energy), and β = 1 (the unit energy), the energy of ith MO   

  Ei = λi   
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In Hückel theory, the total π-electron energy Eπ (i.e., the sum of energies of orbitals popu-

lated in the ground state) is calculated as: 

  Eπ = ∑ gi λi         

where gi is the occupation number of the i th MO while λi, i = 1, 2,.., n  are the eigenvalues of 

the molecular graph. 

Spectrum of a graph, Spec(G), is the set of all roots λi, i = 1, 2,.., n of its characteristic 

polynomial or the eigenvalues of A(G); they can be obtained, e.g., by a diagonalization 

procedure. From the above, it is clear that the Hückel theory has a topological basis; HMOs 

are called sometimes “topological orbitals”. 

After the introductory part, the section 2 gives a summary information on the energy of 

hypercubes; the third section speaks about the remote graphs of hypercubes; section 4 

introduces the “spongy” hypercubes; in section 5 a new class of rhombic polyhedra is 

proposed; section 6 deals with the evaluation of C40 fullerene energy by the graph energy; 

conclusions and references will close this paper. 

    

2 Energy of hypercube graphs 

Hypercube Qn (or n-cube) is the graph whose vertex set Vn consists of 2n n-tuples with 

coordinates 0 or 1, where two vertices are adjacent if their respective vectors differ in exactly 

one coordinate [1]. 

The hypercube can be defined recursively: Q1 is taken K2 (i.e., the complete graph on two 

vertices) and, for n > 2, Qn = Qn-1 × K2, the Cartesian product of Qn-1 with K2 [11].  It can be 

drawn as a Hasse diagram [12].  

Hypercube is a regular polytope in the space of any number of dimensions [13]. The n-

cube {4,3n−2} (by Schläfli symbols) [14] has as its dual the n-orthoplex {3n−2,4}. The number 

of k-cubes contained in an n-cube Qn(k) comes out from the binomial coefficients (2k+1)n 

( ) 2 ; 0, .., 1n k
n

n
Q k k n

k
−  

= = − 
 

    

Hypercube is a regular graph of degree n, according to Balinski [15] theorem. It is also 

bipartite, i.e., the vertex set of the graph can be partitioned into two subsets, such that, within 

each set no vertices are adjacent; it is a vertex-transitive graph. 

The adjacency matrix of Qn can be written, considering the recursive nature of Qn and 

commutativity of the submatrices, as 
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           1 1

1 1

A I
A

I A
n n

n

n Qn

Q Q

Q
Q

− −

− −

 
=  
 
 

  

IQn-1 is the 2(n–1) × 2(n–1) identity matrix (corresponding to Qn-1 ) [1]. Consequently, one can 

write a recursive formula for its characteristic polynomial. 

         
1 1 1

1 1 1 1 1 1

1 1 1 1

2det( ) det(( ) )

det(( ) )det(( ) )

det( ( 1) )det( ( 1) )

n n n n n

n n n n n n

n n n n

Q Q Q Q Q

Q Q Q Q Q Q

Q Q Q Q

A I A I I

A I I A I I

A I A I

λ λ
λ λ
λ λ

− − −

− − − − − −

− − − −

− = − −

= − − − +

= − + − −

 

The solutions of Qn characteristic polynomial, i.e., eigenvalues λk, forming a spectrum, are 

Spec(Qn) = {-n, -n+2, -n+4,.., n-4, n-2, n} 

where n is the vertex degree d(v) of Qn. According to the Frobenius theorem, the eigenvalues 

of a graph ranges between – d(v)max  and + d(v)max. 

Since Qn is the Cartesian product Qn-1 × K2, there is a theorem enabling the calculation of 

eigenvalues for a Cartesian product graph from the eigenvalues of its factors:    

Theorem 1 [16]:  Let G and H be two graphs having the eigenvalues λ1, . . ,  λm and µ1, . . . , 

µn, respectively.  The m·n eigenvalues of the Cartesian product G × H are the sums λi + µj, for 

1 < i < m and 1 < j < n. 

