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Abstract

Analysing order relationships among objects is central for decision making processes or for
optimisation, which are also relevant in the field of chemistry. A mathematical tool to carry out
ordering studies is the Hasse diagram technique, whose Hasse diagram summarises a large
amount of order information. However, when the number of objects is large, the huge amount of
intersecting lines showing order relations hinder its interpretation. In this work, we introduce the
concept of posetic coordinates for objects to order and explore different mappings from them to
one-, two- and three-dimensional spaces. These mappings reduce the complexity of the original
Hasse diagram and are suitable for interpreting the order structure of the set of objects. The
mappings here reported are applied to 83 microorganisms used for trapping uranium in
contaminated aqueous systems. The results shoBaedlus licheniformisATCC 14580, is the

unique highly dominating species; this confirms its importance as optimal uranium trapper and
highlights its usefulness for the development of biosorption procedures in environments polluted
with this actinide.

[y | This work is licensed under a Creative Commons Attribution 4.0 International License.
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1 Introduction

When it comes to order objects based on their attributes, for example for decision making
processes in chemistry and environmental scidfi¢e&€! B4 g suitable tool is the Hasse
Diagram Technique (HDT), whose foundations are in order theory. A customary outcome
of the HDT is a Hasse diagram, where order relationships are depicted as links between
couples of objects and whose visual inspection is informative, e.g. indicating optimal or
least object$!

However, HDT has constraints of practicability due to loss of interpretability with
increasing number of objedf$;leading to multitude of intersecting lines, not visually
informative.

To solve this shortcoming, the FOU plot has been delis8dyhich takes into account

the incomparabilities and comparabilities for the objects under study. Comparabilities are
order relationships among objects of the sort more reactive than, less aromatic than, for
example, and incomparabilities are the lack of those relationships. In spite of the
versatility of the FOU plot, its mathematical properties have not been extensively studied.
In the current paper we carry out such a study and show that the FOU plot corresponds to
a particular mapping of Hasse diagrams into low dimensional spaces, where also ranking

procedures are included. We applied the mappings to a set of 83 microorganisms used to

2 Materials and methods

2.1Basics on posets

If Xis a non-empty set of objects, a partially ordered set can be obtained by endowing
with an order relatiorx, which fulfils reflexivity (x<x Vv x€X), antisymmetry (ifx<y
andy=<x, for x,yeX, thenx = y) and transitivity (ifx<y andy=<z thenx<z, for xy,z
€X).'The coupleX, <) is called a partially ordered se@ise}.

In a poset any pair of objectsy € X can be compared whenewvesty or y<x, in those
casesrt andy are said to beomparable(xLy), otherwise they arsncomparable i.e.

xKy, yx (xlly).!

Based on comparabilities and incomparabilities, some useful terms for the ensuing
discussion are:

Definition 1.Letx € X. We callC(x) the set otomparable objectsf x that is given by:
Cx)={yeXix<syory=<x}
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Definition 2. Letx €X. We calll(x) the set oincomparable objectsf x and it is given

by:

1(x):={y € X:y||x}.

Definition 3.Letx € X. We callF (x) theprincipal order filter of x or principal up sebf

x and it is given by:

Fx):={yeX:x<y}

Definition 4. Letx €X. We call0(x) theprincipal order idealof x or principal down set

of x and it is given by:

Ox)={yeX:y<x}

Definition 5. Fory € X, given a posety, <), if X; € X, thenC(X;) = {y:y L x,x € X;}.

We say thafC (X;), <) is a local poseof (X, <).

Definition 6.A poset &, <) is called dinear order (total order) if every pair of objects
from Xis comparable ix.

Note that a linear order meets reflexivity, antisymmetry, transitivity and linearity,%e.
yory<xforallx,y € X

Definition 7.A poset &, <) is called a weak ordef < is transitive and meets linearity.
Hence, the difference between weak and total order is that the former is not antisymmetric
but the latter is.

Definition 8. Aranking ofX is a two-step procedure where 1) a weak order is found for
Xand 2) an ordinal (rank) is assigned to each object of X

Definition 9. Acomponenbf a posetX, <) is a local poset (Definition 5 (X;), <) of

(X, <) such that the cardinality @f(X;) is maximal.

A traditional approach to explore the order relations(irs( is through the visualisation

of the associated Hasse diagram (HD), which is a directed acyclic transitive-reduced
graph whose vertices are objectXiand the edges indicate a cover relation between the
two connected vertices. It is said thais “covered” byy if there is no object with x <
zandz <y

Other posetic concepts needed for the discussion are those of maximal, minimal and
isolated objects. “Posetic” is used throughout this paper for describing partial order
features inherent to objects in a poset without necessarily extracting information just from
the HD.
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A maximal objeck is an object for which no relationx y is found®*% Conversely, a
minimal objectx is an object for which no relation< x is establishedsolated objects

are maximal and minimal objects at the same fthH&l

A particular posetic approach to order objects based on their attributes is the Hasse
diagram techniqu®, where objects ok are characterised by a set of attributes. These
attributes are further used to compare objects and in consequence need to be rightly

oriented to indicate the same evaluation aim.

