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Abstract 

Evaluation, for example of chemicals, results mainly in a data matrix, where appropriate 
indicators are forming the columns and the chemicals the rows. Such a data matrix can be 
represented by a partial order and from a statistical point of view many insights are possible. 
However, if the data matrix should support decisions, then there appears the requirement to 
transform a poset until a linear order is obtained. This transformation often is performed just 
by calculating weighted sums of the (normalized) indicators, with weights, representing some 
knowledge beyond the data matrix. The question thus arises, i.e., as to how far weights can be 
determined as well- defined numbers? In the present study the condition of finding weights as 
unique numbers is declined. An alternative method is suggested and applied to a set of 
chemicals, where three indicators describe the environmental hazard of 13 substances.  
Consequences, concerning the environmental hazard of these chemicals are discussed. A result 
is that a systematic evolution of uncertainty about weights can be defined and that there appears 
to be a useful equation, which relates uncertainty (in weight determination) with the resulting 
ambiguity, measured as a posetic quantity, namely as number of resulting incomparabilities. 
 

1 Introduction 

Partial order theory is one of the general structures of mathematics and appears in many 

applications, without being explicitly denoted (see other contributions to this special issue of 

MATCH). Partial order can also be applied within an evaluative, statistical context, i.e., to 

evaluate and explore objects, which are characterized by a multi-indicator system (MIS). 
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Hereto a deep theoretical analysis can be found in [1] and more practically oriented analyses 

in  [2] and in many other papers, previously published in MATCH (for example [3,4]). The 

main idea in application of partial order for evaluation is its potential to avoid subjective 

knowledge. Orders relations can be derived, without any knowledge beyond the data matrix, 

which realizes the MIS for a certain set of objects, X. However, often there is knowledge or 

even assumptions, worth to include into the evaluation analysis, albeit often pretty vague. Such 

information could, e.g., be assumptions about the mutual importance of the single indicators. 

In that context Owsinski [5] writes “…we would like to go beyond the poset ‘skeleton’ and 

endow it with ‘flesh’…”. However, to agree, or at least reach consensus, e.g., about specific 

weights will often be a troublesome exercise, and maybe even impossible, whereas to agree 

about some intervals for the mutual weights may be a significantly easier task. An approach, 

how for example blurred knowledge can be included within the framework of partial order is 

described in [6,7] and will be deepened in this paper. The paper is organized as follows: 

 

• Section 2 presents the data basis, from which we take the example, the basics of partial 

order and the procedure for a systematic investigation of weight intervals.  

• Section 3  shows some results concerning some environmental properties of the 12 

chemicals and 

• Section 4 discusses the results in order to define future tasks. 

  

2 Materials and Methods 

2.1 Environmental Chemistry 

The example is based on environmental chemistry data, recently reported by Sailaukhanuly et. 

al., [8] (Table 1). The main objective is estimating the mutual hazard these chemicals pose to 

the environment. In general there is no measured quantity that uniquely order chemicals 

according to their environmental hazard. Instead a series of indicators are used as proxy [8].  
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Table 1. [0,1]-normalized indicators ‘persistence’, P, ‘bioaccumulation’, B, and ‘toxicity’, T. 

 

chemicals P B T 

DDT  0.084 1 1 

DDE  0.009 0.856 0.16 

DDD  0 0.679 0.171 

MEC  0.027 0.339 0.101 

ALD  0.264 0.852 0.627 

DIE  0.293 0.383 0.041 

HCL  0.428 0.48 0.104 

CHL  1 0.751 0.212 

LIN  0.027 0 0 

HCB  0.057 0.574 0.187 

PCN  0.054 0.18 0.028 

PCP  0.012 0.354 0.01 

 

2.2 Basics of partial order applied in the statistical context 

Let x, y be objects ∈ X, the set X for example being the set of the 12 chemicals given in Table 

1. Let further the set of any quantity, q(j) which will be used to find an order among the objects 

(here: among the chemicals) be called the information base. In the present example the 

information base would be {P, B, T}. When a set of consensus functions, Γ(1), Γ(2),…based 

on the q(j) are used to construct a partial order, then the information base would consist of just 

these consensus functions.  The consensus functions Γ(j) are considered as order preserving 

functions of q(j). In that context Fattore [9] uses the concept of a functional.  The consensus 

function terminology is outlined in sect. 2.3.  