As a consequence, the Cartesian product of two hypercubes is another hypercube: Qi × Qj = 

Qi+j . The multiplicities for the ordered eigenvalues of Qn adjacency matrix are given by the 

binomial coefficients, as established by the theorem: 

Theorem 2 [17]:  For the sequence of n + 1 distinct eigenvalues λ0 < λ1 <  . . . <  λn, of Qn 

spectrum, the multiplicity M(λk ) is 
n

k

 
 
 

, where 0 < k < n. 

The multiplicities of the eigenvalues are identical to rows of Pascal’s triangle.  A compact 

formula for the graph energy of Qn energy was given in ref. [18]: 
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1
1

; for odd1
2

2
( )

; for even

2

n

n
n

nn

E Q
n

n nn

 + +   =+  
  = 

 
  =
 
 

  

3 Remote graphs of hypercubes Qn 

Remote graphs of hypercubes Qn were generated from their remote adjacency matrices Ar, for 

n=3 to 8; r takes values from 1 (adjacency at distance 1, the usual adjacency) to n. The vertex 

degree d equals n [15] in Qn and r = 1; for higher r-values, d varies, as shown in Table 1. If Qn 

are regular n-dimensional polytopes, their remote graphs turn to semiregular (as in case r = 2, 

the objects being n-demicubes) and then to uniform polytopes. n-Demicubes are n-polytopes 

formed by alternation of n-hypercubes (resulting two copies of the halved n-cube graph). The 

demicube is identical to the regular tetrahedron; the demitesseract is identical to the regular 

16-cell; the demipenteract is semiregular; higher terms are all uniform polytopes (i.e., vertex-

transitive). More about this subject the reader can find in refs. [13,19]. The last remote graph 

(i.e., the graph built on the largest distances in the parent graph) is a collection of P2 

disconnected graphs; there are exactly 2(n-1) such disjoint edges. In case n = even and  r = -1, 

the remote graph is a copy of the parent graph, with a mirror “mr” spectrum; Table 1 includes 

the energy computed for both the parent hypercubes and their remote graphs. Fig. 1 illustrates 

the Penteract and two of its remote graphs. In Fig. 2 (left), the demicube is illustrated. 

  
 

Q5.32; d=5 

Penteract 

Q5r2.16; d=10 

Demipenteract 

5-Demicube 

Q5r4.16; d=5  

(two interlaced twisted cubes) 

Figure 1. Remote graphs of Qn; n=5. 
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Table 1. Qn graph energy Er of remote graphs (Ar; r=1 to n; vertex degree d) 

n 8 7 6 5 4 3 

r Er type Er type Er type Er type Er type Er type 

1 560 Q8mr 280 Q7mr 120 Q6mr 60 Q5mr 24 Q4mr 12 Q3mr 

2 1008 2×d28 420 2×d21 180 2×d15 80 2×d10 24 2×d6 12 2×d3 

3 1232 d56mr 560 d35mr 160 d20mr 80 d10mr 24 Q4mr 8 4×e 

4 1120 2×d70 560 2×d35 180 2×d15 60 2×d5 16 8×e 

5 1232 d 6mr 420 d21mr 120 Q6mr 32 16×e 

6 1008 2×d28 280 2×d7 64 32×e 

7 560 Q8mr 128 64×e 

8 256 128×e 

v 256  128  64  32  16  8  

 

   

Q3r2.8 
(demicube of Q3) 

TQ2.8 
 

TQ3r2.16: 3^9; deg=7; e=56; f3=48 

 
Figure 2. Remote graphs of Qn and TQn; n = 2; 3. 