2.2 Posetic space and posetic cases of interest
We useF(x), O(x) andI(x) as proxies for the order information of the objeof the poset
X, ).
We represent the cardinality &f by |X| and for the sake of simplicityC(x)| = C,
|[F(x)|=F, |0(x)|=0 and |I(x)|=I. Likewise, |X|= X. An important property is
thatF (x), 0(x) and I(x) are functions.
Proposition 1. There is a function f: X —= (|F(X)|, |[0(X)|, [I(X)]).
Proof. For allx € X there is only on€& (x), therefore only ong (X)|. Likewise holds for
[0(X)] and [I(X)|m
From Definitions 2 to 4, Theorem 1 follows:
Theorem 1IF + 0+ 1 =X+ 1.
Proof: Every objecix € X has|Xx| possible order relationships, which are distributed into
comparabilities” (x) and incomparabilities(x). Thus:

Cx)+I1(x) =X Q)
As comparable objectsare exclusively abover(x y) or below § < x), then for
X € F(x) andx € 0(x):
Cx)=F+0-1

)

Therefore, by replacing (2) in (1) and by further rearranging it is obtained:
F+0+I=X+1m
We introduce the posetic coordinates to characterise objects by their order attributes.
Definition 10 We callP(x) = (| F(x)|,| 0(x)|,| I (x)|) theposetic coordinatesf anyx €
X of the posetX, <). For simplicity we write them &&, 0, I).
Proposition 2 The upper and lower boundsgfo andr arel1 < F < X,1 <0 <X and

0<I<X-1
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Proof: By Definition 3 the minimum number of objects belonging to any filter efx

is 1, i.e. the object. Likewise, by Definition 4 the minimum cardinality ofis 1. By
definitions 3 and 4, the maximum number of objects eith@rdam in 0 is the complete

set of objects, therefore their upper boundisBy Definition 2 it follows that the
minimum number of incomparable objects for any X is O, wherex 1 y, for ally € X.

In contrast, the maximum number of incomparable objects X isX — 1, wherex ||

y, for all

y € X\x, wherex\x means the set without the elementm

Definition 11 The Cartesian produgtx 0 x I is called thgosetic space

Some particular regions of such a space have extreme distributions of posetic coordinates
and some others result from internal symmetries of the coordinates. Besides the sort of
coordinates’ distributions, these regions bring interesting order information about the
objects located there. We define these regions through the posetic cases of interest.
Definition 12.We callposetic cases of intere@®Cl) the points of the posetic space with

the following features of their posetic coordinates:

Case AmaxF

Case Bmaxl

Case CmaxO

Case DF =1
Case EO =1
CaseEF=0
Case GF=0=1

A closer look to the posetic coordinates of PCls shows that they are only realised as shown
in Corollary 1.
Corollary 1. For a given poselX, <), the posetic cases of interest are realised through
the following posetic coordinates:

AmaxF) = (X, 1, 0)

B(maxl) = (1, 1,X-1)

QmaxD) = (1, X, 0)

. (D1=([X/2],1,1X/2]) or
pr=n={p,_ (1X/2),1,1X/2])
E1=(1,[X/2],1X/2]) or

E(=D= {EZ = (1, 1X/2),[X/21)
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( X+1 X+1
| ( ] —+1o)
X+1 X+1
F(F=0)—{ 1[ 0),foreven |X|and
= X+1 X+1
l (TT ),forodd [X]

G(F=0=1=(~x/311X/3,X - 2[X/3] + 1)
The different floor] | and ceiling] ] functions result from the necessity of bringing
fractions to the natural numbers to realise the PCls as actual points of the posetic space.
The deduction of these expressions is shown in the Appendix (Propositions Al to A4).
Figure 1 exemplifies the PCls fof| |- 4 andX| =5

|X|=4 |X]=5
A (4,1,0) (5,1,0)
B @000 (113) ®@OO00OO0 (1,14)
c (1.4,0) (1,5,0)
D1=D2  (21,2) D1 % (3.12)
00 (@]@]
D2 (2,1,3)
OO0
E1=E2 E1 @OO
1,2,2
8 o0 122 é (1,3.2)
E2 go @) O(1’2'3)
F1 (2,3,0)
F (3.3,0)
F2 ; (3,2,0)
G (2,2,1) (2,2,2)
o ioo

Figure 1. Posetic cases of interest frakto G for X| = 4 andX| = 5 and some Hasse diagrams
realising them. Triples correspond g Q, I).
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2.3Mappings from posetic coordinates

The introduction of posetic coordinates makes thatxasfya poset can be mapped to the
spaceP(x). Here we discuss the exploration of such a space by applying three different
mappings.

(1) Three dimensional: i: P(x) - P(x).

(2) Two dimensionalFou: P(x) - ((| F(x)| — | 0], | 1(x)]).

(3) One dimensional: .p _ lom@ix-1),
PG =) = ol

2.3.1. Three dimensional mapping (ternary space)

This mapping corresponds to the identity map,ii(F,0,I) - (F,0,I), which
corresponds to a ternary space (ternary [Blb{Fig. 2). Based on their posetic
coordinates, objects can be located in the ternary plot.

This plot is a barycentric one depicting three variables, 1) whose sum yields a
constant valueX + 1) that is usually represented as 100%. Because of Theorem 1, the
coordinates are not independent, so only two coordinates must be known to find a point
on the graph. Each point in the ternary space is a triple of the cardinality of the three sets
F(x),0(x) and I(x). The advantage of using a ternary space for depicting posetic
features is that the three posetic coordinates can be conveniently plotted in a two-
dimensional graph, without loss of information.