We define a partial order as follows: 

 

x ≤ y: ⇔ q(j,x) ≤ q(j,y) for all q(j) ∈ IB       (1) 

 

It is useful, to write x ≤IB y, to stress the role of the set IB. A set X, equipped with a partial order 

is a partially ordered set, a poset. 
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As mentioned above, in eqn. 1 q(j) can be either the original indicators as taken from an 

empirical data matrix or elements of the set of consensus functions. Eqn. 1 leads to an often 

very useful visualization by a Hasse diagram (see for details [2]). An object pair x, y which 

does not follow eqn.1, meaning that x and y are incomparable, is denoted as x ǁ y, the 

phenomenon itself being called “incomparability”. Hence, an important subset within the 

framework of partial order is the set of (xi1, xi2), with xi1,xi2 ∈ X and xi1||xi2: 

 

U(IB):={(x i1,xi2) ∈X2 : xi1 ǁIB xi2, i1 < i2}       (2) 

 

The cardinality of this finite and discrete set is called TUCIB. 

 

TUCIB
:=|U(IB)|           (3) 

 

The subscript ”IB” of the quantity TUC indicates that the incomparability of the objects xi1 and 

xi2 is related to the values of the elements of the information base, either taken from the data 

matrix in which case  IB consists of the original indicators of the problem and will be called 

IB0, or being some consensus functions, where IB consists of consensus functions (see below).  

In order to avoid troublesome notations, we specify:  

 

U0 := TUCset of original indicators of the data matrix and       (4a) 

IB0 to stress that the set of original indicators is applied     (4b) 

 

Consequently, we can write TUCIB0 for U0, i.e., for the number of incomparabilities, related to 

the poset based on the original indicators. 

 

Furthermore we set: 

 

m = |IB0|           (5) 

 

m being the number of indicators. 

 

Another set C is equally important: 
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C(IB):={(x i1, xi2) ∈ X2, with xi1< xi2, i1 <IB i2}       (6) 

 

This set is finite and discrete and its cardinality is called TCIB.  

 

TCIB = |C(IB)|           (7) 

 

Given the cardinality of the set of objects, n, the quantities TUCIB and TCIB are related as 

follows: 

 

TCIB + TUCIB = n*(n-1)/2         (8) 

 

A decrease in TUC due to change IB0 (original indicators) to IB (consensus functions as order 

preserving mappings) un ambiguously implies an increase in TC according to eqn. 8. 

 

Through the Hasse diagram the hazards of the chemicals given in Table 1 are visualized (Fig. 

1) under the set of indicators {P,B.T}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hasse diagram of the 12 pesticides with simultaneous use of all three indicators, P, B and T 
(cf. Table 1) (software: PyHasse, see [12]). 
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There can be found many interesting details about the 12 chemicals, which, however, is not the 

focus of the present study. For the partial order visualized in Fig. 1 with IB0 ={P, B, T} the 

number of incomparabilities U0 = 31. In a decision process most stakeholders would feel rather 

uncomfortable with such a high degree of incomparability as it can be regarded as an ambiguity 

or uncertainty in the ranking.  

 

2.3 The general procedure to include knowledge beyond the data matrix 

The general procedure can be described in 4 steps: 

 

1) Consensus - functions: The very idea is to start with a linear combination of [0,1] - 

normalized indicator values, qj(x), for an object x ∈ X, together with scalars g(j), called 

“weights” in order to derive consensus-functions (see [10] , [11] and [12]).  

 

Γ(g, x) = Σ g(j) · q(j,x)          (9) 

with Σg(j) = 1.           (10) 

 

We call Γ(g, X) the consensus functions with all its values, corresponding to all x ∈ X.  