 

4 Spongy Hypercubes 

Let us now take the graph G(d,v) of a d-connected polyhedron on v-vertices and make n-times 

the Cartesian product with an edge; the operation results in a “spongy hypercube” 

1 2( , , ) ( , ) n
nG d v Q G d v K+ = □  (the square being another symbol for the Cartesian product). On each 

edge of the original polyhedral graph, a local hypercube Qn will evolve; these hypercubes are 

incident in a hypervertex, according to the original degree, d. In a spongy hypercube, the 

original 2-faces are not be counted. 
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polytope with -, built on a 3( , , )nG d v Qs of a spongy hypercubetface-The k [20]. Conjecture

vertices of degree d, are combinatorially counted from the previous rank facets

 [ ] ( 1)( , , , ) ( / ) ( 1)( ) 2 ; 1; 0,1,..n k
n

n
G d v Q k v n d n d n k n k n

k
− −  

= ⋅ − − − ⋅ ⋅ > = 
 

              

The above formula represents the “embedding” of the hypercube on any polyhedron of vertex 

degree d (see the factor in the front of the almost classical hypercube counting), that 

transforms a cell in a hyper-multi-torus.  

The alternating summation of the above counted facets accounts for the genus of the 

embedded surface: 

2
0

( 1) ( ) 2(1 ); 1; 0,1,.. ; ( ) / 2
n

k
k

k

f M g n k n g f Gχ
=

− = = − > = =∑  

The “spongy” character of these structures comes from the genus g [1] of the hypersurface. 

Note that the summation ignores the (hyper) prisms evolved on each f2 facets of the original 

cage. Since f2 facets are not “seen”, the dimension/rank [21-23] of spongy structures is 

counted from the rank of Qn plus two: k=n+2.  

Since the graph product is associative and commutative, we can write: 

1 2( , , ) ( , ) ( , ) ( , )n
n n nG d v Q G d v K G d v Q Q G d v+ = = =□ □ □  

Then, the eigenvalues of the spongy hypercubes can be calculated by summing the 

eigenvalues of Qn and G(d,v), cf. Theorem 1.  

 Analysis of numerical data obtained for the “spongy” TQn graphs and comparison with 

the formula obtained by Florkowski [18], enabled us to write the following formula for the 

graph energy: 

2
3

; for odd3
2

2
( )

2
2

; for even2
2

2

n

n
n

nn

E TQ
n

n
nn

 + +   =+  
  = 

+  +   =+ 
 
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A detailed paper giving the way of finding of a general formula for the energy of TQn will be 

published elsewhere [24].  

For the last remote adjacency An; n= diameter of G, a very simple formula was found: 

En=3×2 n̂ 

coming out from the fact that the last remote graphs of TQn are (disjoint) 3-cubes, of which 

number is 2^(n-2). Data in this respect are given in Tables 2 and 3. Fig. 2 illustrates TQ2.8 and 

a remote graph TQ3r2.16 (consisting in two interlaced twisted 3-cubes); it is a vertex transitive 

graph. 

Table 2. TQn graph energy Er at remote graphs (Ar; r = 1 to n); vertex degree d; no. disjoint Q3 = 2^(n-2) 

Ar TQ6 TQ5 TQ4 TQ3 TQ2 TQ1 
 Er type Er type Er type Er type Er type Er type 

A1 280 d=8 140 d=7 60 d=6 30 d=5 12 d=4 6 d=3 
A2 450 d=25 204 d=18 72 d=12 32 d=7 12 1Q3   
A3 480 d=40 208 d=22 72 d=10 24 2Q3     
A4 510 d=35 168 d=13 48 4Q3       
A5 360 d=16 96 8Q3         
A6 192 16Q3           
v 120  64  32  16  8  4  

 

 

Table 3. Energy of the last remote graphs (disjoint Q3) of TQn (cf. Ar ; r = diam; m=multiplicity); En=3×2 n̂. 

