
Rule Composition in Graph Transformation
Models of Chemical Reactions

Jakob L. Andersen1−4, Christoph Flamm4,10, Daniel Merkle2,∗,
Peter F. Stadler4−9

1Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
2Department of Mathematics and Computer Science, University of Southern Denmark,

Odense M DK-5230, Denmark
3Research group Bioinformatics and Computational Biology, Faculty of Computer

Science, University of Vienna, Wien A-1090, Austria
4Institute for Theoretical Chemistry, University of Vienna, Wien A-1090, Austria

5Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center
for Bioinformatics, and German Centre for Integrative Biodiversity Research (iDiv)
Halle-Jena-Leipzig and Competence Center for Scalable Data Services and Solutions
Dresden-Leipzig and Leipzig Research Center for Civilization Diseases, University of

Leipzig, Leipzig D-04107, Germany
6Max Planck Institute for Mathematics in the Sciences, Leipzig D-04103, Germany

7Fraunhofer Institute for Cell Therapy and Immunology, Leipzig D-04103, Germany
8Center for non-coding RNA in Technology and Health, University of Copenhagen,

Frederiksberg C DK-1870, Denmark
9Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe NM 87501, USA

10Research Network Chemistry Meets Microbiology, University of Vienna, Wien A-1090,
Austria

∗ daniel@imada.sdu.dk

(Received May 29, 2017)
Abstract

Graph transformation form a natural model for chemical reaction systems and
provide a sufficient level of detail to track individual atoms. Among alternative
graph transformation formalisms the Double Pushout approach, which is firmly
grounded in category theory, is particularly well-suited as a model of chemistry.
We explore here the formal foundations of defining composition of transformation
rules using ideas from concurrency theory. In addition of a generic construction we
consider several special cases that each have an intuitive chemical interpretation. We

This work is licensed under a Creative Commons Attribution 4.0 International License.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 80 (2018) 661-704

 ISSN 0340 - 6253

illustrate the usefulness of these specialised operations by automatically calculating
coarse-grained transformation rules for complete chemical pathways, that preserve
the traces of atoms through the pathways. This type of computation has direct
practical relevance for the analysis and design of isotope labelling experiments.

1 Introduction
Chemical reactions are transformations of one set of chemical substances into another

that leave the atoms unchanged but change chemical bonds between them. At the level

of abstraction that is most commonly employed in the field, the salient information about

a chemical reaction is expressed as a transformation of structural formulas. In math-

ematical terms, these are labelled graphs. Chemical reactions are not at all arbitrary

rearrangements of atoms. Instead, they can be classified into a limited number of re-

action mechanisms that differ in the patterns of chemical bonds that are rearranged,

known as imaginary transition states [1]. The so-called “named reactions” specify the

most important classes of reactions in organic chemistry.

All chemical reactions can be understood as a sequence of one or more elementary

reactions. These occur in a single step, with a single transition state, and kinetically

follow the law of mass action. The pattern of broken and newly formed bonds forms

a simple cycle for elementary reactions. Non-elementary (multi-step) reactions thus are

simply a juxtaposition of elementary reactions.

Classes of chemical reactions are determined not only by their associated imaginary

transition states. Typically they are restricted to particular classes of substances that are

determined by functional groups in the vicinity of the reaction centre. Taken together

this implies that chemical reactions can be understood as rule-based transformations

of molecular graphs. The reaction rules combine two ingredients: a specific pattern of

bond changes determined by the imaginary transition state, and a precondition on the

structure(s) of substrate molecules. The latter can be expressed as the requirement for

a particular pattern/subgraph to be present in the substrates. From the mathematical

perspective, this suggests to model chemical reactions by means of graph transformations

acting on the graph representations of molecules, i.e., their structural formulae [2].

Interestingly, the intuitive view of chemistry as a transformation system has inspired

models of concurrent computation already in 1990s; a prime example is the “Chemical

Abstract Machine” [3]. Around the same time models of artificial chemistries [4] have

-662-

appeared that use rewriting-style calculi borrowed from theoretical computer science.

Abstract rule-based systems have also been used to formalise an essentially computa-

tional view of biological processes [5, 6]. Kappa [7] and BioNetGen [8] were designed to

model the behaviour of mixtures of “agents”, typically interacting proteins. “Membrane

computation” [9] and brane calculus [10] focus on compartmentalisation and the relative

placement of cellular components. The computational aspects of epigenetics have been

abstracted to a term-rewriting-like model [11]. For reviews see also [12, 13].