 

It should be noted 

a) that the approach expressed in eqn.’s (9) and (10) clearly excludes ordinal indicators as 

normalization and scalar multiplication with weights demands for data implying to be 

continuous in concept  

b) that the weighted sum of indicator values is most common in Multi Criteria Decision Aids 

(MCDA) and is preferable in comparison to more sophisticated approaches such as 

PROMETHEE [13] or ELECTRE [14] because of its transparency.  

c) a main disadvantage is that weighted sums (eqn. 9) have a high degree of compensation [11]. 

A “good” value for a certain indicator can compensate a “bad” value with respect to another 

indicator. Decisions should however take care for such kind of conflicts among indicators. 

 

2) Intervals for the weights: If the weights, by which different indicator values for an object  

x ∈ X are combined, are not exactly known (vague or blurred knowledge) then for each weight 

g(j), intervals can be suggested. Varying the weights within these intervals by a Monte-Carlo 
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simulation leads to a set of weight tuples. Each single weight tuple of this set causes its own 

consensus function, hence a set of consensus-functions is obtained, which are considered as 

generating a new IB and therefore a new single poset. 

 

3) posets  formed by the new IB: This new set of consensus-functions is the basis for a new 

partial order of the objects, which in general is enriched in comparison to the partial order by 

the original indicators, as any single consensus function must preserve the order relations x ≤IB 

y based on the original data matrix, for details, see [6]. 

 

Hence, we have: 

 

TUCIB0 ≥ TUCIB          (11) 

 

with IB0 formed by the original indicators and IB formed by consensus functions due to eqn.’s 

9 and 10. 

Clearly the selection of different sets of intervals for the weights for m indicators allows a great 

variety of partially ordered sets. Hence, it appears necessary to provide a measure to evaluate 

the different posets.  

 

4) A need of a controlling function: It appears most appropriate for an evaluation of the set of 

posets (of step 3) to select the number of all incomparabilities, TUCIB as a controlling quantity. 

In continuation and extension of the approach, described in [6], a systematic procedure is 

suggested and described in the following section. 

 

2.4 The U(s-cone) - approach 

The following 7 steps are introduced 

 

1)  initially start weights are defined: 

 

g(D):= [g(D,1), g(D,2),…, g(D,m)]  with g(D,j) ∈[0,1],  j=1,…,m     (12) 
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The m-tuple g(D) represents the sharp knowledge of all m weights (corresponding to m 

indicators of the original data matrix). The specification “D” indicates that the values may be 

related to the knowledge of the decision makers. For the sake of convenience we call g(D,j) 

 (j = 1,…,m),  the “start weights”. The naming becomes clear, when the next steps are 

introduced. In most cases weights are not sharply known and instead of randomly, arbitrarily 

selecting intervals around each g(D,j) as described in [6] we define an evolution of uncertainty, 

with the parameter s, the evolution parameter (see below).  

 

2) Weight intervals I(s,j) 

In eqn. 13 the weight interval for each single weight g(j) is specified. Note that now we are no 

more speaking of the start weights, but of weights randomly taken from an interval, which is 

specified now: 

 

I(s,j) = [g(LL,s,j), g(UL,s,j)]         (13) 

 

where LL and UL are abbreviations for “Lower limit” and “Upper limit”, respectively. With 

g(LL,s,j) ≤  g(UL,s,j)  the interval) I(s,j) is a closed interval for each weight component g(j) for 

a fixed s ∈[0,1].  

 

3) The concept of an s-evolution 

The lower and upper limits g(LL,s,j)  and g(UL,s,j) are considered as varying with the evolution 

parameter s, which expresses the increasing uncertainty about the weights, because the lengths 

of the intervals |I(s,j)| are increasing with s (eqn. 14). 

 

 |I(s,j)| = g(UL,s,j)  -  g(LL,s,j)        (14)

           

4) The s-evolution by a linear approach 

For each g(LL,s,j) ,  g(UL,s,j) (j=1,…,m), s ∈ [0,1] we set: 

 

g(LL,s,j) = a(LL,j) · s + b(LL,j) and g(UL,s,j) = a(UL,j) · s + b(UL,j) with s ∈[0,1]  (15) 
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with a(…) and b(…) being the coefficients of the linear dependence of the upper and lower 

interval limits with s. The symbols UL and LL indicate that any generalization beyond the 

linear evolution by s used here, can be described by other terms for instance by the. 1st and 3rd 

quartiles of a normal distribution for g(j). 