TQn TQ6 TQ5 TQ4 TQ3 TQ2 TQ1 
v 128 64 32 16 8 4 
λ 3 3 3 3 3 3 
 1 1 1 1 1 -1 
 -1 -1 -1 -1 -1 -1 
 -3 -3 -3 -3 -3 -1 

m 16 8 4 2 1 2^(n-2) 
 48 24 12 6 3 3×2^(n-2) 
 48 24 12 6 3 3×2^(n-2) 
 16 8 4 2 1 2^(n-2) 

En 192 96 48 24 12  
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5 Rhombellanes 

Rhombic polyhedra [25,26] represent aesthetic appeal objects, of mathematical interest. 

The best known is the Triacontahedron, a dual of the Archimedean Icosidodecahedron, 

denoted here Rh30.32 (Fig. 3); the subscript is the number of rhombic faces while the last 

number counts the vertices in the graph.  

A new class of multi-shell rhombic polytopes, called Rhombellanes, was proposed by 

Diudea [20]; they are tessellated by [1,1,1] Propellane, an organic molecule, first synthesized 

by Wiberg and Walker [27]. 

 

 
 

Rh30.32 Icosahedron (blue); Dodecahedron (red) and 
Icosidodecahedron (gray)  

 
Figure 3. Triacontahedron (left) and three disconnected polyhedra composing rhombellanes. 

 

  
rbl1A(Rh30).62 rbl1B(Rh30).62 

 
Figure 4. Rhombellanes of the 1st generation. 
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Rhombellanes are built up by a procedure, we called “rhombellation”, achieved as follows. 

Join by a new point the vertices lying opposite diagonal in each rhomb of a Rh-cage to get 

rbl1 generation (possible A and B isomers, as there are two diagonals – see Fig. 4). In a 

second step, put a new point opposite to a vertex of degree higher than 2 and join the new 

point with the vertices of d = 2 surrounding that vertex of d > 2, thus local Rh-cells being 

formed in the new structures rbl2 (of generation 2 –see Fig. 5). The process can continue, in 

this way new shells/ generations being added to the parent object Since the two diagonals may 

be topologically different, each generation may consist of two isomers (denoted here as A and 

B, respectively).   

All the rings in rhombellanes are rhombs. As a general property, all the vertex classes 

represent non-connected sets, thus the chromatic number equals the number of vertex classes. 

This property facilitates identification of vertex partitions as polyhedra and evaluation of their 

graph energy. A “binding” energy Ebind (in Beta units) can be calculated (see Table 4) for the 

parent graphs with respect to their independent partitions (i.e., energy of composition, 

Ecompos), by analogy with the quantum computations in molecular graphs. 

Ebind = E - Ecompos. 

  

rbl2A(Rh30).82 
 

rbl2B(Rh30).74 

  

rbl3A(Rh30).94 rbl3B(Rh30).94 

Figure 5. Rhombellanes of the 2nd (top) and 3rd (bottom) generation. 
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Table 4. Rhombellanes related to Rh30.32; Graph energy; Ebind = E - Ecompos. 
 

  Cluster Composition v E E compos E bind λ max λ min 

1 Icosahedron 
 

12 23.416 
 

5 -2.236 

2 Dodecahedron 
 

20 29.416 
 

3 -2.236 

3 Icosidodecahedron 
 

30 55.416 
 

4 -2 

4 Rh30  1+2 32 47.896 52.832 -4.936 3.873 -3.873 
5 rbl1A(Rh30).62 1+2+3 62 71.872 108.248 -36.376 5 -5 

6 rbl1B(Rh30).62 1+2+3 62 87.314 108.248 -20.934 4.583 -4.583 

7 rbl2A(Rh30).82 1+2x2+3 82 129.43 137.664 -8.234 5.269 -5.269 

8 rbl2B(Rh30).74 2x1+2+3 74 132.828 131.664 1.164 5 -5 

9 rbl3A(Rh30).94 2x1+2x2+3 94 154.906 161.08 -6.174 5.568 -5.568 

10 rbl3B(Rh30).94 2x1+2x2+3 94 162.292 161.08 1.212 5.349 -5.349 

 

6 Graph energy in fullerene energy evaluation 

Ordering of C40 fullerene graphs according to the molecular total energy was reported 

earlier, with respect to semiempirical [28] or higher theoretical level [29]. Pentagon fusion 

(calculated as the number of fused pentagonal faces np) was found the major destabilizing 

factor in the small classical fullerenes. The maximum value occurs for the hemidodecahedral 

capped isomer 40:1, and the minimum for the two isomers 40: 38 and 40: 39 (see Table 5). 