Concrete models of chemistry in terms of graph transformation systems have ap-
peared only after the turn of the millennium [2], and their systematic investigation is

even younger. Labelled graphs and their transformations provide a unique level of de-

scription for chemistry. It not only largely matches the chemist’s intuition but also makes

it easy and transparent to incorporate fundamental properties of chemical reactions, such

as the conservation of mass, atom types, and charge. Several mathematically distinct

constructions of graph transformation systems have been explored in the computer sci-

ence literature, see e.g. [14] for a general overview and [15, 16] for details on algebraic

graph transformations. We advocate the double pushout (DPO) framework as particu-
larly suitable for modelling chemistry because it guarantees that reactions are reversible

in principle and ensures that atom maps, i.e., the bijections between atoms in the educts

and products, are always well defined. This is a key advantage in application to large

reaction networks because it makes it possible to follow individual atoms through complex

reaction networks. In contrast to network-centric approaches, the representation of chem-

ical reactions based on transformation rules is therefore sufficiently detailed to support

the analysis of isotope-label experiments [17, 18]. In particular, the consistent handling

of atom maps is indispensable when model reduction techniques are to be applied to

genome-scale metabolic network reconstructions [19, 20].

A key feature in rule-based calculi is the concept of rule composition. It allows, in

particular, different levels of coarse graining in the description of a system’s trajectories by

contracting transitions between states in a principled manner, explored in some detail for

Kappa in [21]. Chemical reactions can be readily composed to “overall reactions” such as

the net transformation of metabolic pathways. This observation is used implicitly in flux

balance analysis at the level of the stoichiometric matrix. Recently, [22] considered the

composition of concrete chemical reactions, i.e., transformations of complete molecules,

-663-

as a means of reconstructing metabolic pathways. Here we take the complementary point

of view: instead of asking for concrete overall reactions, we focus on the composition of

the underlying reaction mechanisms themselves [23].

The purpose of this contribution is to provide a comprehensive formal exposition of

rule composition in the DPO graph transformation framework applied to chemical reaction

rules and its practical implementation in the software package MØD. Many examples, and

a much less formal presentation of the ideas can be found in [23, 24]. Here we add a more

detailed description of the underlying category theory as well as an exposition of the core

algorithm.

We start with a brief introduction of DPO graph transformation, and proceed to

discussing the concept of rule composition in depth, Sec. 3, in the general setting of DPO

graph transformation. The specialisation of the formalism to the setting of chemistry is
the topic of Sec. 4. In Sec. 5 we discuss considerations for a practical implementation of

rules and rule composition. Finally we present two application examples in depth, and

conclude with a brief overview of open questions and ongoing developments in both the

underlying theory and the practical usage of rule composition.

2 The Double Pushout Approach to Graph Trans-
formation

2.1 Introduction to Category Theory
Several concepts from category theory, and specifically pertaining to the category of
graphs, are needed to formally define the DPO approach. The fundamental notion is
that of a morphism, that is, a binary relation between graphs. Here we focus on undirec-
ted graphs without loops or parallel edges. For simplicitly of presentation we ignore here
the labels vertices and edges, which in the context of chemistry correspond to atom and
bond types, respectively. All definitions can trivially be extended to graphs with vertex
and edge labels. Let G = (VG, EG) and H = (VH , EH) be two graphs.

Definition 2.1 (Graph Morphisms). A graph (homo)morphism m : G→ H is a structure-
preserving mapping of vertices and edges. That is, if e = (u, v) ∈ EG then m(e) =
(m(u),m(v)) ∈ EH . Furthermore (see also Fig. 1)

• m is a monomorphism if it is injective: ∀u, v ∈ VG, u 6= v ⇒ m(u) 6= m(v). When
a monomorphism exists we may simply write it as G ⊆ H or in the reverse order

-664-

H ⊇ G.

• m is a subgraph isomorphism if m is a monomorphism and (u, v) ∈ EG ⇔ (m(u),
m(v)) ∈ EH .

• m is an isomorphism if it is a subgraph isomorphism, and is a bijection of the
vertices. When an isomorphism exists we say G and H are isomorphic and write it
as G ∼= H.

G H

(a) A morphism.

G H

(b) A monomorphism.
G H

(c) A subgraph isomorphism.

G H

(d) An isomorphism.