 

5) Specifications 

An initial condition, i.e., for s = 0, is required, which represents a sharp knowledge, the interval 

length |I(s,j)| = 0. Consequently  

 

g(LL,0,j) = g(D,j)  for s = 0  and  g(LL,1,j) = 0  for s = 1 and 

g(UL,0,j )= g(D,j) for s = 0 and  g(UL,1,j) = 1 for s = 1.  (16) 

 

Equation. 16 together with the boundary conditions (eqn. 15) describe the s-evolution. Thus 

with an increasing s, the value of g(LL,s,j) is decreasing whereas that of g(UL,s,j) is increasing 

resulting in an enhancing of the intervals-length, |I(s,j)|. By eqn. 16 the coefficients of the eqn. 

15 are uniquely defined: 

a(LL,j) = - g(D,j)   a(UL,j) = 1 - g(D,j) 

b(LL,j) = g(D,j)  b(UL,j) = g(D,j)      (17) 

 

Consequently, the pair of lines (cf. Fig. 2), which can be defined for each component of the 

tuple g(D) describes the decreasing knowledge about the weights with increasing s from 0, 

corresponding to sharply known weights to 1 where all weight - values are possible; thus, all 

possible consensus functions should be generated which should lead to a poset  corresponding 

to IB0 (see below). 

 

6) The s-cone 

The series of increasing intervals for each individual weight component is called the s-cone. 

For a demonstration, in Fig. 2 the setting for m = 2 and g(D,1) = 0.7 and g(D,2)  = 0.3 is 

depicted. In section 3.4 two sets of starting weights will be used: One with equal weights for 

P, B and T (i.e: (= 0.333, 0.333, 0.333)) then only two lines describing the s-cone would appear. 

In the second set, where we used (0.2, 0.6, 0.2) as starting weights a similar picture like that 
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shown in Figure 2 would result. At s = 0 the s-cones would start at 0.2 (for P and T) and at 0.6 

(for the indicator B).  

 

 

 

 

 

 

 

 

 

 

Figure 2. An example for the settings of the s-evolution of weight-intervals. For more details, see text. 

 

In Fig. 2 at a certain s, (abscissa), intervals are found (cf. step 4 above). These intervals describe 

the values the weights g(j) can obtain by an random selection process.  In case s = 0, the weights 

are coinciding with the start weights. Towards s = 1 the intervals are increasing and begin to 

overlap and some care is needed to guarantee that nevertheless the consensus-functions are 

made of normalized weights. Examples referring to the 12 chemicals (Table 1) are shown in 

the results-section. 

 

7) Monte Carlo simulation 

For every s ∈ I(s,j) m*MC weights g(s,j) ∈ I(s,j) (j=1,..,m) are calculated, MC being the number 

of Monte Carlo simulations. The result can be thought of as a matrix with g(j)mc indicating the 

jth weight (of the jth indicator) at the mcth Monte Carlo simulation  

(mc = 1,…,MC).     Following this scheme at a certain value of s we obtain MC consensus 

functions Γ(g,X) (i.e. Γ(g,x) for all x ∈ X) (eqn. 9) and their partial order can be determined, 

following eqn. 1 with IB the set of consensus functions. The poset for this one selected s can 

be visualized by a Hasse diagram. Selecting different s-values, say ns-values ∈ [0,1] the two-

dimensional field as shown above becomes a three-dimensional one, where the third dimension 

corresponds to ns s-values (Fig. 3).  
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Table 2. Scheme of the Monte Carlo simulation 

 Weights for indicators 

No of MC-simulation  q1 q2 … qm 

1 g(1)1 g(2)1 … g(m)1 

2 g(1)2 g(2)2 … g(m)2 

… … … … … 

MC g(1)MC g(2)MC … g(m)MC 

 

At a certain mc- and s-value one consensus-function, according to eqn. 9 is obtained leading to 

a weak order. As MC Monte Carlo simulations are performed, MC different consensus 

functions are resulting. As only the ranking due to each single consensus function is important 

and as each single consensus function must preserve eqn. 1, based on IB0, eqn. 11 holds. 