The parameter np represents just the coefficient in Omega polynomial [30] of the term at 

exponent unity. 
 

  
Figure 6. Plots of total energy/atom (in au - left) and strain energy/atom (in kcal/mol - right) vs the number of 

fused pentagons np. 
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The linear dependency of Hartree-Fock (6-31G*) energies of C40 isomers (in au - Table 5) vs. 

the parameter np was plotted in Figure 6 (left); it explains about 90 % of energy variance. A 

better dependence on np was shown by the strain energy (POAV1) [31,32], Figure 6 (right). 

QSPR models can be derived in a variety of combinations; it is not the aim of this 

study to perform the best model to describe the quantum energy of C40. Our goal was to show 

that the graph energy of these fullerenes (and others) can be used to evaluate the quantum 

calculated molecular energy.  

Table 5. Total energy Etot (HF(6-31G*; au)), strain (POAV1; kcal/mol) and topological parameters of C40 
fullerenes (No. of fused pentagons np; Euclidean distance D3D; topological distance D; centrality 
index C(Sh(D)); energy of the parent graph E1; sum of remote graphs energy per remote distance Er; 
sum of remote graphs energy per square remote distance Ersq; last eigenvalue LEig and the polarity 
number D3) 

C40 Sym 
Etot 

/atom 
Strain 
/atom 

np D3D D C(Sh(D)) E1 Er Ersq LEig D3 

1 D5d 
-

37.83 15.72 
20 

3178 
303
5 3.89 

61.6
1 

193.5
8 105.08 -2.80 

29.5
1 

2 C2 
-

37.84 14.59 
16 

3128 
300
8 4.02 

61.7
5 

193.8
0 105.27 -2.73 

30.6
3 

3 D2 
-

37.84 15.12 
18 

3146 
301
8 4.05 

61.5
7 

192.9
4 105.00 -2.76 

30.4
3 

4 C1 
-

37.84 14.31 
15 

3111 
300
1 3.59 

61.6
8 

193.6
9 105.24 -2.68 

30.7
8 

5 Cs 
-

37.84 14.11 
14 

3108 
299
7 3.60 

61.8
2 

193.6
5 105.44 -2.69 

30.8
5 

6 C1 
-

37.84 14.06 
14 

3102 
299
9 4.10 

61.7
4 

193.3
1 105.21 -2.67 

30.9
7 

7 Cs 
-

37.84 14.33 
15 

3102 
299
8 3.57 

61.7
9 

193.4
8 105.29 -2.68 

30.9
7 

8 C2v 
-

37.84 14.63 
15 

3107 
300
2 4.13 

61.6
4 

191.3
9 104.65 -2.67 

30.7
0 

9 C2 
-

37.84 13.77 
13 

3092 
299
5 3.54 

61.6
3 

193.5
6 105.10 -2.66 

30.7
8 

10 C1 
-

37.84 13.73 
13 

3092 
299
5 3.57 

61.7
6 

193.8
8 105.37 -2.69 

31.0
0 

11 C2 
-

37.84 14.25 
15 

3102 
299
7 3.60 

61.6
0 

193.3
4 105.07 -2.71 

30.8
2 

12 C1 
-

37.84 13.68 
13 

3090 
299
7 3.47 

61.7
4 

194.9
2 105.48 -2.67 

30.9
8 

13 Cs 
-

37.84 13.75 
13 

3092 
299
8 4.04 

61.8
0 

194.4
8 105.46 -2.66 