The posetic coordinategrows from 0 to 100% from the bottom of the plot to the upper
apex, labelled. The horizontal lines that represent various percentagesuafparallel

to the base line.

The posetic coordinaté grows from the right side of the triangle (side of apdxasd

O) to the leftmost apex, labelléd The parallel lines to the side opposite to the dpex
characterise the degreerofSimilarly, the values a® can be read from the lines opposite

to the apex OAlthough the ternary space gives a theoretical framework to ploteach

X of a pose(X, <), the actual area of the ternary space that can be populatEdiyy)(

of X is lower.

Proposition 3. In a ternary spack, 0,1) anyx € X is plotted in the following working
subspace:

100 100X
——<F<_—
X+1 X+1
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100 100X
X+1- "X+1
100(X — 1)

=TT X1

Proof. If X + 1 corresponds to 100% fat, 0 and!, then the corresponding upper and
lower bounds of F, 0, [Proposition 2) lead to
100 100X
<F<

X+1- TX+1
100 o o 100X
X+1- TX+1
100(X — 1)
=T X +1

Fig. 2yshows the ternary plot for | ¥ 5 and depicts the posetic cases of interest, PCI, of

Fig. 1 as well as the objects of a toy-example HD shown in Fig. 2a

2.3.2. Two dimensional mapping (FOU space)

The working subspace of the ternary space has strong connections with the so-called FOU
space, where in the original paifé? the notatiory was used instead pf

In the FOU space the definition of axes is carried out by using the difference between
subset:0 — F for the abscissa andor the ordinate0 — F > 0 whenx has more objects

y holdingy < x thanx < y, i.e. more objects below than above in a HD. DisF <0

for the contrary case and equal to zero when the number of objects below and above is
the same. Note that in the ternary plot the posetic coordinates are given by percentages of
X+ 1, while in the FOU space they are treated as the bare numbers they biiRgQOi.e

).

Proposition 4 Inthe FOU spacé— X <0 —-F <X — 1.

Proof. The upper bound @ — F is met wherg is maximum X) andF minimum (1)
(Proposition 2), then mag(— F)=X — 1.

The lower bound results whenis minimum (1) and is maximum k), then

mn(0 —F)=1—Xm
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Figure 2. o) Toy example HD for§| = 5,8) posetic coordinates of objectsdny) ternary plot
for objectsa to e in a, depicting the posetic cases of interest (PClIs) (Fig@) FOU
space for objects im and the placement of the PCIs|. POMO and.) LPOMext fora
where the PCIs are also depict@)l.Manhattan distances between the objects in
(columns) and the PCIs (rows). Further explanations on some of subfigyresl|
come in further sections.

Proposition 5 The FOU space is boundediby 0 — F + X — 1,forO — F < 0; byl =
F—0+X—-1,for0—F >0andbyl =0.
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Proof: Foro — F < 0; from Proposition 4nin(0 — F) = 1 — X. From Proposition 4 and
Theorem 10 — F values corresponds o= 0, which builds the poin1 — X, 0) of the
FOU space.

In 0 — F < 0, the maximum valukcan attain is its maximum, i.e= X — 1, which by
Theorem 1 corresponds o+ 0 = 2. ASminF =1 andmin0 =1, F+ 0 = 2 can
only be attained by = 1 ando = 1, i.e.0 — F = 0. Hence, max corresponds to the
point (0, X — 1) of the FOU space.

The line connectingl — X, 0) with (0, X — 1) has slope:

X=1 _ 4, therefore its equation Is= 0 — F — (1 — X), beingl — X the0 — F intercept.
X-1

Hence/ =0—-F +X — 1.

Foro — F > 0, Proposition 4 shows thatax(0 — F) = X + 1. From Proposition 4 and
Theorem 1max(0 — F) corresponds t¢ = 0. This makes the poir@x — 1,0) of the
FOU space.

In 0 — F > 0 the maximum valué can take isy — 1, which as shown foo — F <0
corresponds t¢0, X — 1).

The line connecting0,X — 1) with (X —1,0) has slope_X=1 _ _1, therefore its
X-1

equationi§ =—(0-F)+X—-1=F—-0+X—1m

Proposition 6 In the FOU space the posetic cases of interest have coordinates, I):
A: (—(X —1),0)
B:(0,X —1)
C:(X—-1,0)

X-1X-1
(155

Proof. They are obtained from Theorem 1 and Proposition 4.
Fig. 2yand 28show that the FOU space is a subspace of the ternary plot. The advantage
of using the ternary plot is that the three posetic coordinates are depicted, while in the

FOU space two are combined. The advantage of the FOU space over the ternary plot is
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that the whole space is reachable by objects of a poset of the given cardinality, whilst in
the ternary plot a fraction of the space is unreachable.

In both, ternary plot and FOU space, the nearness of the objects of a given poset to the
posetic cases of interest can be calculated, e.g. through a metric; such a measure can be
used as a proxy to assess the order relationships of the objects. Here we use the Manhattan
distancé, whose results for Fig. 2 are shown in Fig. 2

To better interpret the results of Figy,2he local HD, as a depiction of a local poset
(Definition 5), of each object in Fig. 2a shown (Fig. 3). Note how the original HD for

b, is equivalent td’, in terms of theirk, O, I), likewise occurs foc andc’, andd and

d.

a b c d e

OO O O

O

EOOO

b’ c d

Figure 3. Local Hasse diagrams (a €) of objects in the diagrams of Figa 2nd the (FO, I)
equivalent diagrarb’, c¢’, d’ regardingp, ¢, d, respectively.