Therefore one one and only one enriched partial order with a correspondingly reduced TUCIB
 

is obtained.   

 

Consequently, for all I(s,j) (j=1,…,m), the number of incomparabilities TUCIB can be obtained 

as a function of s. To avoid cumbersome notation we call this enumeration of incomparabilities 

based on a systematic evolution, simply U(s-cone) and U(s-cone, s) when the dependence on s 

is to be indicated. 

 

Figure 3. Cube, representing the evolution by s (ns discrete values assumed), MC Monte Carlo 
simulations and m original indicators due to IB0. A slice of the cube for a given s 
corresponds to a set of MC consensus functions and this set generates one poset. 

 

s-values mc 

m columns for each s-value 

MC  
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2.5 Software 

The calculations are performed, using the software package PyHasse [15], from which a 

simplified version is available in the Internet, see www.pyhasse.org. The main module, based 

on user defined intervals is HDweightMC8_7. Some more modules were developed, which 

allow experimenting with starting weights, which however are still far away from a status, 

where they can be offered to users. Under these preliminary modules the most important 

module is “UMC_vs_Us_4” (version 3), which is specifically developed corresponding to the 

s-cone concept. It delivers among others the incomparabilities at each s based on the Monte 

Carlo simulations.  

 

In Fig. 4 the main new PyHasse module is shown  

 

 

 

 

 

 

 

                    

                 

 

 

 

 

 

 

 

 

 

Figure 4. Top: User - interface of HDweightMC8_7. Below: The mask to enter the weight intervals  
(m = 2) and MC 
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HDweightMC8_7 allows any selection of weight intervals, not only those following the s-cone 

concept. The selection of weight intervals can be done after pressing the button “weight 

intervals”. This causes mask, which is shown in Fig. 4 at the bottom. After inserting the values 

for the intervals of each weight g(j), j = 1,..,m a selection of MC has to be done.  After 

performing the Monte Carlo simulations the Hasse diagram based on the set of consensus 

functions can be obtained (Button: “HD due to weight intervals”). The five buttons below are 

not directly related to the s-cone concept.  

 

3 Results 

3.1 Incomparabilities evolving along the s-cone in general 

Corresponding to the setting (eqn.’s 14 - 16) the variety of the consensus -functions is 

enhanced, when s is increasing. The stability of the result should be checked by different runs 

with different MC) with s ∈ [0,1]. To take into account that different incomparabilities are 

obtained when s is varying, we write U(s-cone, s). As any new indicator will not reduce the 

number of incomparabilities, we can immediately deduce eqn. 18, which is nothing else than 

eqn. 11, but now written in terms of the s-cone concept: 

 

U(s-cone, s(1)) ≤ U(s-cone, s(2)) with s(1) ≤ s(2) in [0,1]     (18) 

 

U(s-cone, 0) = 0          (19) 

 

and theoretically: 

 

U(s-cone, 1) = U0           (20)  

 

If s = 1, the Monte Carlo simulation should reproduce the poset, based on X and IB0, i.e.U(s-

cone,1) should be TUCIB0 = U0. In practice however not all consensus functions will be 

obtained, even with large MC because the set of linear extensions of a poset defined by eqn. 1 

is not represented by all linear functions due to eqn. 9.  

  

-781-



3.2 Uncertainty volume 

An “uncertainty volume” V is defined as the length ≠ 0 of each interval, according to s and the 

selected weight component: 

|),((|:),(
1

∏
=

=
m

j

jsIsmV          (21) 

In [7] U(s-cone) was already introduced and it was hypothesized that the functional form would 

be as follows: 

 

U(V(m,s)) = U0  ·  V(m,s)(1/m)         (22) 

 

Eqn. 22 can be analyzed in two manners: 

1) As V(m,s) is by eqn. 21 a function of s (and of m if different data matrices with different 

number of indicators are explicitly accounted for) U becomes a function of s (and m). The 

uncertainty intervals are increasing with increasing s (eqn.’s 14 - 16) and V(m.s) is a fixed 

quantity for each m and s. 

