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Abstract 

Analysing order relationships among objects is central for decision making processes or for 
optimisation, which are also relevant in the field of chemistry. A mathematical tool to carry out 
ordering studies is the Hasse diagram technique, whose Hasse diagram summarises a large 
amount of order information. However, when the number of objects is large, the huge amount of 
intersecting lines showing order relations hinder its interpretation.  In this work, we introduce the 
concept of posetic coordinates for objects to order and explore different mappings from them to 
one-, two- and three-dimensional spaces. These mappings reduce the complexity of the original 
Hasse diagram and are suitable for interpreting the order structure of the set of objects. The 
mappings here reported are applied to 83 microorganisms used for trapping uranium in 
contaminated aqueous systems. The results show that Bacillus licheniformis ATCC 14580, is the 
unique highly dominating species; this confirms its importance as optimal uranium trapper and 
highlights its usefulness for the development of biosorption procedures in environments polluted 
with this actinide. 
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1 Introduction  

When it comes to order objects based on their attributes, for example for decision making 

processes in chemistry and environmental sciences,[1],[1],[2],[3],[4]  a suitable tool is the Hasse 

Diagram Technique (HDT), whose foundations are in order theory. A customary outcome 

of the HDT is a Hasse diagram, where order relationships are depicted as links between 

couples of objects and whose visual inspection is informative, e.g. indicating optimal or 

least objects.[5] 

However, HDT has constraints of practicability due to loss of interpretability with 

increasing number of objects;[6] leading to multitude of intersecting lines, not visually 

informative. 

To solve this shortcoming, the FOU plot has been devised,[7],[8] which takes into account 

the incomparabilities and comparabilities for the objects under study. Comparabilities are 

order relationships among objects of the sort more reactive than, less aromatic than, for 

example, and incomparabilities are the lack of those relationships. In spite of the 

versatility of the FOU plot, its mathematical properties have not been extensively studied. 

In the current paper we carry out such a study and show that the FOU plot corresponds to 

a particular mapping of Hasse diagrams into low dimensional spaces, where also ranking 

procedures are included. We applied the mappings to a set of 83 microorganisms used to 

trap uranium in aqueous systems.  

2 Materials and methods 

2.1 Basics on posets 

If X is a non-empty set of objects, a partially ordered set can be obtained by endowing X 

with an order relation ≼, which fulfils reflexivity (�≼� ∀ �∈�), antisymmetry (if �≼� 

and �≼�, for �,y∈�, then � = �) and transitivity (if �≼� and �≼� then �≼�, for �,y,z ∈�).[5] The couple (�, ≼) is called a partially ordered set (poset). 

In a poset any pair of objects �, � ∈ � can be compared whenever �≼� or �≼�, in those 

cases � and � are said to be comparable (�⊥�), otherwise they are incomparable, i.e. �⋠�, �⋠� (�∥�).[5] 

Based on comparabilities and incomparabilities, some useful terms for the ensuing 

discussion are: 

Definition 1. Let � ∈ �. We call �(�) the set of comparable objects of x that is given by: �(�) ≔ {� ∈ �: � ≼ � �� � ≼ �}. 
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Definition 2. Let � ∈�. We call �(�) the set of incomparable objects of � and it is given 

by: �(�):={ � ∈ �: �||� }. 
Definition 3. Let � ∈ �. We call �(�) the principal order filter of � or principal up set of � and it is given by: �(�):={ � ∈ � : � ≼ � }. 
Definition 4. Let � ∈�. We call  (�) the principal order ideal of � or principal down set 

of � and it is given by:  (�):={ � ∈ � : � ≼ � }. 
Definition 5. For � ∈ �,  given a poset (�, ≼), if �! ⊆ �, then �(�!) = {�: � ⊥ �, � ∈ �!}. 
We say that (�(�!), ≼) is a local poset of (�, ≼). 

Definition 6. A poset (�, ≼) is called a linear order (total order) if every pair of objects 

from X is comparable in ≼. 

Note that a linear order meets reflexivity, antisymmetry, transitivity and linearity, i.e. � ≼� or � ≼ � for all �, � ∈ �.[9] 

Definition 7. A poset (�, ≼) is called a weak order if ≼ is transitive and meets linearity. 

Hence, the difference between weak and total order is that the former is not antisymmetric 

but the latter is. 

Definition 8. A ranking of X is a two-step procedure where 1) a weak order is found for 

X and 2) an ordinal (rank) is assigned to each object of X. 

Definition 9. A component of a poset (�, ≼) is a local poset (Definition 5) (�(�!), ≼) of 

(�, ≼) such that the cardinality of �(�!) is maximal. 

A traditional approach to explore the order relations in (�, ≼) is through the visualisation 

of the associated Hasse diagram (HD), which is a directed acyclic transitive-reduced 

graph whose vertices are objects in � and the edges indicate a cover relation between the 

two connected vertices. It is said that � is “covered” by � if there is no object � with � ≺� and � ≺ �.  
Other posetic concepts needed for the discussion are those of maximal, minimal and 

isolated objects. “Posetic” is used throughout this paper for describing partial order 

features inherent to objects in a poset without necessarily extracting information just from 

the HD. 
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A maximal object � is an object for which no relation � ≼ � is found.[5],[10] Conversely, a 

minimal object � is an object for which no relation � ≼ � is established. Isolated objects 

are maximal and minimal objects at the same time.[5],[10] 

A particular posetic approach to order objects based on their attributes is the Hasse 

diagram technique[1], where objects of � are characterised by a set of attributes. These 

attributes are further used to compare objects and in consequence need to be rightly 

oriented to indicate the same evaluation aim. 
 

2.2 Posetic space and posetic cases of interest 

We use F(x), O(x) and I(x) as proxies for the order information of the object x of the poset (�, ≼). 