From Fig. 27 it is quantified what is observed in Fig. @pd 23 the equivalence ci

with E1 and ofe with D2, the tie ofb with E1 andC (better understood through (Fig.

3) and ofd (or d’) with A andD1 and the nearness of(or c’) with G. This can be
interpreted asa is exactly the case of an evenly dominating and incomparable object.
Whilst b is dominating but with incomparabilities. The object with the most balanced

comparabilities, up and down, and incomparabilitiex.idn turn, d is close to be

1As J. D. MacCuish and N. E. MacCuish discuss in reference [12], the suitable similarity measure must be
selected based upon the kind of data, e.g. binary, count, continuous and mixed. Taking into account the
discrete character of the data we have, we used the Manhattan distance, which avoid continuous geometrical
assumptions of the space.
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maximally dominated, which is hampered by incomparabilities. Indaotde are the

two instances of objects evenly dominated and incomparable.

In general, minimal objects lay over the line connecting PCI A with B on the FOU plot
and maximal objects over the line BC. The line AC contains those objects with no

incomparabilities. A broad interpretation of the FOU plot is shown in Fig. 4.

B Incomparable
objects

Dominated
objects

Dominating
objects

A Comparable ¢

Figure 4. Regions of the FOU space depicting important order information.

2.3.3. One-dimensional mapping (ranking)

This is the most popular mapping, which reduces the whole complexity of order
relationships of a poset to a single number, i.e. a rank in a ranking (Definition 8). Here,
eachx eX is associated to its rank averagevhose calculation takdsto account the
comparabilities and incomparabilities gfto estimate its position (rank) in a one-
dimensional scale. In this approach, objedisldingx < y for manyy receive low ranks
while those having many of the sorty < x receive high ranks. Bruggemann and
coworkers have devised methods to compute rank avéfg#sand in the current paper

two variants of the local partial order model LPOM approaches are used: LPOMO and
LPOMext. LPOMO is calculated as follows:

_ IS+ 1)*(X+1)
() = X+1-|1(x)|

WhereS(x) is the set of successorsxpfvhich corresponds ©O(x)\ x. From Theorem 1:

— lom®Ixx+1) 3)
() = ool

The respective expression for LPOMext is:
r(x) =00(x)0+p
Wherep depends on:
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py = o) ni)| andp> = |F(x) n1(y) |, withy € 1(x)-
Hence, any object if(x) contributes tor(x) according to its probability of being
positioned below. Thus, the sum is performed ovér .**l Therefore
p§+p;

1) = 106 +Zyern 2 @)
As a rule of thumb, maximal elements often have large valuge (@)|, therefore their
average ranks values tend to be large too, due to Equations 3 and 4.
Fig. 2¢ and 2&how the rankings for LPOMO and LPOMext. It is seen how, in general,
c>b>a>c>e>d.Asinboth method® is the dominating term (Equations 3 and
4), objects with higl® attain high rankings and objects in subsequent ranks start to appear
asO s reduced an# andl start to increase.
Fig. 2¢ and 2@lso depict the nearnesses of Fig. 9. thad is in betweerA andD1

shows up aP1>d > A

2.4 Microorganisms for U trapping

After having described the mathematics of the mappings, in this section we apply them
to the ordering of 83 microorganisms used for uranium (U) trapping.

In a recent study, Quintero et “4l.ordered 38 microorganisms for U trapping
characterising these objects by three attributes: percentage of U refdialuptake
capacity C) and the requested time) for removing U input. In the current study we
analyse a bigger set of species reported in the literature for U trapping in aqueous systems
by including 45 additional bacteria.

The U uptake capacity was assessed through the same attributes as reported by Quintero,
Bruggemann and Restréfio%U, UC andeff, this latter being oriented in such a way

that largeeff values indicate better U recovering (details in referenye [4]

3 Results and discussion
3.1 Attributes’ statistics

We analysed the association between pairs of attributes in ordinal measurement levels by
Spearman’s correlation coefficienis(Fig. 5a). Fig. 5a shows that there is a moderate
and positive correlation betweeégl/ andUC; p for %U andeff andUC andeff
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indicate a weak and positive correlation in the monotonic relationship between these
attributes.

p | %U | UC
%U | 1.0 | 0.404
UC | 0.404] 1.0
eff | 0.260] 0.286

2 60 80 100 120 140 160 180 200 220 240 260 280 300

uc
B)

Figure 5. @) Spearman correlation coefficients for attributed, UC andeff. B) Regression
chart of %Uby UC, showing 1) points corresponding to 83 microorganisms as labelled
in Table A1 (Supplementary material); 2) the regression line (best linear fit); 3) 95%
prediction interval for the line (continuous lines) where 95% of all data point fall; 4)
95% confidence interval on mean of the prediction for a given valuk qidashed
lines), where it has a 95% of probability of containing the true regression line; and 5)
observed values (black dots). Diagonally rightward, close to 0, an angular pattern is
enclosed by two rays emanating from object 38; the upper ray contains 19 objects and
the lower one 23. These objects share the same vatunitoU < 66.