Figure 1. Examples of the graph morphisms from Def. 2.1, visualised as explicit
vertex mappings in red. a a morphism which is not a monomorphism,
b a monomorphism which is not a subgraph isomorphism, c a subgraph
isomorphism which is not an isomorphism, and d an isomorphism.

Morphisms form the basis of categories. Here we only state the definitions and aim
at an intuitive understanding of the constructions in categories of graphs. For the full
details we refer to [15, Appendix A].

Definition 2.2 (Category, see [15, Definition A.1]). A category C consists of

• a class of objects Ob(C),

• a class of morphisms Mor(C) where each morphism f : A → B maps A ∈ Ob(C)
to B ∈ Ob(C), and

• a morphism composition operator ◦ : Mor(C)×Mor(C)→Mor(C)

such that

• the class of morphisms is closed under composition: for each pair of morphism
f : A→ B, g : B → C there is a morphism g ◦ f : A→ B,

• there is an identity morphism idA : A→ A for each object A ∈ Ob(C), and

-665-

• morphism composition is associative.

Note that there can be multiple morphisms from one object to another, e.g., if a graph G
matches as a subgraph inH in different ways, then this corresponds to multiple morphisms
mi : G→ H.

In this contribution we focus on categories restricted to monomorphisms, as argued in
Sec. 2.2. In Sec. 4 we further discuss chemically motivated variations, e.g., to incorporate
vertex/edge labels and restrict graphs to be simple.

Concepts in category theory are often illustrated using commutative diagrams, which
are directed graphs where the vertices represent objects and the edges represent morph-
isms. Composition of morphisms can then be thought of as creating a new edge repres-
enting an entire path of morphisms. Given two paths that originate and end at the same
objects, if the composition along each path results in the same morphism, then the two
paths are said to commute. If all such pairs of paths in a diagram commute the diagram
it self is said to commute. For defining graph transformation and composition of rules,
we need three interrelated constructions: pushouts, pullbacks, and pushout complements.

Definition 2.3 (Pushout, see [15, Definition A.17]). Given two morphisms f : A → B

and g : A → C in some category, the morphisms f ′ : C → D and g′ : B → D forms a
pushout of f and g if and only if (see also Fig. 2)

i) g′ ◦ f = f ′ ◦ g, i.e., the square of Fig. 2 commutes, and

ii) for all pairs of morphisms f ′′ : C → D′′, g′′ : B → D′′ with g′′ ◦ f = f ′′ ◦ g, there
exists a unique morphism d′′ : D → D′′ such that f ′′ = d′′ ◦ f ′ and g′′ = d′′ ◦ g′.

The object D is called the pushout object.

A B

C D

D′′

f

g

f ′
g′

d′′

g′′

f ′′

Figure 2. Illustration of the definition of a pushout (Def. 2.3). The pair of morph-
isms f ′, g′ is a pushout of f, g if i) the composition A f−→ B

g′
−→ D com-

mutes with A g−→ C
f ′
−→ D, and ii) for all morphisms f ′′ and g′′ that simil-

arly commute with f and g, respectively, there exists a unique morphism
d′′ that commutes with the other morphisms.

-666-

An interpretation of a pushout for graphs is that the graph D is the union of B and
C with equality specified by common vertices and edges in A.

A B

C D

(a)

A B

C D

D′′

(b)

A B

C D

D′′

(c)

Figure 3. Illustration of a pushout and pushout candidates in the category of un-
directed graphs. a a pushout, which “glues” B and C along A to obtain
the pushout object D. b a pushout candidate which is too large. Two
commuting morphisms D → D′′ can be found: one using the blue map-
ping, and one using the green mapping. c a pushout candidate which is
too small. Unrelated vertices of B and C have been merged, and with a
second pushout candidate D′′ we can not find any commuting morphisms
D → D′′.

In Fig. 3 we show an example of a graph pushout, along with candidates for the pushout
that satisfy the first condition of the definition, but not the second. The candidate D in
Fig. 3b is not a pushout object because it is too large. The extra vertex and edge makes
it possible to find an even larger candidate D′′ and two different morphisms, indicated by
the choice of either the blue or green mapping. The candidate in Fig. 3c is on the other
hand too small, as we have mapped the extra vertex of B and C to the same vertex in D.
When considering a second pushout candidate D′′ we are not able to find any morphism
from D to D′′ such that the diagram commutes.

