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Abstract

Energy of a graph is defined as the sum of absolute values of the eigenvalues of its
adjacency matrix. Remote graphs are the graphs drawn on the remote adjacency matrices,
built on the corresponding distance matrix by making unity a chosen distancezero

the remaining entries. Energy of hypercubes, their remote graphs and hypercube
derivatives made on the tetrahedron were computed; results were rationalized and
analytical formulas derived. Rhombellanes form a class of multi-shell rhombic polytopes,
of which vertices aré-partite. This property facilitated identification of partitions as
polyhedra and evaluation of their graph energy. A stabilization energy was calculated for
the parent graphs with respect to their independent partitions, by analogy with the
gquantum computations in molecular graphs. Energy sff@erenes and their remote
graphs was computed and used in a QSPR study to predict the total energy per atom,
computed at the Hartree-Fock level of theory. Ability of graph energy to approach the
quantum computed energy is discussed in connection with other topological descriptors

(c This work is licensed under a Creative Commons Attribution 4.0 International License.
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1 Introduction

A graph G(V,E) is a pair of two setd/ andE, V=V(G) being a finite nonempty set and
E=E(G) a binary relation defined ovi [1]. Any graph can be expressed in terms of pertinent
order, real, symmetric matrices, the simplest one being the adjacency A matrix; its entries are
either Lifi#jand(i,j)OE(G),or0ifi=jor (i, )UE(G).

Remote graphs are the graphs drawn on the remote adjacency matrices, built on the
corresponding distance matrix by making unity a chosen distano€e zero the remaining
entries [2,3]. The half sum of entries ire And A matrices represents the well-known
Gordon-Scantlebury [4] or Bertz [5] index and Polarity number [6], respectively. In the above,
Az and A represent the adjacency at two edge and three edge distance, respectively.

Cartesian produdBxH of two graphsG andH, is a new graph having the vertex 95
x H) =V(G) x V(H), that is, every vertex d& x H is an ordered paiu(v), whereu € V(G)
andv € V(H); two distinct verticesu,v) and X,y) are adjacent i x H if either:u = x andvy
€ E(H), or v=y and we E(G).

Spectral graph theory is a field where graph theory and matrix theory meet with the
Hickel approach of moleculat-energy. It is focused on the set of eigenvalues (and
eigenvectors), called the spectrum of a (chosen) graph matrix.

Energy of a graph is defined as the sum of the absolute values of the eigenvalues of the
chosen matrix [7]. The most studied is the adjacency matrix A and the related characteristic
polynomial [8,9]

Hickel molecular orbital (HMO) method [10] is a simple Linear Combination of
Atomic Orbitals LCAO for the calculation of energieszielectron conjugated hydrocarbon
systems, such as ethylene, butadiene or benzene. It is the theoretical basis for the Hickel's
rule.

The energies of HMOs are just the eigenvalueé\(@), or the roots of the characteristic
polynomial
Ch(G, A) =det}l - A| =Yka(G ) A"k
The solutions\ : i = 1, 2,.., mof Ch(G, 1) represent the spectrumtbie 7 MO energies:
Ei=a+p N
Taking a =0 (the reference energygnds = 1 (the unit energy), the energy 8f1O
Ei=M\i
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In Hickel theory, theotal 7zelectron energyEx (i.e., the sum of energies of orbitals popu-
lated in the ground state) is calculated as:

Er=2 0\
wheregi is the occupation number of tHEMO while A, i = 1, 2,..,n are the eigenvalues of
the molecular graph.
Spectrum of a graph, Sp&)( is the set of all root&;, i = 1, 2,..,n of its characteristic
polynomial or theeigenvalues ofA(G); they can beobtained,e.g, by adiagonalization
procedure. From the above, it is clear that the Hiickel theory has a topological basis; HMOs
are called sometimes “topological orbitals”.

After the introductory part, the section 2 gives a summary information on the energy of
hypercubes; the third section speaks about the remote graphs of hypercubes; section 4
introduces the “spongy” hypercubes; in section 5 a new class of rhombic polyhedra is
proposed; section 6 deals with the evaluation of f@lerene energy by the graph energy;

conclusions and references will close this paper.