To determine the degree of linear association betWeérandUC, a linear regression
analysis was carried out. Fi§f shows that there are no outliers for both the 95%
prediction and confidence intervals, but there is a high variability at/ioW1-100 mg
U/g biomass).
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As seen from the slopes, changes in the predictor vatiibire associated with changes
in the response variabeU; approximately above 100 mg U/g biomass. The width of the
95% confidence interval for the expected valug 6fincreases &%U moves away. This
means that there is approximately more certainty in the predictitd dlelow 100 mg
U/g biomass; additionally, frorR? = 0.146, it is concluded thdf C only explains 14.6%

of %U variability and therefore by the regression neittgs nor UC can mutually be

replaced. Therefore for the posetic analysis all three attributes are needed simultaneously.

3.2Generalities of the ordering of microorganisms

Table Al (Supplementary material) shows the presence of values not clearly defined for
%U and eff for some microorganisms, namely 7, 10, 25, 30, 48 and 75. These
microorganisms have intervals in attributéC and eff. In the current study,
microorganisms havingoU > 90 and 0 < eff < 1 were set up tdoU = 90.5 and

eff =1 (see referenc@]).

In Fig. 6, the HD of 83 microorganisms is depicted, where two well-defined regions or

components (Definition 9) are shown.

Figure 6. Hasse Diagram of 83 species. Left side: component with 78 microorganisms; right side:
component with five species.

ComponentsBy checking Table Al (Supplementary material), it can be seen that,
typically, microorganisms in the right component are characterised by very low values
for eff but pretty large values fddC, whereas microorganisms in the large leftward
component have higher values @if but low values forUC. Thus, the ordinal
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representation of the attribute space by a Hasse diagram reveals some important insights
in the suitability of microorganism for trapping Uranium.

Maximal objects:At the top of the Hasse diagram eight maximal objects are found:
Bacillus subtilislAM 11062 (19),Bacillus licheniformisATCC 14580 (22), Bacillus
mucilaginosusACCC 10012 (24)Pseudomonas aeruginos@07 (44), Pseudomonas
MGF-48 (50), Streptomycesp. (72), Sphingomonasp., StrainBSAR-1 (75) and
Streptomyces viridochromogenes HUT 6167 (81).

Minimal objects: The least suitable microorganisms as U trappers are shown at the
bottom: Arthrobacter cireuslAM 1660 (4), Citrobacter N14 (10), Deinococcus
radioduransDrPhoN (32) and Micrococcus varians 1AM 13594 (38).

3.3Mappings from posetic attributes of microorganisms

3.3.1. Ranking of microorganisms

When ranks are derived based on each attribute alone, some objects will heavily change
their position in the ranking. Therefore, it is to be expected that these objects will heavily
depend on weights in a weighted linear sum (as the simplest technique for an
aggregation). Table A2 (Supplementary material) in the appendix shows this dependence
on the selection of weights.

Results of the application of the two LPOM-methods are shown in Table 1.

Table 1. Average ranks for microorganisms calculated from LPOM-methods

Microorganism label Average ranll<s, (rpicroorganism
abel’
Rank || bomo | LPOMex]  LPOMO LPOMext