We represent the cardinality of � by |�| and for the sake of simplicity |�(�)| = �, |�(�)|= �, | (�)|=  and |�(�)|=�. Likewise, |�|= �. An important property is 

that �(�),  (�) and �(�) are functions. 
Proposition 1. There is a function $: � → (|�(�)|, | (�)|, |�(�)|).  
Proof: For all � ∈ � there is only one �(�), therefore only one |�(�)|. Likewise holds for | (�)| and |�(�)|∎ 
From Definitions 2 to 4, Theorem 1 follows: 

Theorem 1. � +  + � = � + 1. 
Proof: Every object � ∈ � has |�| possible order relationships, which are distributed into 

comparabilities �(�) and incomparabilities �(�). Thus: �(�) + �(�) = �         (1) 

As comparable objects y are exclusively above (� ≼ �) or below (� ≼ �), then for � ∈ �(�) and � ∈  (�): �(�) = � +  − 1         

 (2) 

Therefore, by replacing (2) in (1) and by further rearranging it is obtained: � +  + � = � + 1∎ 

We introduce the posetic coordinates to characterise objects by their order attributes. 

Definition 10: We call *(�) = (| �(�)|, |  (�)|, | �(�)|) the posetic coordinates of any � ∈� of the poset (�, ≼). For simplicity we write them as (�,  , �). 
Proposition 2. The upper and lower bounds of �,   and � are:1 ≤ � ≤ �, 1 ≤  ≤ � and  ≤ � ≤ � − 1. 
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Proof: By Definition 3 the minimum number of objects belonging to any filter of � ∈ � 

is 1, i.e. the object �. Likewise, by Definition 4 the minimum cardinality of   is 1. By 

definitions 3 and 4, the maximum number of objects either in � or in   is the complete 

set of objects, therefore their upper bound is �. By Definition 2 it follows that the 

minimum number of incomparable objects for any � ∈ � is 0, where � ⊥ �, for all � ∈ �. 

In contrast, the maximum number of incomparable objects for � ∈ � is � − 1, where � ∥�, for all � ∈ �\�,  where �\� means the set � without the element �∎ 

Definition 11. The Cartesian product � ×  × � is called the posetic space. 

Some particular regions of such a space have extreme distributions of posetic coordinates 

and some others result from internal symmetries of the coordinates. Besides the sort of 

coordinates’ distributions, these regions bring interesting order information about the 

objects located there. We define these regions through the posetic cases of interest. 

Definition 12. We call posetic cases of interest (PCI) the points of the posetic space with 

the following features of their posetic coordinates: 

Case A: max F 

Case B: max I 

Case C: max O 

Case D: F = I  

Case E: O = I 

Case F: F = O 

Case G: F = O = I 

A closer look to the posetic coordinates of PCIs shows that they are only realised as shown 

in Corollary 1. 

Corollary 1. For a given poset (�, ≼), the posetic cases of interest are realised through 

the following posetic coordinates: 

              A (max F) = (X, 1, 0) 

              B (max I) = (1, 1, X-1) 

              C (max D) = (1, X, 0) 

              . (� = �) = /.1 = (0�/23, 1, 4�/25) ��     .2 = (4�/25, 1, 0�/23)            
              6 ( = �) = /61 = (1, 0�/23, 4�/25) ��62 = (1, 4�/25, 0�/23)         
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� (� =  ) =
78
98
:�1 = ;<� + 12 = , � − <� + 12 = + 1, 0?  ��                                 

�2 = @;� − <� + 12 = + 1, <� + 12 = , 0? , $�� ABAC |�|DCE
;� + 12 , � + 12 , 0? , $�� �EE |�|                               

 

             F (� =  = �) = (0�/33, 0�/33, � − 20�/33 + 1)   

The different floor 4 5 and ceiling 0 3 functions result from the necessity of bringing 

fractions to the natural numbers to realise the PCIs as actual points of the posetic space. 

The deduction of these expressions is shown in the Appendix (Propositions A1 to A4). 

Figure 1 exemplifies the PCIs for |X| = 4 and |X| = 5. 

 

Figure 1. Posetic cases of interest from A to G for |X| = 4 and |X| = 5 and some Hasse diagrams 
realising them. Triples correspond to (F, O, I). 
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2.3 Mappings from posetic coordinates 

The introduction of posetic coordinates makes that any x of a poset can be mapped to the 

space P(x). Here we discuss the exploration of such a space by applying three different 

mappings. 

(1) Three dimensional:       H: *(�) → *(�). 

(2) Two dimensional: � I: *(�) → J(| �(�)| −  |  (�)|), | �(�)|K. 
(3) One dimensional:         �: *(�) → �(�) = |L(M)|(NOP)|L(M)QR(M)|. 
 

2.3.1. Three dimensional mapping (ternary space) 

This mapping corresponds to the identity mapping H:(�,  , �) → (�,  , �), which 

corresponds to a ternary space (ternary plot)[11] (Fig. 2). Based on their posetic 

coordinates, objects can be located in the ternary plot.  

This plot is a barycentric one depicting three variables (F, O, I) whose sum yields a 

constant value (X + 1) that is usually represented as 100%. Because of Theorem 1, the 

coordinates are not independent, so only two coordinates must be known to find a point 

on the graph. Each point in the ternary space is a triple of the cardinality of the three sets �(�),  (�)  and �(�). The advantage of using a ternary space for depicting posetic 

features is that the three posetic coordinates can be conveniently plotted in a two-

dimensional graph, without loss of information. 

The posetic coordinate I grows from 0 to 100% from the bottom of the plot to the upper 

apex, labelled I. The horizontal lines that represent various percentages of � run parallel 

to the base line. 