2 Energy of hypercube graphs

HypercubeQn (or n-cube) is the graph whose vertex ¥etconsists of & n-tuples with
coordinates 0 or 1, where two vertices are adjacent if their respective vectors differ in exactly
one coordinate [1].

The hypercube can be defined recursiv€lyis takenkz (i.e., the complete graph on two
vertices) and, fon > 2, Qn = Qn-1 x Kz, the Cartesian product @h-1 with Kz [11]. It can be
drawn as a Hasse diagram [12].

Hypercube is a regular polytope in the space of any number of dimensions [13}. The
cube {4,373 (by Schlafli symbols) [14] has as its dual the@rthoplex {32,4}. The number
of k-cubes contained in ancube Q(k) comes out from the binomial coefficient&{2)"

Qn(k)=2"’k[::]; k=01

Hypercube is a regular graph of degreeaccording to Balinski [15] theorem. It is also
bipartite,i.e., the vertex set of the graph can be partitioned into two subsets, such that, within
each set no vertices are adjacent; it is a vertex-transitive graph.

The adjacency matrix d@n can be written, considering the recursive natur€ofnd

commutativity of the submatrices, as



-838-

A = Aq. laa
QT |Q A
n-1 Qn-1
lona is the D x 2D jdentity matrix (corresponding t@n1) [1]. Consequently, one can

write a recursive formula for its characteristic polynomial

det(A, —Alg )= det(@, -l 5—IQN1 )
=det((A, —Alg )l )det(®, —Alg Flig »
=det(A, - +1l, )detty, - 4- 1) )
The solutions of @characteristic polynomial, i.eeigenvaluesii forming a spectrum, are
Spec@n) = {-n, n+2, n+4,.., n-4, n-2, n}
wheren is the vertex degres{v) of Qn. According to the Frobenius theorem, the eigenvalues

of a graph ranges between v)déx and +d(V)max

Since Qn is the Cartesian produ@n1 x Kz, there is a theorem enabling the calculation of
eigenvalues for a Cartesian product graph from the eigenvalues of its factors:

Theorem 1 [16]: Let G and H be two graphs having the eigenvalues. , /m and, . . .,
un, respectively. Then-n eigenvalues of the Cartesian prodiietH are the sumé + 4, for

l<i<mandl<jn.

As a consequence, the Cartesian product of two hypercubes is another hyp@reuQe=
Qi+j. The multiplicities for the ordered eigenvaluesQafadjacency matrix are given by the

binomial coefficients, as established by the theorem:

Theorem 2 [17]: For the sequence af+ 1 distinct eigenvalue® < A1 < ... < in, of Qn

n
spectrum, the multiplicity Mi ) is EKJ ,where 0 <l n.

The multiplicities of the eigenvalues are identical to rows of Pascal’s triangle. A compact

formula for the graph energy oh@nergy was given in ref. [18]:
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n+1 n+1
= n+1 |;for n=odd
2

E(Q)=
n| n |;for n=even

2

3 Remote graphs of hypercube&n

Remote graphs of hypercub®s were generated from their remote adjacency matrieeA

n=3 to 8;r takes values from 1 (adjacency at distance 1, the usual adjacency)e vertex
degree d equals n [15] & and r= 1; for higher fvalues, d varies, as shown in Table 1.df Q

are regulan-dimensional polytopes, their remote graphs turn to semiregular (as inzase

the objects being-demicubes) and then to uniform polytope€emicubes are-polytopes

formed by alternation af-hypercubes (resulting two copies of the halwemlibe graph). The
demicube is identical to the regular tetrahedron; the demitesseract is identical to the regular
16-cell; the demipenteract is semiregular; higher terms are all uniform polytepeseftex-
transitive). More about this subject the reader can find in refs. [13,19]. The last remote graph
(i.e., the graph built on the largest distances in the parent graph) is a collection of P
disconnected graphs; there are exacfiy’Zuch disjoint edges. In case= even andr = -1,

the remote graph is a copy of the parent graph, with a mirror “mr” spectrum; Table 1 includes
the energy computed for both the parent hypercubes and their remote graphs. Fig. 1 illustrates
the Penteract and two of its remote graphs. In Fig. 2 (left), the demicube is illustrated.