1 22 22 82.73 (22) 82.38 (22)
2 24 24 82.64 (24) 81.99 (24)
3 50 50 82.62 (50) 81.85 (50)
4 19 19 82.35 (19) 81.33 (19)
5 72 72 82.21 (72) 80.51 (72)
6 48 48 80.89 (48) 79.79 (48)
7 2 2 80.27 (2) 77.92 (2)
8 6 6 79.24 (6) 77.71(6)
9 81 67 78.40 (81) 74.61 (67)
10 59 52 77.00 (59) 73.62 (52
11 52 62 76.85 (52) 73.50 (62
12 67 58 76.70 (67) 73.41 (58
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13 3 59 75.87 (3) 71.50 (59)
14 58 47 75.60 (58) 70.41 (47
15 62 56 75.43 (62) 69.82 (56
16 47 44,75 74.00 (47) 66.9 (44,75)
17 56 73 73.50 (56) 66.85 (73
18 55 18 73.04 (55) 66.37 (18
19 53 53 71.71 (53) 66.00 (53
20 36 3 70.74 (36) 64.40 (3)
21 73 61 70.00 (73) 63.76 (61
22 18 55 69.70 (18) 61.15 (55
23 61 1 67.61 (61) 60.50 (1)
24 44,75* 26 67.20 (44,75)|  60.17 (26
25 1 71 65.56 (1) 57.07 (71)
26 26 70 64.91 (26) 55.75 (70
27 12,71* 12 63.00 (12,71)]  54.26 (12
28 70 54 62.46 (70) 54.16 (54
29 41 69 61.09 (41) 54.05 (69
30 54 41 60.90 (54) 53.96 (41
31 76 79 60.67 (76) 52.04 (79
32 25 81 60.48 (25) 52.02 (81
33 79 76 60.31 (79) 50.06 (76
34 69 57 60.00 (69) 48.81 (57
35 83 83 58.15 (83) 48.34 (83
36 13 13,25+ 57.93(13) 45.72 (13,25)
37 7 21 57.12 (7) 45.28 (21)
38 57 36 54.78 (57) 44.71 (36
39 45 45 54.60 (45) 44.25 (45
40 21 64 52.27 (21) 40.96 (64
41 14 65 52.14 (14) 39.64 (65
42 65 37 50.00 (65) 37.02 (37
43 8 7 48.00 (8) 36.92 (7)
44 64 8 47.25 (64) 36.53 (8)
45 78 14 46.06 (78) 35.24 (14
46 17 17 45.40 (17) 34.87 (17
47 11 63 44.47 (11) 34.58 (63
48 16 30 44.33 (16) 33.87 (30
49 37 16 42.86 (37) 32.80 (16
50 39 39 42.00 (39) 32.61 (39
51 63 11 41.14 (63) 31.59 (11
52 80 23 39.53 (80) 30.80 (23
53 23 78 36.24 (23) 29.33 (78
54 | 2030,82% 82 | 33.60(20,30,82) 28.71 (82
55 60 20 31.29 (60) 27.84 (20
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56 49 60 30.69 (49) 26.07 (60
57 43 49 27.49 (43) 24.95 (49
58 33 80 24.89 (33) 24.47 (80
59 15 33 22.10 (15) 22.90 (33
60 32 43 21.00 (32) 22.33 (43
61 51 32 19.93 (51) 21.50 (32
62 28 15 17.75 (28) 20.30 (15
63 10 51 16.80 (10) 17.99 (51
64 42 28 16.563(42) 17.61 (28
65 34 10 15.75 (34) 16.93 (10
66 66 42 14.76 (66) 16.15 (42
67 31 34 13.39 (31) 15.50 (34
68 9 66 10.65 (9) 14.60 (66)
69 5 31 8.055 (5) 13.47 (31)
70 68,77* 9 7.946 (68,77) 12.44 (9)
71 46 68,77+ 6.632 (46) | 10.10 (68,77)
72 74 5 5.676 (74) 10.01 (5)
73 27 46 4.421 (27) 7.461 (46
74 35 35 3.600 (35) 7.440 (35
75 29 74 3.316 (29) 7.338 (74
76 40 27 2.182 (40) 5.380 (27
77 4 29 1.105 (4) 4.503 (29)
78 38 40 1.077 (38) 2.730 (40
79 - 4 - 2.149 (4)
80 - 38 - 1.314 (38)
81 - - - -

82 - - - -

83 - - -

*Species having the same average rank, constituting a weak order, therefore equal rank.
Note that the second and third columns of Table 1 are the same for the first eight ranks.
They are, from the first to the eighBacillus licheniformisATCC 14580 (22)Bacillus
mucilaginosusACCC 10012 (24)PseudomonaMGF-48 (50),Bacillus subtilislAM

11062 (19) Streptomyces sp. (72), Pseudomonas sp. EPS-5028(48), Actinomyces levoris
HUT 6156 (2) and Arthrobacter nicotiané&M 12342 (6).

Because of the presence of some ties, i.e. same values in average ranks for some

microorganisms, the last ranks in Table 1 are not available.
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These results show that microorganism Badjllus licheniformisATCC 14580) is the

best U trapper. It belongs to the maximal objects (Fig. 6) and its orde0 (x)ak pretty

large (65 objects).

Bubley Dyer method is another helpful approach for ranking objects that generates a
sample set of linear extensions from which average ranks can be calculated as in LPOM-
methodd!® A detailed analysis of average ranks obtained by the application of this
method shows that object 22 keeps at the top of the rank, which agrees with the average
ranks calculated with LPOM-methods. Bubley Dyer calculations were run with the
PyHasse software with a different number of Monte Carlo runs (ranging from one million
to six millions) and samplings of linear extension (Data not shown).

If the maximal objects in the Hasse diagram are inspected, five out of eight are considered
as well as good U trappers according to the top eight; these five microorganisms are 19,
22, 24, 50 and 72. This highlights the importance of average ranks for carrying out a
decision-making process, in this case to know an ordering of objects in established

positions, i.e. the first, the second, the third and so on.

3.3.2. FOU and ternary spaces of microorganisms

Table A3 (Supplementary material) shows posetic coordina@s|,| I(x)| and|F (x)|

for each microorganism and the differef@éx)| — |F(x)| -

The shapes of the set of points in Figana 71 is strikingly similar. In general terms this
follows from the fact that the FOU-space is a subset of the ternary space. In more details:
In the FOU-space (Fig. Jdhe coordinates of the posetic cases of interesparg(-82,

0); B=(0, 82);C=(82,0);D =(-41, 41)E = (41, 41);F = (0, 0) and5 = (0, 28).
Leftward-bottom region of Fig.osand B shows the objects having hi¢ia(x)|, which

are highly dominated species located in the neighbourhood of PCI A. Note that the line
connecting PCI A with B in the FOU plot, location of minimal objects, split these species
in one cluster with low | and another with high I. This shows that there are two sets of
minimal microorganisms, with strong differences. They are, in fact, the minimal objects
of the two components of the HD (Fig. 5). Maximal objects are also separated into two
along the line connecting PCls B with C. They also correspond to the maximal objects of
the two components. Fig. 6 shows that there are several microorganisms that are better
than others, close to be maximal; in contrast to the almost empty space around PCI D.