Suppose we are in the opposite situation of a pushout, i.e., given f ′ and g′, we want
to find suitable morphisms f and g. This dual construction is a pullback:

Definition 2.4 (Pullback, see [15, Definition A.22]). Given two morphisms f ′ : C → D

and g′ : B → D in some category, the morphisms f : A → B and g : A → C form a
pullback of f ′ and g′ if and only if (see also Fig. 4)

i) g′ ◦ f = f ′ ◦ g, i.e., the square of Fig. 4 commutes, and

-667-

ii) for all pairs of morphisms f ′′ : A′′ → B, g′′ : A′′ → C with g′ ◦ f ′′ = f ′ ◦ g′′, there
exists a unique morphism a′′ : A′′ → A such that f ′′ = f ◦ a′′ and g′′ = a′′ ◦ g.

A′′

A B

C D

f

g

f ′
g′

a′′

f ′′

g′′

Figure 4. Illustration of the definition of a pullback (Def. 2.4), the dual of a
pushout. The pair of morphisms f, g is a pullback of f ′, g′ if i) the morph-
isms commute, and ii) for all morphisms f ′′, g′′ that commute with f, g,
there exists a unique morphism a′′ that commutes with the rest.

For categories of graphs we can interpret a pullback as the construction of the common
subgraph A of B and C as determined by the embedding of B and C in D. In Fig. 5 we
have illustrated a graph pullback, and a candidate that does not fulfil both criteria.

A B

C D

(a)

A B

C D

(b)

A B

C
D

A′′

(c)

Figure 5. Illustration of two pullbacks and a pullback candidate in the category
of undirected graphs. a a pullback, which intersects B with C using D
to obtain the pullback object A. a a pullback, where the corresponding
pushout object of C ← A → B does not yield the graph D we started
from. c a pullback candidate which is too small. There is no morphism
A′′ → A due to the edge in A′′. However, even when ignoring this edge
problem the resulting morphism would not commute with the remaining
morphisms.

The third variation of the situation we need is the pushout complement, where f and
g′ are given, and we wish to find g and f ′.

-668-

Definition 2.5 (Pushout Complement, see [15, Definition A.20]). Given two morphisms
f : A → B and g′ : B → D in some category, the morphisms g : A → C and f ′ : C → D

forms the pushout complement of f and g′ if and only if f ′ and g′ is the pushout of f, g.

2.2 Transformation Rules and Derivations

A graph transformation rule in the DPO formalism is a span p = (L l←− K
r−→ R). The

left-hand graph L plays the role of a precondition for the application of the rule, while
the right-hand graph R is a post-condition. Their relation is specified by the context
graph of the rule K, also called the gluing graph, together with a monomorphism l and
a general graph morphism r. Transformation rules are “symmetric” in the sense that
there is no particular difference between the left and right sides, other than the names
we have given to them. Thus we can immediately define the inverse transformation rule
p−1 = (R r←− K

l−→ L). This is a quite useful property for the modelling of chemistry, where
reactions are necessarily invertible in principle, i.e., as long as energetic considerations are
disregarded. We therefore restrict r to be a monomorphism as well. If the morphisms are
unimportant or clear from the context we may write a rule simply as p = (L,K,R).

The transformation of a graph G using p proceeds in the following manner (see Fig. 6).

1. Find a match morphism m : L→ G, if it exists.

2. Construct D as the pushout complement of l,m, if it exists.

3. Construct H as the pushout object of d, r, if it exists.

L K R

G D H

l r

m d m′

l′ r′

Figure 6. The diagram for a direct derivation G
p,m==⇒ H in the Double Pushout

formalism of G to H using the rule p and the matching morphism m.

Such a transformation is called a direct derivation of H from G, using the rule p and the
matching morphism m. As a shorthand we write a it as G p,m==⇒ H, or as either G p=⇒ H

or G ⇒ H if the match morphism and rule are unimportant. Assuming m is found, the
existence of D can be characterised by what is called the gluing condition: G, p, and m

-669-

satisfy the gluing condition if both the dangling condition and identification condition are
satisfied.

dangling condition: there are no edges in EG\m(EL) incident to a vertex in
m(VL\l(VK)). That is, if p specifies the deletion of a vertex, it can only be ap-
plied if it also specifies the deletion of all the edges incident to the vertex.

identification condition: there are no distinct vertices u, v ∈ VL with m(u) = m(v),
u ∈ l(VK), v 6∈ l(VK), and similarly for distinct edges of EL. That is, if p specifies
the deletion of a vertex or edge, but the preservation of another vertex or edge, then
the matching morphism m may not identify those vertices or edges with each other.