Qs.32;d=5 Qsr2.16;d=10 Qsf4.16;d=5
Penteract Demipenteract (two interlaced twisted cubes)
5-Demicube

Figure 1. Remote graphs @,; n=5.
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Table 1.Q, graph energ¥:; of remote graphsA(; r=1 ton; vertex degree)

n 8 7 6 5 4 3
r E type E type E type Er type Er type Er type
1 56C Qsmr 28C Qmmr 12C Qemr 60 Qsmr 24 Qamr 12 Qsmr
2 100¢ 2xd28 42C 2xd21 18C 2xdlE 80 2xd1( 24 2xdé 12 2xd3
3 123z d56mi 56C d35mi 16C  d20mi 80 diomi 24 Qsmr 8 4xe
4 112C 2xd7C 56C 2xd35 18C 2xdl1t 60 2xd5 1€ 8xe
5 123z d6émr 42C d2imi 12C Qemr 32 16xe
6 100¢ 2xd28 28C 2xd7 64 32%e
7 56C Qsmr  12¢ 64xe
8 25€ 128>
v 25€ 12¢ 64 32 1€ 8

Qar2.8 TQ.8 TQsr2.16: 3"9; deg=7¢=56; ;=48

(demicube 0Qs)
Figure 2. Remote graphs @, andTQ,; n=2;3.

4 Spongy Hypercubes

Let us now take the gragb(d,v) of ad-connected polyhedron ervertices and make-times

the Cartesian product with an edge; the operation results in a “spongy hypercube”
G(d,v, Q.,)= 4 d Yo" K (the square being another symbol for the Cartesian product). On each
edge of the original polyhedral graph, a local hyperc@beill evolve; these hypercubes are
incident in a hypervertex, according to the original degdedn a spongy hypercube, the

original 2faces are not be counted.
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Conjecture. [20] The Kacds of a spongy hypercub#d, v, Q), built on a 3polytope with

vertices of degree d, are combinatorially counted from the previous rank facets
G(d, v Q. K= (v 0] dr ( d-1)( ~ ﬂm"'k*)[E:j n>1k= 0,10

Theaboveformula represents the “embedding” of the hypercube on any polyhedron of vertex
degreed (see the factor in the front of the almost classical hypercube counting), that
transforms a cell in a hyper-multi-torus.

The alternating summation of the above counted facets accounts for the genus of the
embedded surface:

D (=D = x(M)=2(1-g);n>Lk= 0,1,.n;0= § G)/:

k=0
The “spongy” character of these structures comes from the gefijsof the hypersurface.
Note that the summation ignores the (hyper) prisms evolved onfefets of the original
cage. Sincefz facets are not “seen”, the dimension/rank [21-23] of spongy structures is

counted from the rank ofdlus two: kn+2.

Since the graph product is associative and commutative, we can write:
GdvQ,)=qdy" K=QGdyp Q= @ Gd)

Then, the eigenvalues of the spongy hypercubes can be calculated by summing the
eigenvalues of Qand Qd,V), cf. Theorem 1.

Analysis of numerical data obtained for the “spongy’n §€aphs and comparison with
the formula obtained by Florkowski [18], enabled us to write the following formula for the

graph energy:

n+2
——1| n+3|;forn=0dd
2
n+2
n+2 |;forn=even
2

E(TQ) =
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A detailed paper giving the way of finding of a general formula for the energ@oWill be

published elsewhere [24].

For the last remote adjacency; A= diameter of Ga very simple formula was found:
En=3%x2n

coming out from the fact that the last remote graphE@fare (disjoint) 3-cubes, of which
number is 21§-2). Data in this respect are given in Tables 2 and 3. Fig. 2 illustt@e®and

a remote grapfiQsr2.16 (consisting in two interlaced twisted 3-cubes); it is a vertex transitive
graph.