Another empty region occurs f&f < 0 and lowl. This shows the lack of strong
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dominating species. The objects along the line connecting PCls A and G correspond to
species that are dominated by others but those that are close to G have better behaviour
as U trappers. This trend is enhanced until meeting line BC. The spread of species near
this line shows those microorganisms that behave better as U trappers but that are, in
general, no better than most of the others, i.e. are not maximal. Note that there are more
species near B than C, being C the best U trapper and B being the best and the worst at
the same time because of its lack of comparabilities.

G

F

H 5 25 3 45 55 65 75 8

(0G| = [F

0
100 O(x)

B

Figure 7.a) FOU andp) ternary plots of 83 microorganisms. Red points correspond to PCls and
green and blue ones to minimal and maximal objects, respectively.
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3.3.3. Nearness of objects to posetic cases of interest

The assignment of objextto a PCI is given by the shortest distance tuf the PCls. In

case of tiex is considers as belonging to several PCls. Results for the microorganism

considered are summarised in Table 2.

Table 2. Posetic cases of interest (PCls) and the microorganisms belonging to them.

PCI PCI' name Posetic coordinates . Label Of. _Number c_)f
microorganisms microorganisms
[F(x)| =83
4 Maximally [j0(x)| =1 4,5,27,29,35,38,40,4 1
dominated [I(x)| =0 6,68,74,77
Maximally IF(x)| =1
. _ 7,10,12,14,25,30,
B incomparable o) =1 32.36.44,55,75,81 12
[I(x)| = 82
IF(o)l =1
Maximally |0(x)| =83
¢ dominating [I(x)] =0 22 !
|F(x)| =42
D1 [0(x)| =1 9,15,28,31,34, 8
Evenly [I(x)| = 41 42,51,66
dominated an
incomparable F ()] =41
D2 |0(X)| =1 _ 0
[1(x)] = 42
[F(x) =1
E1* [0(x)| = 42 2,6,19,24,48,50,52,5 1
Evenly [I(x)] = 41 8,62,67,72
dominating
and [F(x)| =1
: 1,3,18,26,41,47,53,5
g2 | Incomparable "1)((")” Z4 | 4565961697071 17
1] = 73,76,79
Evenly llggxgll i g
F | dominated and I(x) ~ 0 - 0
dominating eIl =
Evenly
dominated. |  |F(x)| = 28 811,13,16,17,20, |
R 21,23,33,37,39,43,45
G dominating |0(x)| = 28 29.57 60.63.64.65.1 23
and [I(x)| = 28 49,57,60,63,64,65,
. 8,80,82,83
incomparable

*In general, for maximal objects here locatedx)| > {|[F(X)|, I(X)[}. Other objects havé(x)| <

{101, 191}




-814-

3.3.4. Comparison with HD, LPOM, FOU and ternary plots

From the HD (Fig. 6), maximal and minimal objects are visualised at the top or at the
bottom. These positions highlight their dominating or dominated behaviour respectively.
Likewise, Fig. 7aand 78 are depicting the position of maximal and minimal objects in
specific PCls; for example, C (22) and E (19,24,50,72) are gathering maximal objects
with evenly dominating and incomparable behaviour.

In the case of object 22, its position is confirmed by their posetic characterisation
(1,65,18), that leads to its location in PCI C. This means that microorganism 22 is the
unique highly dominating object in this data matrix, explained by its highest
|0 (x)|compared to the other objects in the poset.

According to their average ranks obtained from LPOM, other microorganisms occupying
the next seven positions in the ordering are located in the nearness of PCI E, i.e.,
microorganisms 24, 50, 19, 72, 48, 2 and 6. PCI E represents evenly dominating and
incomparable objects in such a way that they are characterised k|0 (x)|, ranging

from 43 to 61, but having very lo|F(x)]| i.e. ranging from 0 to 3, and hi¢I(x)| (<

39) (see Table A3, Supplementary material).

As expected, this behaviour confirms their position at the top eight obtained by the
application of LPOM (Table 2). Although in the nearness of PCI E, there are more
microorganisms, not only those occupying the positions second to seventh at the top eight,
the main differences are their very low numbe|F(x)| (3 to 11) and higl|/(x)| (36 to

53) accounting for their evenly dominating and incomparable behaviour (Table A3,
Supplementary material).

Other maximal objects showed in Fig. 5 are located in the neighbourhood of PCI B
pointing out their high value i|I(x)| and their lack of complete dominance; these objects
are 44 (1,4,79), 75 (1,4,79) and 81 (1,14,69). As expected, their behaviour would explain
why they do not occupy the first positions in the ordering performed by LPOM (Table
A3, Supplementary material).

In the case of minimal objects, it can be pointed out that according to their posetic
characterisation, objects 10 (4,1,79) and 32 (3,1,80) have high degree of incomparabilities
and are located in the PCI B. In contrast, objects 4 (75,1,8) and 38 (77,1,6), the other ones
minimal objects, are located in the PCI A that gathers objects maximally dominated
whose main posetic feature is thegfx)| is higher compared & (x)| for other objects

in the poset.
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As seen, this posetic characterisation by using PCls in FOU and ternary plots, confirms
that in a HD, minimal objects are always either highly dominated or with high degree of

incomparability.

4 Summary and discussion

We developed the idea of posetic coordinates and applied three mappings, focusing on

the representation of FOU and ternary spaces. Findings can be summarised as in Fig. 8.