31.3
4 

14 Cs 
-

37.84 13.56 
12 

3082 
299
5 3.43 

61.8
2 

195.3
2 105.60 -2.67 

31.0
1 

15 C2 
-

37.84 13.49 
12 

3084 
300
1 3.36 

61.7
3 

195.3
9 105.45 -2.69 

31.1
1 

16 C2 
-

37.84 13.69 
13 

3083 
300
1 3.39 

61.6
2 

194.6
0 105.16 -2.70 

30.9
2 

17 C1 
-

37.84 13.64 
13 

3082 
300
0 3.38 

61.7
0 

195.2
7 105.44 -2.67 

30.9
3 

18 C2 
-

37.84 13.94 
14 

3092 
299
9 3.38 

61.6
9 

194.9
0 105.39 -2.70 

31.1
7 

19 C2 
-

37.84 13.90 
13 

3082 
299
8 3.45 

61.7
9 

195.2
4 105.55 -2.69 

31.1
6 
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20 C3v 
-

37.84 13.66 
12 

3087 
300
0 3.37 

62.0
1 

196.3
1 105.97 -2.69 

31.2
3 

21 C2 
-

37.84 13.55 
12 

3087 
299
2 3.57 

61.8
3 

194.2
3 105.54 -2.68 

31.3
4 

22 C1 
-

37.84 13.46 
12 

3086 
299
5 3.48 

61.9
3 

195.4
6 105.82 -2.67 

31.4
0 

23 C2 
-

37.84 13.77 
13 

3092 
299
3 3.55 

61.7
4 

194.4
7 105.44 -2.67 

31.3
8 

24 Cs 
-

37.84 13.26 
11 

3078 
299
4 3.43 

61.8
4 

195.8
2 105.75 -2.63 

31.3
0 

25 C2 
-

37.84 13.48 
12 

3083 
299
6 3.40 

61.7
6 

195.3
4 105.61 -2.68 

31.2
5 

26 C1 
-

37.84 13.21 
11 

3077 
299
6 3.37 

61.7
2 

195.9
7 105.66 -2.64 

31.2
1 

27 C2 
-

37.84 13.45 
12 

3079 
299
6 3.43 

61.8
3 

196.0
7 105.84 -2.66 

31.2
8 

28 Cs 
-

37.84 13.46 
12 

3086 
299
3 3.44 

61.7
1 

194.5
2 105.41 -2.66 

31.3
9 

29 C2 
-

37.84 13.21 
11 

3074 
299
3 3.40 

61.7
5 

195.3
6 105.55 -2.65 

31.0
2 

30 C3 
-

37.84 13.54 
12 

3077 
299
4 3.43 

61.8
5 

195.6
5 105.72 -2.67 

31.1
2 

31 Cs 
-

37.84 13.07 
11 

3074 
299
5 3.39 

61.7
3 

195.3
2 105.50 -2.63 

30.9
3 

32 D2 
-

37.84 13.96 
14 

3095 
300
4 3.37 

61.8
1 

195.9
7 105.64 -2.70 

31.5
2 

33 D2h 
-

37.84 14.33 
14 

3095 
300
4 3.79 

61.8
9 

195.1
6 105.46 -2.70 

31.4
5 

34 C1 
-

37.84 13.39 
12 

3082 
299
7 3.37 

61.7
6 

195.8
3 105.71 -2.66 

31.0
8 

35 C2 
-

37.84 13.27 
11 

3078 
299
9 3.36 

61.7
7 

196.0
6 105.69 -2.65 

31.2
0 

36 C2 
-

37.84 13.12 
11 

3076 
299
7 3.37 

61.7
8 

196.3
9 105.80 -2.64 

30.9
9 

37 C2v 
-

37.84 13.02 
11 

3078 
299
5 3.38 

61.7
1 

195.4
7 105.57 -2.64 

31.1
0 

38 D2 
-

37.84 12.83 
10 

3071 
299
4 3.37 

61.6
0 

195.6
9 105.48 -2.63 

30.8
7 

39 D5d 
-

37.84 13.00 
10 

3077 
299
0 3.38 

61.5
8 

193.9
2 105.16 -2.58 

31.1
7 

40 Td 
-

37.84 13.17 
12 

3075 
300
0 3.40 

61.8
2 

195.4
6 105.61 -2.60 

30.8
6 

 

Table 6. Best models in describing total energy Etot/atom. 