2) A given uncertainty volume is not necessarily calculated assuming the systematic evolution 

of I(s,j) due to eqn. 15. Any interval for the weights g(j),  j ∈ J, can be used to calculate an 

uncertainty volume. The index set J encompasses those indices j, for which the interval I(j) has 

a length ≠ 0. Then instead of eqn. 22 another equation could be written: 

 

U(V) = U0 * V(1/m)          (23) 

 

where V is calculated by: 

∏
∈

=
Jj

jIV ),(            (24) 

 

In [7] eqn. 23 was applied on the pesticide data (Table 1) to discuss several specified volumes 

of weight’s uncertainty. Whether or not eqn. 23 is a good representation of TUCIB can be 

disclosed, using the data in Table 1 and calculating arbitrarily uncertainty volumes by applying 

eqn. 24  (Fig. 5). Along the ordinate the values of U are shown; the abscissa corresponds to the 

values of uncertainty volumes (vide supra).   
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The points are due to some arbitrarily selected weight intervals. The maximal and minimal 

values of TUCIB, called Urealmin and Urealmax,  according to each V are shown too.  The 

result seems to confirm that the use of a power law for U(V) is justified.  

 

 

 

 

 

 

 

 

 

 

Figure 5. The drawing is based on data of Table 1. The uncertainty volumes are determined by 
arbitrarily selected intervals I(,j) (eqn. 24) and U(V) is calculated (broken line). More 
details: see text. 

 

3.3 U(V(m,s)) as a consequence of the s-cone concept 

It is reasonable to consider U within the systematic evolution as a linear function of s, which 

we call U(s). Regarding eqn. 19 and 20 it is reasonable to write 

 

U(s)  = s · U0           (25). 

 

U0 is (implicitly a function of m, but is suppressed here). Applying the eqn’s 13 to 16 it is a 

simple calculation to show that the length of an interval I(s,j) depends on s as follows: 

 

|I(s,j )|  =  s           (26) 

 

By eqn. 26 the uncertainty volume V(m,s) can be rewritten as follows: 

 

 V(m,s) = sm           (27) 

 

and by eqn. 25 the power law U(s) = V(m,s)(1/m) · U0 results.  

0                    0.5                    1.0                  1.5 
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So far, an approximation for U(s-cone, s) can be established as a function of s via eqn. 25.  

Nevertheless, it should be clear, that eqn. 25, or the power law in terms of an uncertainty 

volume (eqn. 23) cannot completely represent the truth, because the values q(j,x) influence the 

enrichment process due to the consensus function (eqn. 9) as well. Thus, whether or not the set 

of consensus functions indicate for instance x < y or x > y, must depend on the data values of 

x and y. Taking this into account there are three consequences: 

 

1. TUCIB will in general deviate from U(s), exemplified by Fig. 5, because the selection 

of weight intervals does not follow the systematic evolution  

2. Just because U(s) depends only on U0 and s, the role of the indicator values (the real 

data) along the evolution by s is suppressed.  

3. Given a certain value for s (and m) and MC Monte Carlo simulations one obtains exactly 

one poset and a value for TUCIB  = U(s-cone, s) can be directly calculated. Even then 

U(s) (eqn. 23) will not necessarily coincide with U(s-cone, s). Calculations are 

performed with the preliminary module “UMC_vs_Us” (see also section 2.5), where 

the values of U(s) are rendered as “Us” and the values of U(s-cone, s) as “UtotMC.  . 

 

3.4 U(s) compared with U(s-cone, s) 

As can be expected, the comparison of U(s-cone, s) and U(s) is only possible by performing 

real calculations, i.e. checking for each selected s the resulting poset and by determining its 

TUCIB (eqn’s 2 and 3).  