The posetic coordinate � grows from the right side of the triangle (side of apexes I and 

O) to the leftmost apex, labelled F. The parallel lines to the side opposite to the apex � 

characterise the degree of �. Similarly, the values of   can be read from the lines opposite 

to the apex  . Although the ternary space gives a theoretical framework to plot each � ∈� of a poset (�, ≼), the actual area of the ternary space that can be populated by (�,  , �) 

of � is lower. 

Proposition 3. In a ternary space (�,  , �) any � ∈ � is plotted in the following working 

subspace: 100� + 1 ≤ � ≤ 100�� + 1 
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100� + 1 ≤  ≤ 100�� + 1 

0 ≤ � ≤ 100(� − 1)� + 1  

Proof: If � + 1 corresponds to 100% for �,   and �, then the corresponding upper and 

lower bounds of �,  , � (Proposition 2) lead to 100� + 1 ≤ � ≤ 100�� + 1 100� + 1 ≤  ≤ 100�� + 1 

0 ≤ � ≤ 100(� − 1)� + 1  ∎ 

 

Fig. 2γ shows the ternary plot for |�| = 5 and depicts the posetic cases of interest, PCI, of 

Fig. 1 as well as the objects of a toy-example HD shown in Fig. 2α. 

 

2.3.2. Two dimensional mapping (FOU space) 

The working subspace of the ternary space has strong connections with the so-called FOU 

space, where in the original paper[7],[8] the notation I was used instead of �. 

In the FOU space the definition of axes is carried out by using the difference between 

subsets  − � for the abscissa and � for the ordinate.  − � > 0 when � has more objects 

y holding � ≼ � than � ≼ �, i.e. more objects below than above in a HD. It is O – F < 0 

for the contrary case and equal to zero when the number of objects below and above is 

the same. Note that in the ternary plot the posetic coordinates are given by percentages of 

X + 1, while in the FOU space they are treated as the bare numbers they bring, i.e. (F, O, 

I). 

Proposition 4. In the FOU space 1 − � ≤  − � ≤ � − 1. 
Proof: The upper bound of  − � is met when   is maximum (�) and � minimum (1) 

(Proposition 2), then max( − �)= � − 1. 
The lower bound results when   is minimum (1) and � is maximum (�), then  

min( − �) = 1 − �∎ 
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Figure 2. α) Toy example HD for |X| = 5, β) posetic coordinates of objects in α, γ) ternary plot 
for objects a to e in α, depicting the posetic cases of interest (PCIs) (Fig. 1) δ) � I 
space for objects in α and the placement of the PCIs, ε) LPOM0 and ζ) LPOMext for α 
where the PCIs are also depicted. T) Manhattan distances between the objects in α 
(columns) and the PCIs (rows). Further explanations on some of subfigures α-η will 
come in further sections.  

 

 

Proposition 5. The FOU space is bounded by � =  − � + � − 1, for  − � ≤ 0; by � =� −  + � − 1, for  − � ≥ 0 and by � =  . 
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Proof: For  − � ≤ 0; from Proposition 4 min( − �) = 1 − �. From Proposition 4 and 

Theorem 1,  − � values corresponds to � =  , which builds the point (1 − �, 0) of the 

FOU space. 

In  − � ≤ 0, the maximum value I can attain is its maximum, i.e. � = � − 1, which by 

Theorem 1 corresponds to � +  = 2. As min � = 1 and min  = 1, � +  = 2 can 

only be attained by � = 1 and  = 1, i.e.  − � = 0. Hence, max I corresponds to the 

point (0, � − 1) of the FOU space. 

The line connecting (1 − �, 0) with (0, � − 1) has slope: NOPNOP = 1, therefore its equation is � =  − � − (1 − �), being 1 − � the  − � intercept. 

Hence, � =  − � + � − 1. 

For  − � ≥ 0, Proposition 4 shows that max( − �) = � + 1. From Proposition 4 and 

Theorem 1, max( − �) corresponds to � = 0. This makes the point (� − 1,0) of the 

FOU space. 

In  − � ≥ 0 the maximum value I can take is � − 1, which as shown for  − � ≤ 0 

corresponds to (0, � − 1). 

The line connecting (0, � − 1) with (� − 1,0) has slope − NOPNOP = −1, therefore its 

equation is � = −( − �) + � − 1 = � −  + � − 1∎ 

Proposition 6. In the FOU space the posetic cases of interest have coordinates ( − �, �):  [: (−(� − 1), 0) \: (0, � − 1) �: (� − 1,0) 

.: ;− � − 12 , � − 12 ? 

6: ;� − 12 , � − 12 ? 

�: (0,0) 

F: ;0, � − 13 ? 

Proof: They are obtained from Theorem 1 and Proposition 4. 

Fig. 2γ and 2δ show that the FOU space is a subspace of the ternary plot. The advantage 

of using the ternary plot is that the three posetic coordinates are depicted, while in the 

FOU space two are combined. The advantage of the FOU space over the ternary plot is 
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that the whole space is reachable by objects of a poset of the given cardinality, whilst in 

the ternary plot a fraction of the space is unreachable. 

In both, ternary plot and FOU space, the nearness of the objects of a given poset to the 

posetic cases of interest can be calculated, e.g. through a metric; such a measure can be 

used as a proxy to assess the order relationships of the objects. Here we use the Manhattan 

distance1, whose results for Fig. 2 are shown in Fig. 2 T. 

To better interpret the results of Fig. 2T, the local HD, as a depiction of a local poset 

(Definition 5), of each object in Fig. 2α is shown (Fig. 3). Note how the original HD for 

b, is equivalent to b’, in terms of their (F, O, I), likewise occurs for c and c’, and d and 

d’. 