B

/

Attribute space

l

Ordinally representation by a poset Posetic space

Visualization by HD
Maximal elements «— |- O-line

O ([) @]
Minimal elements «—I-F- line

Highly comparable «— F - O- line F o

Figure 8. Relationships between attribute space and posetic space, where 1B stands for
information base, which gathers objects and attributes.

It can be hoped that by using different techniques of representation, maximal information
can be extracted from the data set, keeping the very idea of the posetic nature of analysis.
From the applicational point of view, it is found that out of 83 microorganisms, eight
species are candidates for efficient uranium trapping. Results from LPOM show a top
eight of microorganisms with high potential for removing U in aqueous systems, they are:
Bacillus licheniformisATCC 14580 (22)Bacillus mucilaginosusA\CCC 10012 (24),
Pseudomona®GF-48 (50),Bacillus subtilisSIAM 11062 (19),Streptomycesp. (72),
Pseudomonasp. EPS-5028 (48Actinomyces levoris HUT 6156 (2) aAdhrobacter
nicotianaelAM 12342 (6).

Up to now we strictly separated the attribute space from the posetic space, nevertheless
any mixture can be thought of, so for example supposed coordinates could be modified
by metric information inherent in attributes. General mappings can have many other

variants and this opens a field of further research.
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Appendix
Proposition A1 For PCI D:
(X/2,1,X/2), for even |X|and
f(D) = J

(B
(L)

Proof. The conditionF = | of PCI D makes thdD takes its minimum allowed value for

for odd |X]|.

X, i.e. P|=1 (Proposition 2). From Theorem 1 it follows that
F+1=X (A1)
As the condition requirels = |. This is realised for near valuesfofandl, thenF = | =
X/2.
For evenX, F andl € N (throughout the paper 0 is included as natural number), therefore
(F, O, )= (X/2, 1, X/2.
For odd cases, given thatO and/ € N, to ensure that the resulting fraction also belong
in N, we consider different cases:
i) F =[X/2], then by Equation Al = X — [X/2] = |X/2],
ii) I =[X/2],asiniitleads t¢ = [X/2].
Henceileads tqF,0,1) = ([X/2],1,|X/2]) and i to(|X/2],1,[X/2])m

Corollary A2 Either (F,0,1) = ([X/2],1,[X/2]) or

(F,0,1) = (1x/2],1,[x/2]) are equivalent taR, O, I) for [X| everm
Proof As[X/2] = [X/2] = X/2 for evenX], then
(Ix/21,1,1%/2]) = (1X/2],1,[X /2D

=(X/2,1,X/2)m

Proposition A2 For PCI E:
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I((1,X/2,X/2), for even |X|and
X1 |X
fE) = { (1’ [gl'lgl) Or, for odd |X]|.
WD

Proof. The conditionO = I, following Proposition 2, leads © + | = X, which makes
that

(F,0,1) = (1 X _) for [x| even.

When | is odd,0 andl ¢ N and, as in Proposition 2, this leads to
i) 0 = [Xx/2], thereford = |X/2],
ii _ [X], therefore, _ |X].
V=[] =[]

i ot o, (s[5 5) 0.0 1.

Corollary A2 Either (F,0,1) = (1' [?Z_f]EJ) o (£ 0,1) = (1, EJED are equivalent

to (F, O, 1) for [X| even.
Proof: Likewise as in Corollary Al.

Proposition A3 For PCI F:

X+1 X+1
([ 2 ]+10)0r

FOF) = (X [X+1 '[X+1’0) !
{(X+1 X+1 )

for even |X| and

for odd |X]|.

— ——0),

2 2
Proof. PCI F brings the conditioR = O, which makes that||= 0, therefore by Theorem
1
F+O=X+1 (A2)
Near values oF andO make that
X+1

F=0=—
2

For [X] odd, it can be expressed hy+2, withn € N. Thereforep — o = % =n+1

which maked$= andO € N.
Thus, for X odd(F 0,1 = (& X+1 0)
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For evenX], it can be expressed by, 2vith n € N. Hence,p — g = 1 _ 201 4 .
To makeF andO closer to each other as natural numbers, there are two possnbllltles:
i) F = [%] then by Equation Ag) _ y _ [%] +1
i) 0= [ﬂ] asini,itleads tg — y _ [&] +1-
2 2
Thus, i leads t?F, 0.1 = ([x+1] X — [&] n 1'0) and ii to

(F,0, I)-(X [XH +1,[¥],0)-

Proposition A4For PCI G

(@ = (1x/31,1x/31,X - 2[3] + 1)
Proof. PCI G require§ = O =1, which restricted initially td- andO makes thaF = O =
X/3. However, a§, O € N, then there are two options:

» peo-ff

Which according to Theorem 1 leadsjita y _ 5 EJ +1

ii) F=0=|X/3]

Thatleadstq _ y _ - EI +1
The full condition requires that, without loss of generality, eitheF or | - O attain
minimum values.
Forthecaseij— F=X+1—-[X/3]and foriil—F=X+1-|X/3]. As[X/3] >
1X/31,
then y 4 1 _ E] <X=1-|Xx/3 which makes case i be the minimum value.

Therefore

(F,0,) = ([X/B], [X/3],X — 2 [g] + 1) .

Supplementary material
This information can be accessed in the following link:
https://drive.google.com/open?id=1HhzeloBkWLMLpc2BLupey95MdB2JEKJIQ
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