Table 2.TQ, graph energ¥; at remote graphs (Ar = 1 ton); vertex degred; no. disjointQz = 2°(n-2)

Ar TQs TQs TQs TQs TQ TQu

E type E type E type E type E type E type

Ax 28C d=8 14C d=7 6C d=6 30 d=5 12 d=4 6 d=3
Az 45C d=25 204 d=18 72 d=12 32 d=7 12 1Qs
Az 48C d=4C 20&¢ d=22 72 d=1C 24 2Q3
Aq 51C d=35 16¢ d=13 48 4Qs3
As 36( d=1€ 96 8Qs
As 19z 1€Qs
v 12¢C 64 32 16 8 4

Table 3.Energy of the last remote graphs (disjd@a} of TQ, (cf. A ; r = diam;m=multiplicity); E,=3%x2.

Th T T TQs T TQ TQu

v 12¢ 64 32 16 8

A 3 3 3 3 3 3
1 1 1 1 1 -1
1 -1 -1 1 -1 -1
-3 -3 -3 -3 -3 -1

m 16 8 4 2 1 27(n-2)
48 24 12 6 3 3x2°n-2)
48 24 12 6 3 3x2°n-2)
16 8 4 2 1 27(n-2)

En 192 96 48 24 12
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5 Rhombellanes

Rhombic polyhedra [25,26] represent aesthetic appeal objects, of mathematical interest.
The best known is the Triacontahedron, a dual of the Archimedean Icosidodecahedron,
denoted here Rh32 (Fig. 3); the subscript is the number of rhombic faces while the last
number counts the vertices in the graph.

A new class of multi-shell rhombic polytopes, called Rhombellanes, was proposed by
Diudea [20]; they are tessellated by [1,1,1] Propellane, an organic molecule, first synthesized
by Wiberg and Walker [27].

Rhgo.32 Icosahedron (blue); Dodecahedron (red) and
Icosidodecahedron (gray)

Figure 3. Triacontahedron (left) and three disconnected polyhedra comgrhombellane.

rbllA(Rh3o).62 I’b|1B(Rh;o).62

Figure 4. Rhombellane of the tgeneratior
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Rhombellanes are built up by a procedure, we called “rhombellation”, achieved as follows.
Join by a new point the vertices lying opposite diagonal in each rhomb of a Rh-cage to get
rbli generation (possible A and B isomers, as there are two diagonals — see Fig. 4). In a
second step, put a new point opposite to a vertex of degree higher than 2 and join the new
point with the vertices ofl = 2 surrounding that vertex of d > 2, thus local Rh-cells being
formed in the new structures #l{bf generation 2 —see Fig. 5). The process can continue, in
this way new shells/ generations being added to the parent object Since the two diagonals may
be topologically different, each generation may consist of two isomers (denoted here as A and
B, respectively).

All the rings in rhombellanes are rhombs. As a general property, all the vertex classes
represent non-connected sets, thus the chromatic number equals the number of vertex classes.
This property facilitates identification of vertex partitions as polyhedra and evaluation of their
graph energy. A “binding” energybka (in Beta units) can be calculated (see Table 4) for the
parent graphs with respect to their independent partitioes énergy of composition,
Ecompod, by analogy with the quantum computations in molecular graphs.

Ebind = E - Eompos

rblsA(Rhgo).94 rblsB(Rhag).94
Figure 5. Rhombellanes of the"2(top) and 3' (bottom) generation.
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Table 4. Rhombellanes related to RI32; Graph energy;dsd = E - Eompos

Cluster Composition v E E compos E bind Amax  Amin

1 Icosahedron 12 23.416 5 -2.236

2 Dodecahedron 20  29.416 3 -2.236

3 Icosidodecahedron 30 55.416 4 -2

4 Rheo 1+2 32 47.896 52.832 -4.936  3.873 3g7:

5 rbliA(Rhao).62 1+42+3 62  71.872 108.248  -36.376 5 -5

6 rbl1B(Rheo).62 1+42+3 62 87.314 108.248  -20.934 4583  -4.583
7 rblA(Rhag).82 142x2+3 82  129.43 137.664 -8.234 5269  -5.269
8 rbl2B(Rheo). 74 2x1+2+3 74 132828  131.664 1.164 5 5