 

Figure 3. Local Hasse diagrams (a to e) of objects in the diagrams of Fig. 2α and the (F, O, I) 
equivalent diagram b’, c’, d’ regarding b, c, d, respectively. 

 

From Fig. 2 T it is quantified what is observed in Fig. 2γ and 2δ: the equivalence of a 

with E1 and of e with D2, the tie of b with E1 and C (better understood through b’ (Fig. 

3) and of d (or d’) with A and D1 and the nearness of c (or c’) with G. This can be 

interpreted as: a is exactly the case of an evenly dominating and incomparable object. 

Whilst b is dominating but with incomparabilities. The object with the most balanced 

comparabilities, up and down, and incomparabilities is c. In turn, d is close to be 

                                                            
1 As J. D. MacCuish and N. E. MacCuish discuss in reference [12], the suitable similarity measure must be 
selected based upon the kind of data, e.g. binary, count, continuous and mixed. Taking into account the 
discrete character of the data we have, we used the Manhattan distance, which avoid continuous geometrical 
assumptions of the space. 
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maximally dominated, which is hampered by incomparabilities. In fact d and e are the 

two instances of objects evenly dominated and incomparable. 

In general, minimal objects lay over the line connecting PCI A with B on the FOU plot 

and maximal objects over the line BC. The line AC contains those objects with no 

incomparabilities. A broad interpretation of the FOU plot is shown in Fig. 4. 

 

 

Figure 4. Regions of the FOU space depicting important order information. 

 

2.3.3. One-dimensional mapping (ranking) 

This is the most popular mapping, which reduces the whole complexity of order 

relationships of a poset to a single number, i.e. a rank in a ranking (Definition 8). Here, 

each x ∈� is associated to its rank average r, whose calculation takes into account the 

comparabilities and incomparabilities of x to estimate its position (rank) in a one-

dimensional scale. In this approach, objects x holding � ≼ � for many y receive low ranks 

while those having many y of the sort � ≼ � receive high ranks. Bruggemann and 

coworkers have devised methods to compute rank averages[13],[14] and in the current paper 

two variants of the local partial order model LPOM approaches are used: LPOM0 and 

LPOMext. LPOM0 is calculated as follows: 

 �(�) = |](M)|QP)∗(NQP)NQPO|_(M)|           

Where S(x) is the set of successors of x, which corresponds to O(x)∖ �. From Theorem 1: 

�(�) = |L(M)|∗(NQP)|L(M)QR(M)|                   (3) 

The respective expression for LPOMext is: �(�) =O(�) + a 

Where a depends on: 
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abc =  (�) ∩ �(�) and abe = F(�) ∩ �(�), with y ∈ �(�). 

Hence, any object in �(�) contributes to �(�) according to its probability of being 

positioned below. Thus, the sum is performed over ρjk
ρjl k ρj m .[13] Therefore 

�(�) =  (�) + ∑ ojkoj  k Qoj  m   b∈ _(b)        (4) 

 

As a rule of thumb, maximal elements often have large values for | (�)|, therefore their 

average ranks values tend to be large too, due to Equations 3 and 4. 

Fig. 2ε and 2ζ show the rankings for LPOM0 and LPOMext. It is seen how, in general, p ≻ r ≻ D ≻ p ≻ A ≻ E. As in both methods O is the dominating term (Equations 3 and 

4), objects with high O attain high rankings and objects in subsequent ranks start to appear 

as O is reduced and F and I start to increase. 

Fig. 2ε and 2ζ also depict the nearnesses of Fig. 2T, e.g. that d is in between A and D1 

shows up as D1 > d > A. 

 

2.4 Microorganisms for U trapping 

After having described the mathematics of the mappings, in this section we apply them 

to the ordering of 83 microorganisms used for uranium (U) trapping. 

In a recent study, Quintero et al.[4] ordered 38 microorganisms for U trapping 

characterising these objects by three attributes: percentage of U removal (%I); uptake 

capacity (I�) and the requested time (t) for removing U input. In the current study we 

analyse a bigger set of species reported in the literature for U trapping in aqueous systems 

by including 45 additional bacteria. 

The U uptake capacity was assessed through the same attributes as reported by Quintero, 

Bruggemann and Restrepo[4]: %I, I� and eff, this latter being t oriented in such a way 

that large eff values indicate better U recovering (details in reference [4]). 

 

3 Results and discussion 

3.1 Attributes’ statistics 

We analysed the association between pairs of attributes in ordinal measurement levels by 

Spearman’s correlation coefficients u  (Fig. 5w). Fig. 5w shows that there is a moderate 

and positive correlation between %I and I�; u  for %I and A$$ and I� and A$$ 
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indicate a weak and positive correlation in the monotonic relationship between these 

attributes. 
 u %I I� %I 1.0 0.404 I� 0.404 1.0 A$$ 0.260 0.286 ∝) 

 y) 

Figure 5. w) Spearman correlation coefficients for attributes %I, I� and A$$. y) Regression 
chart of %I by I�, showing 1) points corresponding to 83 microorganisms as labelled 
in Table A1 (Supplementary material); 2) the regression line (best linear fit); 3) 95% 
prediction interval for the line (continuous lines) where 95% of all data point fall; 4) 
95% confidence interval on mean of the prediction for a given value of I� (dashed 
lines), where it has a 95% of probability of containing the true regression line; and 5) 
observed values (black dots). Diagonally rightward, close to 0, an angular pattern is 
enclosed by two rays emanating from object 38; the upper ray contains 19 objects and 
the lower one 23. These objects share the same value in t and %I  ≤ 66. 