A proof for the equivalence of the existence of the graph D and the gluing condition is
given in [15, Fact 3.11]. Additionally, one can prove that whenever D exists, it is unique
up to isomorphism.

We additionally restrict the matching morphism m to be a monomorphism, as atoms
could otherwise be merged when matched by a rule. Note that with this restriction the
identification condition is always fulfilled.

In Sec. 4 we describe additional restrictions and variations relevant for modelling of
chemistry. This includes the addition of labels on vertices and edges, to describe atom
and bond types. For illustrative purposes we already use such labels in examples in the
next section. An example is shown in Fig. 7, where each graph is labelled on vertices with
an atom type.

N

C

C

C

O-

H

H

#

- =

-

-

-

(a)
N C CH

CH O−

(b)

Figure 7. Example of the graph depiction scheme used in this contribution. a a
labelled graph representing a molecule, depicted explicitly with labels.
b the same graph visualised in style familiar from chemistry. Vertex
labels encode atom types, including charges, while edge labels depict
bond types. Double and triple bonds are thus encoded as one edge each,
but visualised using parallel lines. In the following sections we primarily
use the visualisation style from b.

The edges are similarly labelled with a bond type, though this is depicted with different

-670-

edge styles instead of with explicit labels. A single bond is shown as a single line, a double
bond is shown as two parallel lines, and a triple bond as three parallel lines.

3 Composition of Transformation Rules
For ordinary mathematical functions with multiple arguments there is the concept of
partial application [25]. For example, let f(x, y) = xy then we can define a new function
f ′(x) = x2 by partially applying f to the number 2 in the second position, i.e., f ′(x) :=
f(x, 2). A specialised form of partial application, called currying, is for example an integral
part of the programming language Haskell. With the chemical view on DPO rules, where
they are applied not just to a single graph but to a multiset of connected graphs, we can
view a rule p = (L← K → R) with k connected components in L as a function of up to k
unordered arguments. Similar to partial function application, we can then imagine that a
transformation rule can be partially applied to a graph, with the result being a new rule,
with fewer connected components in its left-hand graph. For example, the rule depicted
in Fig. 8b have two connected components in the left-hand graph, and it can therefore be
applied to either an enol and a molecule with a carbonyl group, or a single molecule with
both features.

C

O H

H

(a) Formaldehyde

C

C

O

H

O

C

L

C

C

O

H

O

C

K

C

C

O

H

O

C

R

(b) Aldol addition

C

C

O

H

L

C

C

O

H

K

C

O

H

H
C

C

O

H

R

(c) Aldol addition with formaldehyde
bound

Figure 8. An example of partial application of a graph transformation rule. Form-
aldehyde a can be bound to one of the components of the left-hand
graph of aldol addition b. The resulting rule c represents the addition
of formaldehyde to an enol.

We can now derive a new rule, Fig. 8c, where a formaldehyde molecule have been

-671-

bound to one of the components of the original rule. Suppose we bind another graph to
the new rule. The last component would then be used and the resulting rule have the
form (∅ ← ∅ → H). Such a rule is essentially equivalent to a constant function, implying
that a DPO derivation can be calculated by iterated graph binding.

A more general concept than partial application is function composition. Consider
two DPO rules p1 = (L1 ← K1 → R1) and p2 = (L2 ← K2 → R2) and suppose we have a
monomorphism from L2 to R1. Then if we first have a derivation G1

p1=⇒ G2, then we for
sure can find a match of L2 in G2 and potentially a derivation G2

p2=⇒ G3. If we can define
a composition p2 ◦ p1 the two derivations can be combined into G1

p2◦p1===⇒ G3.
The concept of rule composition is in the area of graph transformation related to

both D-concurrency [26] and E-concurrency [15, 27]. In this section we first describe the
most general form of composition, similar to D-concurrency, and then several special cases
with relevance to the modelling of chemistry. Secondly we describe how enumeration of
compositions can be implemented in practice.