9 rblsA(Rhag).94 2x1+2x2+3 94  154.906 161.08 -6.174 5568 -5.568
10 rblsB(Rheg).94 2x1+2x2+3 94 162292  161.08 1212 534¢  -5.34¢

6 Graph energy in fullerene energy evaluation

Ordering of Go fullerene graphs according to the molecular total energy was reported
earlier, with respect to semiempirical [28] or higher theoretical level [29]. Pentagon fusion
(calculated as the number of fused pentagonal fagewas found the major destabilizing
factor in the small classical fullerenes. The maximum value occurs for the hemidodecahedral
capped isomer 40:1, and the minimum for the two isomers 40: 38 and 40: 39 (see Table 5).

The parameteny represents just the coefficient in Omega polynomial [30] of the term at
exponent unity.

p 16.00
-37.83
7 2 15.50
78 15.00 |
3784 £ 1450
£
£ -37.84 1 £ 14.00
S I
3 2 13.50
= 3784 -
13.00
-37.84 4 Strain/atom = 0.2864xnp + 10.035
12.50 R?*=0.965
-37.84 $ E/atom=0.001xnp - 37.853
R2=0.900 12.00

3785 7 9 11 13 15 17 19 21

Figure 6. Plots of total energy/atom (in au - left) and strain energy/atom (in kcal/mol - right) vs the number of
fused pentaonsny.
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The linear dependency of Hartree-Fock (6-31G*) energiesas@mers (in au - Table 5) vs.
the parametenp was plotted in Figure 6 (left); it explains about 90 % of energy variance. A
better dependence opwas shown by the strain energy (POAV1) [31,32], Figure 6 (right).

QSPR models can be derived in a variety of combinations; it is not the aim of this
study to perform the best model to describe the quantum energy. @& goal was to show
that the graph energy of these fullerenes (and others) can be used to evaluate the quantum
calculated molecular energy.

Table 5. Total energy & (HF(6-31G*; au)), strain (POAV1; kcal/mol) and topological parameters 46f C
fullerenes (No. of fused pentagons Euclidean distance D3D; topological distance D; centrality
index C(Sh(D)); energy of the parent graph $tim of remote graphs energy per remote dist&nce
sum of remote graphs energy per square remote diskqréast eigenvalue LEig and the polarity