 

To determine the degree of linear association between %I and I�, a linear regression 

analysis was carried out. Fig. 5y shows that there are no outliers for both the 95% 

prediction and confidence intervals, but there is a high variability at low I� (1-100 mg 

U/g biomass).  
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As seen from the slopes, changes in the predictor variable UC are associated with changes 

in the response variable %U; approximately above 100 mg U/g biomass. The width of the 

95% confidence interval for the expected value of I� increases as %I moves away. This 

means that there is approximately more certainty in the prediction of I� below 100 mg 

U/g biomass; additionally, from z{ = 0.146, it is concluded that I� only explains 14.6% 

of %I variability and therefore by the regression neither %U nor UC can mutually be 

replaced. Therefore for the posetic analysis all three attributes are needed simultaneously.  
 

3.2 Generalities of the ordering of microorganisms 

Table A1 (Supplementary material) shows the presence of values not clearly defined for %I and A$$ for some microorganisms, namely 7, 10, 25, 30, 48 and 75. These 

microorganisms have intervals in attributes UC and eff. In the current study, 

microorganisms having %I > 90 and 0 ≤ A$$ ≤ 1 were set up to %I = 90.5 and A$$ = 1 (see reference [4]).  

In Fig. 6, the HD of 83 microorganisms is depicted, where two well-defined regions or 

components (Definition 9) are shown. 

 
Figure 6. Hasse Diagram of 83 species. Left side: component with 78 microorganisms; right side: 

component with five species.  
 

Components: By checking Table A1 (Supplementary material), it can be seen that, 

typically, microorganisms in the right component are characterised by very low values 

for eff but pretty large values for UC, whereas microorganisms in the large leftward 

component have higher values in eff but low values for UC. Thus, the ordinal 
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representation of the attribute space by a Hasse diagram reveals some important insights 

in the suitability of microorganism for trapping Uranium. 

Maximal objects: At the top of the Hasse diagram eight maximal objects are found: 

Bacillus subtilis IAM 11062 (19), Bacillus licheniformis ATCC 14580 (22), Bacillus 

mucilaginosus ACCC 10012 (24), Pseudomonas aeruginosa J007 (44), Pseudomonas 

MGF-48 (50), Streptomyces sp. (72), Sphingomonas sp., Strain BSAR-1 (75) and 

Streptomyces viridochromogenes HUT 6167 (81).  

Minimal objects: The least suitable microorganisms as U trappers are shown at the 

bottom: Arthrobacter cireus IAM 1660 (4), Citrobacter N14 (10), Deinococcus 

radiodurans DrPhoN (32) and Micrococcus varians IAM 13594 (38). 

 

3.3 Mappings from posetic attributes of microorganisms 

3.3.1. Ranking of microorganisms 

When ranks are derived based on each attribute alone, some objects will heavily change 

their position in the ranking. Therefore, it is to be expected that these objects will heavily 

depend on weights in a weighted linear sum (as the simplest technique for an 

aggregation). Table A2 (Supplementary material) in the appendix shows this dependence 

on the selection of weights. 

Results of the application of the two LPOM-methods are shown in Table 1. 
 

Table 1. Average ranks for microorganisms calculated from LPOM-methods 

 
Rank 

Microorganism label 
Average ranks, r (microorganism 

label) 

LPOM0 LPOMext LPOM0 LPOMext 

1 22 22 82.73 (22) 82.38 (22) 
2 24 24 82.64 (24) 81.99 (24) 
3 50 50 82.62 (50) 81.85 (50) 
4 19 19 82.35 (19) 81.33 (19) 
5 72 72 82.21 (72) 80.51 (72) 
6 48 48 80.89 (48) 79.79 (48) 
7 2 2 80.27 (2) 77.92 (2) 
8 6 6 79.24 (6) 77.71(6) 
9 81 67 78.40 (81) 74.61 (67) 
10 59 52 77.00 (59) 73.62 (52) 
11 52 62 76.85 (52) 73.50 (62) 
12 67 58 76.70 (67) 73.41 (58) 

-808-



 

 

13 3 59 75.87 (3) 71.50 (59) 
14 58 47 75.60 (58) 70.41 (47) 
15 62 56 75.43 (62) 69.82 (56) 
16 47 44,75* 74.00 (47) 66.9 (44,75) 
17 56 73 73.50 (56) 66.85 (73) 
18 55 18 73.04 (55) 66.37 (18) 
19 53 53 71.71 (53) 66.00 (53) 
20 36 3 70.74 (36) 64.40 (3) 
21 73 61 70.00 (73) 63.76 (61) 
22 18 55 69.70 (18) 61.15 (55) 
23 61 1 67.61 (61) 60.50 (1) 
24 44,75* 26 67.20 (44,75) 60.17 (26) 
25 1 71 65.56 (1) 57.07 (71) 
26 26 70 64.91 (26) 55.75 (70) 
27 12,71* 12 63.00 (12,71) 54.26 (12) 
28 70 54 62.46 (70) 54.16 (54) 
29 41 69 61.09 (41) 54.05 (69) 
30 54 41 60.90 (54) 53.96 (41) 
31 76 79 60.67 (76) 52.04 (79) 
32 25 81 60.48 (25) 52.02 (81) 
33 79 76 60.31 (79) 50.06 (76) 
34 69 57 60.00 (69) 48.81 (57) 
35 83 83 58.15 (83) 48.34 (83) 
36 13 13,25* 57.93(13) 45.72 (13,25) 
37 7 21 57.12 (7) 45.28 (21) 
38 57 36 54.78 (57) 44.71 (36) 
39 45 45 54.60 (45) 44.25 (45) 
40 21 64 52.27 (21) 40.96 (64) 
41 14 65 52.14 (14) 39.64 (65) 
42 65 37 50.00 (65) 37.02 (37) 
43 8 7 48.00 (8) 36.92 (7) 
44 64 8 47.25 (64) 36.53 (8) 
45 78 14 46.06 (78) 35.24 (14) 
46 17 17 45.40 (17) 34.87 (17) 
47 11 63 44.47 (11) 34.58 (63) 
48 16 30 44.33 (16) 33.87 (30) 
49 37 16 42.86 (37) 32.80 (16) 
50 39 39 42.00 (39) 32.61 (39) 
51 63 11 41.14 (63) 31.59 (11) 
52 80 23 39.53 (80) 30.80 (23) 
53 23 78 36.24 (23) 29.33 (78) 
54 20,30,82* 82 33.60 (20,30,82) 28.71 (82) 
55 60 20 31.29 (60) 27.84 (20) 
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56 49 60 30.69 (49) 26.07 (60) 