3.1 Classes of Composition
In general, the composition of two rules pi = (Li

li←− Ki
ri−→ Ri) for i = 1, 2, depends on a

common subgraph of R1 and L2. Formally (see also [26, Section 6.2]) we say that p1 and
p2 are composed using a graph D with morphisms d1 : D → R1, and d2 : D → L2, and
write p = p1 •D p2 as shorthand for the composed rule, if it exists. Note that the order of
the operands is the reverse compared to the usual composition operator ◦. The composed
rule p corresponds to first applying p1 and then p2.

D

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

u1 v1 e1 e2 v2 u2

w1 w2l r

l1

s1

r1

t1

l2

s2

r2

t2

Figure 9. Commutative diagram for general rule composition [26, Section 6.2]. The
two rules pi = (Li

li←− Ki
ri−→ Ri) for i = 1, 2 are composed using the

common graph D and the morphisms d1 and d2. The resulting rule is
p = p1 •D p2 = (L l←− K r−→ R) with l = s1 ◦ w1 and r = t2 ◦ w2.

-672-

The composed rule exists if and only if the diagram in Fig. 9 exists with the squares
(1), (2), (2’), (3), (3’) all being pushouts, and (4) being a pullback. We then have
p = p1 •D p2 = (L l←− K

r−→ R) with l = s1 ◦ w1 and r = t2 ◦ w2 as the resulting
composition. Algorithmically we can describe the construction of p as follows:

1. Construct E as the pushout object of (1).

2. Construct C1 and C2 as the pushout complement objects of respectively (2) and
(2’).

3. Construct L and R as the pushout objects of respectively (3) and (3’).

4. Construct K as the pullback object of (4).

If any of the constituent constructions are undefined, then the composition as whole is
not defined.

In the following sections we describe simplified cases of composition for specific choices
of the common subgraph D. These play an important role in applications to chemical
systems and can be handled more efficiently in practical implementations.

3.1.1 Parallel Composition

For D being the empty graph we can always compose the rules, and obtain a rule which
combines the effect of p1 and p2, i.e., p = (L1 ∪ L2

l1∪l2←−−− K1 ∪ K2
r1∪r2−−−→ R1 ∪ R2).

Intuitively we can see this using the diagram in Fig. 9, where D = ∅ means that pushout
(1) degenerates to a disjoint union, i.e., E = R1∪L2. The image of e1 is thus disjoint from
the copy of L2, and the completion of pushouts (2) and (3) then propagates L2 into C1

and L without modification. Symmetrically R1 is propagated into R. In short we write
this merging of two rules as p = p1 •∅ p2 and visualise it as in Fig. 10.

L1 R1

L2 R2

p1

p2
L ∼= L1 ∪ L2 R ∼= R1 ∪R2

p

Figure 10. Composition p = p1 •∅ p2 with an empty common subgraph, giving a
composed rule which models the parallel transformation using p1 and
p2.

-673-

3.1.2 Full Composition

When we see DPO rules as a kind of abstract functions where the left- and right-side
graphs are the pre- and postconditions, respectively, we can look at the case where the
precondition of p2 is fulfilled completely by the postcondition of p1, as illustrated in
Fig. 11a.

L1 R1 L2 R2
p1 p2

L ∼= L1 R R2
p

(a) Abstract depiction

D

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

(1)

(2) (2’)(3) (3’)

(4)

d1

e2 v2 u2

w1 w2l r

d2

u1 v1 e1

l1

s1

r1

t1

l2

s2

r2

t2

(b) Specialisation of the composition diagram

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

p1

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

C

C p2

C
C

C
C

C

C

CH3
C

CH2

CH
CH2

CH

CH
C
H2

CH2

CH2
C
H2

p

CH3
C

C
H2

CH
C
H2

CH

CH
C
H2

CH2

CH2
C
H2

(c) Chemical example

Figure 11. Full composition p = p1 •⊇ p2 where D is a copy of L2 and d2 is an
isomorphism. a Abstract depiction; L2 is isomorphic to a subgraph
of R1. b Specialised commutative diagram for full composition, where
double-lines represent isomorphisms. As d2 is an isomorphism so will e1,
v1 and u1 be. c Chemical example; p1 = (G← G→ G) is the identity
rule for a graph G encoding the educts cyclohexene and isoprene. The
second rule, p2, is the transformation rule for the Diels-Alder reaction.
The composed rule therefore encodes the overall rule of the Diels-Alder
reaction on the input molecules. The context graphs and D are omitted
from the drawings for simplicity, though the embedding of the common
graph D in R1 and L2 is indicated by the red dashed lines.