 

 

 

 

 

 

 

 

Figure 6. The number of indicators is 3 (m = 3); U(s) (broken line) deviates from U(s-cone, s), the 
abscissa corresponds to 10*s. Number of MC-simulations: 10 000 
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The result, supposing equal start weights (i.e. g(D) = (1/3, 1/3, 1/3)), corresponding to the three 

indicators P, B and T) is shown in Fig. 6. 

 

By further trials, i.e. further data sets it can be verified that the deviations are possible in both 

directions, i.e. U(s) cannot considered as an upper or lower limit of U(s-cone, s). This can be 

clearly demonstrated (Fig. 7), when only P and T of Table 1 are used (equal starting weights 

assumed, i.e. g(D) = (0.5, 0.5)): 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Number of indicators is 2 (m = 2); demonstration that U(s-cone, s) can deviate from U(s) in 
both directions. Ordinate: the incomparabilities, based on different approaches, abscissa: 
10*s 

 

3.4 Examples, referring to the 12 chemicals  

In order to demonstrate the applicability of the new PyHasse module, we studied the 12 

obsolete pesticides shown in Table 1.  

 

As exemplary cases we selected two tuples of starting weights: A: g(D) = (0.333,0.333,0.333) 

and B:  g(D) = (0.2, 0.6,0.2), respectively.  The Hasse diagrams of these four cases are shown 

in Figure 8. 

 

In case A no indicator of IB0 = {P, B, T} is preferred, whereas in case B there is a preference 

of indicator B, biodegradation, assuming that this indicator is somewhat more important. It is 

immediately seen that even with these uncertainties in the weighting, DDT and CHL are stable 
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located as maximal elements. Further, in all four cases LIN < PCN < PCP < MEC < DIE., The 

remaining  five chemicals are then differently arranged according to the selected g(D) and the 

uncertainty level, described by parameter s. It should be clear that any other Monte Carlo 

simulation will lead to slightly varied results. The main message is the reduction of TUCIB0 to 

values, which allow a better analysis of the Hasse diagrams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Hasse diagrams for four case with uncertainties, s = 0.2 and 0.4, respectively 

 

4 Discussion 

Here we deduce a phenomenological view from figures such as Fig. 6 or 7, where U(s-cone, s) 

are to be compared with U(s) as functions of the uncertainty parameter s: 
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a. Parts where U(s) and U(s-cone,s) approximately coincide: normal behavior 

b. deviations where U(s-cone,s) < U(s): inertia of the posets generated by consensus 

functions against variability of weights. We interpret this as a generalized stability 

c. deviations where U(s-cone,s) > U(s): there are weights, for which the selection of 

intervals will have severe influence on the posets, based on the different sets of 

consensus functions. 

 

Clearly a real application of the three behaviors needs a definition as to how far a deviation of 

U(s) from U(s-cone, s) can nevertheless be accepted as an approximation. This and other 

aspects open a wide field for future tasks: 

 

Many consequences of the approach shown in this paper are still to be investigated in more 

detail (for example defining appropriate limits for considering U(s) as an approximation of 

U(s-cone, s), however still more conceptual extensions are necessary and should be solved. 

The following list gives an idea, what is seen as next tasks: 

 

1. The weakest point in this paper is for sure the problem of the characterization of the 

Monte Carlo simulations. Usually Monte Carlo simulations lead to distributions, which 

can be explored in statistical terms. Here, given a certain s, MC consensus functions are 

obtained, describing the values of n objects in terms of Γ(g,x) x ∈ X (eqn. 9). So in 

principle for each object MC values of Γ(g,x)  are available. This could be a basis for a 

object-related distribution; however this distribution is not of primary interest, because 

the set of all relations x < y) is to be studied, which needs the simultaneous 

consideration of all consensus functions. Even if a probability can be calculated as to 

how far x < y is found, there is no direct access to TUCIB. This is a problem which needs 

much more conceptual work in the future. 

2. A similar problem is to find out how many Monte Carlo simulations are needed in terms 

of number of objects and indicators. Up to now only a trial-and-error-procedure is 

possible. 