57 43 49 27.49 (43) 24.95 (49) 

58 33 80 24.89 (33) 24.47 (80) 

59 15 33 22.10 (15) 22.90 (33) 

60 32 43 21.00 (32) 22.33 (43) 

61 51 32 19.93 (51) 21.50 (32) 

62 28 15 17.75 (28) 20.30 (15) 

63 10 51 16.80 (10) 17.99 (51) 

64 42 28 16.563(42) 17.61 (28) 

65 34 10 15.75 (34) 16.93 (10) 

66 66 42 14.76 (66) 16.15 (42) 

67 31 34 13.39 (31) 15.50 (34) 

68 9 66 10.65 (9) 14.60 (66) 

69 5 31 8.055 (5) 13.47 (31) 

70 68,77* 9 7.946 (68,77) 12.44 (9) 

71 46 68,77* 6.632 (46) 10.10 (68,77) 

72 74 5 5.676 (74) 10.01 (5) 

73 27 46 4.421 (27) 7.461 (46) 

74 35 35 3.600 (35) 7.440 (35) 

75 29 74 3.316 (29) 7.338 (74) 

76 40 27 2.182 (40) 5.380 (27) 

77 4 29 1.105 (4) 4.503 (29) 

78 38 40 1.077 (38) 2.730 (40) 

79 - 4 - 2.149 (4) 

80 - 38 - 1.314 (38) 

81 - - - - 

82 - - - - 

83 -  - - 
 

*Species having the same average rank, constituting a weak order, therefore equal rank. 

Note that the second and third columns of Table 1 are the same for the first eight ranks.  

They are, from the first to the eighth: Bacillus licheniformis ATCC 14580 (22), Bacillus 

mucilaginosus ACCC 10012 (24), Pseudomonas MGF-48 (50), Bacillus subtilis IAM 

11062 (19), Streptomyces sp. (72), Pseudomonas sp. EPS-5028(48), Actinomyces levoris 

HUT 6156 (2) and Arthrobacter nicotianae IAM 12342 (6). 

Because of the presence of some ties, i.e. same values in average ranks for some 

microorganisms, the last ranks in Table 1 are not available. 
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These results show that microorganism 22 (Bacillus licheniformis ATCC 14580) is the 

best U trapper. It belongs to the maximal objects (Fig. 6) and its order ideal  (�) is pretty 

large (65 objects). 

Bubley Dyer method is another helpful approach for ranking objects that generates a 

sample set of linear extensions from which average ranks can be calculated as in LPOM-

methods.[15] A detailed analysis of average ranks obtained by the application of this 

method shows that object 22 keeps at the top of the rank, which agrees with the average 

ranks calculated with LPOM-methods. Bubley Dyer calculations were run with the 

PyHasse software with a different number of Monte Carlo runs (ranging from one million 

to six millions) and samplings of linear extension (Data not shown). 

If the maximal objects in the Hasse diagram are inspected, five out of eight are considered 

as well as good U trappers according to the top eight; these five microorganisms are 19, 

22, 24, 50 and 72. This highlights the importance of average ranks for carrying out a 

decision-making process, in this case to know an ordering of objects in established 

positions, i.e. the first, the second, the third and so on.  

 

3.3.2. FOU and ternary spaces of microorganisms 

Table A3 (Supplementary material) shows posetic coordinates | (�)|,| �(�)| and |�(�)| 
for each microorganism and the difference | (�)| −  |�(�)| . 
The shapes of the set of points in Fig. 7α and 7ß is strikingly similar. In general terms this 

follows from the fact that the FOU-space is a subset of the ternary space. In more details: 

In the FOU-space (Fig. 7α) the coordinates of the posetic cases of interest are: A = (-82, 

0); B = (0, 82); C = (82, 0); D = (-41, 41); E = (41, 41); F = (0, 0) and G = (0, 28). 

Leftward-bottom region of Fig. 7w and 7y shows the objects having high |�(�)|, which 

are highly dominated species located in the neighbourhood of PCI A. Note that the line 

connecting PCI A with B in the FOU plot, location of minimal objects, split these species 

in one cluster with low I and another with high I. This shows that there are two sets of 

minimal microorganisms, with strong differences. They are, in fact, the minimal objects 

of the two components of the HD (Fig. 5). Maximal objects are also separated into two 

along the line connecting PCIs B with C. They also correspond to the maximal objects of 

the two components. Fig. 6 shows that there are several microorganisms that are better 

than others, close to be maximal; in contrast to the almost empty space around PCI D. 

Another empty region occurs for � <   and low I. This shows the lack of strong 
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dominating species. The objects along the line connecting PCIs A and G correspond to 

species that are dominated by others but those that are close to G have better behaviour 

as U trappers. This trend is enhanced until meeting line BC. The spread of species near 

this line shows those microorganisms that behave better as U trappers but that are, in 

general, no better than most of the others, i.e. are not maximal. Note that there are more 

species near B than C, being C the best U trapper and B being the best and the worst at 

the same time because of its lack of comparabilities. 
 