number D3

Co Sym e StAN . s D cehD) E B Ex  LEg D
- 2 303 616 1935 205

1 Ds; 378 157 317¢ 5 3.8¢ 1 8 1050¢ -28 1
- 6 300 617 1938 306

2 C 378 145¢ 312¢ 8 40: 5 0 10527 27 3
- 18 301 615 192.9 30.4

3 D2 37.8¢ 15.1:2 314¢ 8 4.0t 7 4 105.0( -2.7¢ 3
; 5 300 616 193.6 30.7

4 C 3784 1431 3111 1 35¢ 8 9 1052 -26¢ 8
) u 299 61.8 1936 30.8

5 C 378 1411 3106 7 360 2 5 1054« -26¢ 5
; “ 299 617 1933 30.9

6 Ci 37.8¢ 14.0¢ 3102 9 4.1C 4 1 105.2. -2.67 7
; 5 299 617 1934 30.9

7 C 378 143 310 8 357 9 8 1052 266 7
; 5 300 616 1913 30.7

8 Ca 378 146 3100 2 41f 4 9 10468 267 O
; 1 299 61.6 1935 30.7

9 C 378 137 300 5  35¢ 3 6 1051 -2.6€ 8
; s 299 617 1938 31.0

1€ ¢ 378 137 300: 5 357 6 8 10537 -26¢ O
; 5 299 61.6 1933 30.8

11 C 378 142 3100 7 3.60 0 4 10500 271 2
; s 299 617 194.9 30.9

12 G 378  13.6¢ 300 7 347 4 2 1054¢ 267 8
; s 299 61.8 194.4 313

12 C 378 137 300: 8 40/ 0 8 1054¢ -2.6¢€ 4
; " 299 61.8 1953 31.0

14 C 378  135¢ 308: 5  34¢ 2 2 1056( -267 1
; " 300 617 1953 311

18 C 3764 134 308 1 3.3¢ 3 9 1054 -26¢ 1
) s 300 61.6 194.6 30.9

1€ C, 378  13.6¢ 308: 1 3.3¢ 2 0 1051 -27C 2
; s 300 617 1952 30.9

17 G 378 136 308: 0  3.3¢ 0 7 1054 -267 3
; " 299 61.6 194.9 311

1€ C 378 139 300: 9 3.3¢ 9 0 1053 27 7
299 617 195.2 311

1€ C 37.8¢ 13.9( 13 308: 8 3.4¢ 9 4 105.5f -2.6¢ 6
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- 12 300 62.0 196.3 31.2
2C G 37.8¢ 13.6€ 3087 O 3.317 1 1 105.97 -2.6¢ 3
- 12 299 61.8 194.2 31.3
21 G 37.8¢ 13.5¢ 3087 2 3.517 3 3 105.5¢ -2.6¢ 4
- 12 299 619 1954 314
22 G 37.8¢ 13.4¢ 308¢ 5 3.4¢ 3 6 105.8: -2.67 0
- 13 299 61.7 1944 31.3
22 G 37.8¢ 13.71 309z 3 3.5¢ 4 7 105.4¢ -2.67 8
- 1 299 61.8 195.8 31.3
24 G 37.8¢ 13.2¢ 307¢ 4 3.4: 4 2 105.7¢ -2.6:% 0
- 12 299 61.7 195.3 31.2
28 G 37.8¢ 13.4¢ 308: 6 3.4C 6 4 105.6. -2.6¢ 5
- 1 299 61.7 1959 31.2
26 G 37.84 13.21 3071 6 3.37 2 7 105.6¢ -2.6¢ 1
- 12 299 61.8 196.0 31.2
21 G 37.8¢ 13.4¢ 307¢ 6 3.4: 3 7 105.8¢ -2.6¢€ 8
- 12 299 61.7 1945 31.3
28 G 37.8¢ 13.4¢ 308¢ 3 3.44 1 2 105.4: -2.6¢€ 9
- 1 299 61.7 195.3 31.0
¢ G 37.8¢ 13.21 3074 3 3.4C 5 6 10555 -2.6f 2
- 12 299 61.8 195.6 311
3¢ Gs 37.8¢ 13.5¢ 3077 4 3.4:2 5 5 105.7: -2.67 2
- 1 299 61.7 195.3 30.9
31 G 37.8¢ 13.07% 307¢ 5 3.3¢ 3 2 1055( -2.6% 3
- 14 300 61.8 1959 315
32 D, 37.8¢ 13.9¢ 309t 4 3.37 1 7 105.6¢ -2.7C 2
- 14 300 61.8 195.1 314
323 D2 37.8¢ 14.3% 309t 4 3.7¢ 9 6 105.4¢ -2.7C 5
- 12 299 61.7 195.8 31.0
34 G 37.8¢ 13.3¢ 3082 7 3.37 6 3 105.7. -2.6€ 8
- 1 299 61.7 196.0 31.2
3 G 37.8¢ 13.2% 307¢ 9 3.3¢ 7 6 105.6¢ -2.6% 0
- 1 299 61.7 196.3 30.9
3 & 37.8¢ 13.12 307¢ 7 3.37 8 9 1058( -2.64 9
- 1 299 61.7 195.4 31.1
37 Cn 37.8¢ 13.02 307¢ 5 3.3¢ 1 7 10557 -2.6¢ 0
- 10 299 61.6 195.6 30.8
3¢ D 37.8¢ 12.8:2 3071 4 3.37 0 9 105.4¢ -2.6° 7
- 10 299 615 1939 31.1
3¢ Ds¢ 37.8¢ 13.0C 3077 O 3.3¢ 8 2 105.1¢ -2.5¢ 7
- 12 300 61.8 1954 30.8
4C Ty 37.8¢ 13.1% 307t O 3.4C 2 6 105.6. -2.6C 6
Table 6.Best models in describing total energy/&tom.
X1 Xz X3 R? St error
ny 0.90( 0.00066:
SD g/aton 0.84¢ 0.00081:
LEig 0.78( 0.00098:
D3D 0.777 0.00098
D 0.63¢ 0.00126¢
C(Shell(D) 0.387 0.00163i
E 0.30¢ 0.00173!
Ersq 0.25¢ 0.00180:
E: 0.02¢ 0.00206!
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Mo E 0.91¢ 0.0006.11
Ds 0.91¢ 0.00061