3. In case m = |IB0| = 2 crucial weights g(c,j) can be found and an analysis could be 

performed, similar to that performed in [16], using the theoretical framework, outlined 

already in [6]. However, as the need of going beyond the partial order based on original 
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indicators, i.e., “endowing the skeleton of the original poset with flesh” [5] is most 

urgent, when m > 2, the question arises as to how far a concept can be developed to 

predict deviations of U(s-cone, s) from U(s) in terms of the original indicator values 

q(j,x). 

4. A possible answer could be a projection in to spaces, defined by indicator pairs (similar 

to [16]). Then, however, another question arises: How to project a set of starting weights 

in case m>2 into pairs of starting weights in two-dimensional approaches? 

5. Up to now every weight obeys the evolution of the s-cone. What happens however, if 

the knowledge about weights is different for different indicators q(j) ∈ IB0. Within the 

s-cone concept this would require to discuss not one parameter s but being specific for 

each single indicator q(j). 

6. The decision, which chemical is hazardous for the environment seems to be facilitated 

by the new approach, because now the knowledge of decision makers can be used to 

enrich the partial order. The consequence is that less incomparabilities appear, so that 

hazardous chemicals can be more easily inspected. 

 

Appendix. Symbols used throughout the paper 

Γ Consensus-function 

Γ( ) Consensus function without specifying the object 

Γ( 1),  Γ(2 ) Several consensus functions 

X Set of objects, n= |X| 

Γ(g,X) Consensus function with a certain weight tuple g and with values 

for all x ∈X 

Γ(g,x) Value of a consensus function with a certain weight tuple g for an 

object x ∈X. 

a(∗,j), b(∗,j) Coefficients of a linear evolution of s referring to the jth indicator 

q(j) ∈ IB0. ∗ either upper or lower limit (UL or LL) of the 

interval.  

g Weights, not specified 

g(∗,s,j) Weight of the jth indicator considered as function of s. ∗ either 

upper “UL” or lower limit, “LL”,of the interval 
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g(j) jth weight , j=1,2,…,m, not specified 

g(D) Tuple of starting weights (may be given by a decision maker) 

g(D,j) jth weight given by e.g. a decision maker, component of g(D). 

I(s,j) Interval for the weight of the jth indicator, depending on s 

m Number of indicators in the original data matrix (=|IB0|) 

n = |X| 

MC Number of Monte-Carlo-simulations 

IB information basis. Set of indicators or of consensus functions 

IB0 information basis, specifically referring to the indicators q(j) of 

the original data matrix 

q(j) jth indicator 

q(j,x) Value of q(j) for object x  

s Uncertainty evolution parameter 

s(∗,j) =a(∗,j)*s + b(∗,j), ∗ either upper or lower limit of the interval 

I(s,j). 

s-cone Evolution of the intervals for the weights as function of s, 

unspecified 

s-cone(∗,j) Evolution of the interval or the weight of the jth indicator. ∗ either 

upper or lower limit of the interval  

U set of pairs x||y, not specified, x,y ∈ X  

U(IB) set of pairs x || y , x,y ∈ X, stressing now the dependence on IB. 

TUCIB Number of incomparabilities obtained by constructing a poset, 

based on IB 

TUCIB0 Number of incomparabilities, found in the original poset, based 

on IB0. 

TCIB Number of comparabilities for a certain IB. 

U0 = TUCIB0, IB0 the set of the original indicators taken from the 

data matrix  

U(s-cone) =TUCIB but now related to a systematic evolution of intervals by 

the s-cones (see below) 
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U(s-cone,s) Like U(s-cone) but now the dependence on s is specifically 

indicated 

U(s) Number of incomparabilities as a function of s, calculating after 

s*U0 

U(V) U as a function of the uncertainty volume V, the intervals will not 

necessarily selected according to the s-cone-concept  

V(m,s) ∏
=

m

j

jsI
1

|),((| , only intervals whose length is unequal 0, following 

the s.- cone concept 

V 
∏

=Jj

jI |)((| , J the set of indices with the length of intervals for the 

weights unequal 0. 
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