 

w 

 

y 

Figure 7. w) FOU and y) ternary plots of 83 microorganisms. Red points correspond to PCIs and 
green and blue ones to minimal and maximal objects, respectively. 
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3.3.3. Nearness of objects to posetic cases of interest 

The assignment of object x to a PCI is given by the shortest distance of x to the PCIs. In 

case of ties x is considers as belonging to several PCIs. Results for the microorganism 

considered are summarised in Table 2. 

 

Table 2. Posetic cases of interest (PCIs) and the microorganisms belonging to them. 

PCI PCI’ name Posetic coordinates 
Label of 

microorganisms 
Number of 

microorganisms 

[ Maximally 
dominated 

|�(�)| = 83 | (�)| = 1 |�(�)| = 0 
 

4,5,27,29,35,38,40,4
6,68,74,77 

11 

B 
Maximally 

incomparable 
 

|�(�)| = 1 | (�)| = 1 |�(�)| = 82 

7,10,12,14,25,30, 
32,36,44,55,75,81 

12 

C 
Maximally 
dominating 

|�(�)| =1 | (�)| = 83 |�(�)| = 0 
 

22 1 

D1 
Evenly 

dominated and 
incomparable 

|�(�)| =42 | (�)| = 1 |�(�)| = 41 
 

9,15,28,31,34, 
42,51,66 

8 

D2 

|�(�)| =41 | (�)| = 1 |�(�)| = 42 
 

- 0 

E1* 
Evenly 

dominating 
and 

incomparable 

|�(�)| = 1 | (�)| = 42 |�(�)| = 41 
 

2,6,19,24,48,50,52,5
8,62,67,72 

11 

E2 

|�(�)| = 1 | (�)| = 41 |�(�)| = 42 
 

1,3,18,26,41,47,53,5
4,56,59,61,69,70,71,

73,76,79 
17 

F 
Evenly 

dominated and 
dominating 

|�(�)| = 42 | (�)| = 42 |�(�)| = 0 
 

- 0 

G 

Evenly 
dominated. 
dominating 

and 
incomparable 

|�(�)| = 28 | (�)| = 28 |�(�)| = 28 

8,11,13,16,17,20, 
21,23,33,37,39,43,45
,49,57,60,63,64,65,7

8,80,82,83 

23 

*In general, for maximal objects here located |O(x)| > {|F(x)|, |I(x)|}. Other objects have |F(x)| < 

{|O(x)|, |I(x)|}. 
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3.3.4. Comparison with HD, LPOM, FOU and ternary plots 

From the HD (Fig. 6), maximal and minimal objects are visualised at the top or at the 

bottom. These positions highlight their dominating or dominated behaviour respectively. 

Likewise, Fig. 7w and 7y are depicting the position of maximal and minimal objects in 

specific PCIs; for example, C (22) and E (19,24,50,72) are gathering maximal objects 

with evenly dominating and incomparable behaviour.  

In the case of object 22, its position is confirmed by their posetic characterisation 

(1,65,18), that leads to its location in PCI C. This means that microorganism 22 is the 

unique highly dominating object in this data matrix, explained by its highest | (�)|compared to the other objects in the poset.  

According to their average ranks obtained from LPOM, other microorganisms occupying 

the next seven positions in the ordering are located in the nearness of PCI E, i.e., 

microorganisms 24, 50, 19, 72, 48, 2 and 6. PCI E represents evenly dominating and 

incomparable objects in such a way that they are characterised by high | (�)|, ranging 

from 43 to 61, but having very low |�(�)| i.e. ranging from 0 to 3, and high |�(�)| (≤39) (see Table A3, Supplementary material). 

As expected, this behaviour confirms their position at the top eight obtained by the 

application of LPOM (Table 2). Although in the nearness of PCI E, there are more 

microorganisms, not only those occupying the positions second to seventh at the top eight, 

the main differences are their very low number in |�(�)| (3 to 11) and high |�(�)| (36 to 

53) accounting for their evenly dominating and incomparable behaviour (Table A3, 

Supplementary material). 

Other maximal objects showed in Fig. 5 are located in the neighbourhood of PCI B 

pointing out their high value in |�(�)| and their lack of complete dominance; these objects 

are 44 (1,4,79), 75 (1,4,79) and 81 (1,14,69). As expected, their behaviour would explain 

why they do not occupy the first positions in the ordering performed by LPOM (Table 

A3, Supplementary material).  

In the case of minimal objects, it can be pointed out that according to their posetic 

characterisation, objects 10 (4,1,79) and 32 (3,1,80) have high degree of incomparabilities 

and are located in the PCI B. In contrast, objects 4 (75,1,8) and 38 (77,1,6), the other ones 

minimal objects, are located in the PCI A that gathers objects maximally dominated 

whose main posetic feature is that |�(�)| is higher compared to |�(�)| for other objects 

in the poset.  
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As seen, this posetic characterisation by using PCIs in FOU and ternary plots, confirms 

that in a HD, minimal objects are always either highly dominated or with high degree of 

incomparability. 

 

4 Summary and discussion 

We developed the idea of posetic coordinates and applied three mappings, focusing on 

the representation of FOU and ternary spaces. Findings can be summarised as in Fig. 8. 

 

Figure 8. Relationships between attribute space and posetic space, where IB stands for 
information base, which gathers objects and attributes. 

 

It can be hoped that by using different techniques of representation, maximal information 

can be extracted from the data set, keeping the very idea of the posetic nature of analysis. 