LEig 0.91¢ 0.00061

Ersq 0.907 0.00064!

E 0.90¢ 0.00065!

Mo E LEig 0.92¢ 0.00059;
Ds 0.921 0.00060!

C(Sh(D) 0.91¢ 0.00061:

SD eaton LEig 0.897 0.00068!
D3D 0.88: 0.00072

C(Sh(D) 0.88( 0.00073!

E 0.86: 0.00078

E 0.85: 0.00081:

SD gfaton LEig C(Sh(D). 0.91¢ 0.00061!
D3D 0.907 0.00065!

E 0.907 0.00065!

E 0.90: 0.00067:

Erso 0.90( 0.00067:

Table 7.Best models in describing strain energy Strain/atom.

X1 X2 X3 R? St error
Ny 0.96¢ 0.117
D3D 0.87¢ 0.20¢
SDstrair 0.757 0.29¢
LEig 0.75( 0.30(¢
D (distance 0.65¢ 0.35:
C(Sh(D). 0.53¢ 0.40¢
Ny C(Sh(D) 0.97C 0.10¢
E: 0.96¢ 0.10¢
D3 0.96¢ 0.11C¢
E: 0.967 0.11C¢
LEig 0.96¢€ 0.112
D3D 0.96¢ 0.11:
Ny C(Sh(D) LEig 0.97: 0.10z2
E: 0.97: 0.10z
D3 0.972 0.10¢
D3D LEig 0.90¢ 0.187
D3 0.891 0.20(
E: 0.89( 0.20z
Ersq 0.887 0.20¢
SDstrair 0.88% 0.206¢
E: 0.88¢ 0.206¢
D3D LEig E 0.93¢ 0.15€

Esq 0.92¢ 0.16¢
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Tables 6 and 7 list several combinations, including the energy of graphs and remote
graphs, with and without th® parameter. A mention deserves the D3D descriptor as a steric
descriptor that includes thg parameter in a hidden manner. A second mention is addressed
to SDx and SBuwain, representing the “sum descriptors” computed as linear combinations of
local descriptors in the “hypermolecule” algorithm developed by TOPO Group Cluj. This
descriptor together with the last eigenvalue LEig and the other eigenvalues of graphs and/or
remote graphs can satisfactory predict the quantum computed molecular energigs of C

fullerenes.

7 Conclusions

In this work, the adjacency matrix eigenvalues and graph energies were computed on
hypercubes, spongy hypercubes, rhombellanes and the setfolléenes.

Data obtained for the “spongy"Qn graphs enabled us to write an analytical formula
for calculating the graph energy of this class of graphs. The remote graphs, derived on the
remote adjacency matrices of spongy hypercubes, deserve more exploring to find eventual
hidden distance-based relations with the parent graphs.

Rhombellanes represent a new class of rhombic polytopes. In rhombellanes, a binding
energy was calculated with respect to the vertex class partitions representing polyhedral cells.

Total energy (HF(6-31G*) and strain (POAV1) of the set of C40 fullerene was not
particularly well described by the values of graph energy or remote graph energy. A better
description was done by a topological parameter counting the fused pentagons within a
fullerene isomer, eventually associated with other descriptors developed at Topo Group Cluyj
[33].
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