X1 X2 X3 R2 St error 

np 
  0.900 0.000662 

SD E/atom   0.849 0.000813 

LEig   0.780 0.000981 
D3D   0.777 0.000987 

D    0.634 0.001266 
C(Shell(D))   0.387 0.001638 

Er   0.309 0.001739 

Ersq   0.259 0.001801 

E1   0.026 0.002065 
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np E1  0.916 0.000616 

 D3  0.915 0.000617 
 LEig  0.915 0.000617 

 Ersq  0.907 0.000645 

 Er  0.906 0.000650 

np E1 LEig 0.924 0.000591 
  D3 0.921 0.000605 

  C(Sh(D)) 0.918 0.000614 

SD E/atom LEig  0.897 0.000680 

 D3D  0.882 0.000727 

 C(Sh(D))  0.880 0.000735 

 E1  0.862 0.000787 

 Er  0.853 0.000814 
SD E/atom LEig C(Sh(D)) 0.918 0.000615 

  D3D 0.907 0.000655 
  Er 0.907 0.000656 

  E1 0.902 0.000673 

  Ersq 0.900 0.000678 

 

Table 7. Best models in describing strain energy Strain/atom. 

X1 X2 X3 R2 St error 

np   0.965 0.112 

D3D   0.879 0.209 

SDStrain   0.757 0.296 

LEig   0.750 0.300 

D (distance)   0.654 0.353 

C(Sh(D))   0.536 0.409 
np C(Sh(D))  0.970 0.106 

 E1  0.968 0.109 

 D3  0.968 0.110 
 Er  0.967 0.110 

 LEig  0.966 0.112 

 D3D  0.965 0.113 

np C(Sh(D)) LEig 0.973 0.102 
  E1 0.972 0.102 

  D3 0.972 0.103 

D3D LEig  0.905 0.187 

 D3  0.891 0.200 

 Er  0.890 0.202 

 Ersq  0.887 0.204 
 SDStrain  0.885 0.2064 

 E1  0.884 0.2068 

D3D LEig Er 0.934 0.158 

  Ersq 0.926 0.168 
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Tables 6 and 7 list several combinations, including the energy of graphs and remote 

graphs, with and without the np parameter. A mention deserves the D3D descriptor as a steric 

descriptor that includes the np parameter in a hidden manner. A second mention is addressed 

to SDE and SDStrain, representing the “sum descriptors” computed as linear combinations of 

local descriptors in the “hypermolecule” algorithm developed by TOPO Group Cluj. This 

descriptor together with the last eigenvalue LEig and the other eigenvalues of graphs and/or 

remote graphs can satisfactory predict the quantum computed molecular energies of C40 

fullerenes. 

 

7 Conclusions 
 

In this work, the adjacency matrix eigenvalues and graph energies were computed on 

hypercubes, spongy hypercubes, rhombellanes and the set of C40 fullerenes. 

Data obtained for the “spongy” TQn graphs enabled us to write an analytical formula 

for calculating the graph energy of this class of graphs. The remote graphs, derived on the 

remote adjacency matrices of spongy hypercubes, deserve more exploring to find eventual 

hidden distance-based relations with the parent graphs. 

Rhombellanes represent a new class of rhombic polytopes. In rhombellanes, a binding 

energy was calculated with respect to the vertex class partitions representing polyhedral cells.  

Total energy (HF(6-31G*) and strain (POAV1) of the set of C40 fullerene was not 

particularly well described by the values of graph energy or remote graph energy. A better 

description was done by a topological parameter counting the fused pentagons within a 

fullerene isomer, eventually associated with other descriptors developed at Topo Group Cluj 

[33]. 
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