From the applicational point of view, it is found that out of 83 microorganisms, eight 

species are candidates for efficient uranium trapping. Results from LPOM show a top 

eight of microorganisms with high potential for removing U in aqueous systems, they are: 

Bacillus licheniformis ATCC 14580 (22), Bacillus mucilaginosus ACCC 10012 (24), 

Pseudomonas MGF-48 (50), Bacillus subtilis IAM 11062 (19), Streptomyces sp. (72), 

Pseudomonas sp. EPS-5028 (48), Actinomyces levoris HUT 6156 (2) and Arthrobacter 

nicotianae IAM 12342 (6).  

Up to now we strictly separated the attribute space from the posetic space, nevertheless 

any mixture can be thought of, so for example supposed coordinates could be modified 

by metric information inherent in attributes. General mappings can have many other 

variants and this opens a field of further research. 
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Appendix 

Proposition A1. For PCI D: 

$(.) =
789
8:(�/2,1, �/2), $�� ABAC |�|DCE

@;<�2= , 1, ��2�?  ��
;��2� , 1, <�2=?     , $�� �EE |�|.

 

Proof: The condition F = I of PCI D makes that O takes its minimum allowed value for 

x, i.e. |O|=1 (Proposition 2). From Theorem 1 it follows that 

F+I=X           (A1) 

As the condition requires F = I. This is realised for near values of F and I, then F = I = 

X/2. 

For even X, F and I ∈ ℕ (throughout the paper 0 is included as natural number), therefore 

(F, O, I) = (X/2, 1, X/2). 

For odd cases, given that F, O and � ∈ ℕ, to ensure that the resulting fraction also belong 

in ℕ, we consider different cases: 

i) � = 0�/23, then by Equation A1 � = � − 0�/23 = 4�/25, 
ii)  � = 0�/23, as in i it leads to � = 4�/25. 

Hence i leads to  (�,  , �) = (0�/23, 1, 4�/25) and ii to (4�/25, 1, 0�/23)∎ 

 
Corollary A2: Either  (�,  , �) = (0�/23, 1, 4�/25) or (�,  , �) =  (4�/25, 1, 0�/23) are equivalent to (F, O, I) for |X| even∎ 

Proof: As 0�/23 = 4�/25 = �/2 for even |X|, then  (0�/23, 1, 4�/25) = (4�/25, 1, 0�/23)  

=(�/2,1, �/2)∎ 

 
Proposition A2: For PCI E: 
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$(6) =
789
8:(1, �/2, �/2), $�� ABAC |�|DCE

@;1, <�2= , ��2�?  ��
;1, ��2� , <�2=?      , $�� �EE |�|.

 

Proof: The condition O = I, following Proposition 2, leads to O + I = X, which makes 

that (�,  , �) = �1, N{ , N{�, for |�| even. 

When |�| is odd,   and � ∉ ℕ and, as in Proposition 2, this leads to 

i)  = 0�/23, therefore � = 4�/25, 
ii)  � = �N{�, therefore  = �N{�. 

Which produces: (�,  , �) =  �1, �N{� , �N{�� or (�,  , �) =  �1, �N{� , �N{�� ∎ 

 

Corollary A2: Either  (�,  , �) = �1, �N{� , �N{�� or (�,  , �) =  �1, �N{� , �N{�� are equivalent 

to (F, O, I) for |X| even. 

Proof: Likewise as in Corollary A1. 

 

Proposition A3. For PCI F: 

$(�) =
78
98
:@;<� + 12 = , � − <� + 12 = + 1,0?  ��

;� − <� + 12 = + 1, <� + 12 = , 0?    , $�� ABAC |�| DCE
;� + 12 , � + 12 , 0? , $�� �EE |�|.                                      

 

Proof: PCI F brings the condition F = O, which makes that |I| = 0, therefore by Theorem 

1: 

F + O = X + 1           (A2) 

Near values of F and O make that 

� =  = � + 12  

For |X| odd, it can be expressed by 2n+1, with C ∈ ℕ. Therefore � =  = NQP{ = C + 1, 

which makes F and O ∈ ℕ. 

Thus, for |X| odd (�,  , �) = �NQP{ , NQP{ , 0�. 
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For even |X|, it can be expressed by 2n, with C ∈ ℕ. Hence, � =  = NQP{ = {�QP{ ∉ ℕ. 

To make F and O closer to each other as natural numbers, there are two possibilities: 

i) � = �NQP{ �, then by Equation A2  = � − �NQP{ � + 1, 

ii)   = �NQP{ �, as in i, it leads to � = � − �NQP{ � + 1. 

Thus, i leads to (�,  , �) = ��NQP{ � , � − �NQP{ � + 1,0� and ii to  

 (�,  , �) = ;� − <� + 12 = + 1, <� + 12 = , 0? ∎ 

 

Proposition A4. For PCI G: $(F) = �0�/33, 0�/33, � − 2 �N�� + 1�. 

Proof: PCI G requires F = O = I, which restricted initially to F and O makes that F = O = 

X/3. However, as F, O ∈ ℕ, then there are two options: 

i) � =  = �N�� 
Which according to Theorem 1 leads to � = � − 2 �N�� + 1. 

ii)  � =  = 4�/35 
That leads to � = � − 2 �N�� + 1. 

The full condition requires that, without loss of generality, either I - F or I - O attain 

minimum values. 

For the case i, � − � = � + 1 − 0�/33 and for ii � − � = � + 1 − 4�/35. As 0�/33 >4�/35,  
then � + 1 − �N�� < � = 1 − 4�/35, which makes case i be the minimum value.  

Therefore  

(�,  , �) =  ;0�/33, 0�/33, � − 2 <�3= + 1? ∎ 

 

Supplementary material 

This information can be accessed in the following link: 

https://drive.google.com/open?id=1Hhze1oBkWLMLpc2BLupey95MdB2JEKJQ 
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