We call this special case full composition and formally specify it as when D ∼= L2, d2

-674-

= idL2 and d1 being a monomorphism. The effect of d2 being the identity morphism, and
thereby an isomorphism, is illustrated in Fig. 11b. Because (1) is a pushout we must have
e1 being an isomorphism, which in turn makes both v1 and u1 isomorphisms as well.

A chemical example of full composition is shown in Fig. 11c, where p1 additionally is
a special identity rule that requires a specific graph and does not change it. The effect
of this choice of p1 is discussed in Sec. 3.2. For full composition we note that due to the
complete embedding of L2 in R1 we have L ∼= L1, meaning the resulting rule have the
same precondition as p1. As shorthand we may write p1 •⊇ p2 to denote an arbitrary full
composition or the enumeration of all such compositions, depending on the context.

We can additionally define the symmetric kind of full composition, p1 •⊆ p2 where d1

is an isomorphism and d2 a monomorphism. Further we have the special case p1 •∼= p2

where both d1 and d2 are isomorphisms. However, we reserve the term full composition

for p1 •⊇ p2 which particularly is useful for a method for calculating atom traces.

3.1.3 Partial Composition

For chemical graph transformation we have the perspective that graphs can be interpreted
as multisets of their connected components, and if the rule p2 models the merging of two
molecules then L2 will have two connected components. In a full composition we had
both of those components embedded in R1, but we can generalise to the case where a
subset of the components are embedded in R1, as visualised in Fig. 12a.

Formally we can describe this type of composition by requiring L2 to be the disjoint
union of two graphs L′2 and L′′2, and letting D ∼= L′2. This is illustrated in Fig. 12b, where
we denote the disjoint union by a pushout from the empty graph. As for full composition
we require d1 to be a monomorphism. Note that this specification generalises both parallel
and full composition, but we however refer to parallel composition explicitly and do not
include it in partial composition, i.e., we require D 6∼= ∅. As shorthand we write p1 •c⊇ p2

for an arbitrary partial composition, or the enumeration of them, due to the splitting of
L2 into connected components and requiring R1 ⊇ D.

Fig. 12c shows a chemical example with partial composition, where L2 has two con-
nected components. The smaller component is used as the common subgraph D is thus
not a precondition in the resulting rule, while the other component is preserved in L.

In the symmetric case of partial rule composition we can instead require components
of R1 to be a subgraph of L2 and write p1 •c⊆ p2.

-675-

L1 R1 L′
2

L′′
2

p2
R2

p1
L1

L′′
2

p2
R R2

(a) Abstract depiction
∅

L′′
2

L1 K1 R1 L2 K2 R2

L C1 E C2 R

K

D ∼= L′
2

(1)

(2) (2’)(3) (3’)

(4)

(0)

d1 d2

u1 v1 e1 e2 v2 u2

w1 w2l r

l1

s1

r1

t1

l2

s2

r2

t2

(b) Specialisation of the composition diagram

CH

CH
C
H2

CH2

CH2
C
H2

p1

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

C

C

p2

C
C

C
C

C

C

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

p

CH

CH
C
H2

CH2

CH2
C
H2

C
C

C
C

(c) Chemical example

Figure 12. Partial composition p = p1 •c⊇ p2 where D is a copy of a non-empty sub-
set of the connected components of L2, and d2 is the inclusion morphism
back into L2. a Abstract depiction; connected components of L2 are
either completely matched into R1 or not at all. b Specialised com-
mutative diagram for partial composition. The selection of connected
components of L2 to form D is specified by pushout (0), that degener-
ates to a disjoint union. To exclude parallel composition from partial
composition we require D 6∼= ∅. c Chemical example; p1 is the identity
rule for cyclohexene and p2 is the Diels-Alder transformation rule. The
composed rule encodes the partial application of the Diels-Alder reac-
tion to the molecules, leaving the diene to be instantiated at a later
stage. The context graphs and D are omitted for simplicity, though
the embedding of the common graph D in R1 and L2 is indicated by
the red dashed lines.

-676-

3.1.4 General Composition

We now briefly return to the most general case of composition where D simply must be
a common subgraph of R1 and L2. As shorthand notation we use p1 •∩ p2, and visualise
the relation abstractly as in Fig. 13a, while a chemical example is shown in Fig. 13b.

L1 R1 L2 R2
p1 p2

L R
p

(a) Abstract depiction
C

C

C
C

C

C p1

C
C

C
C

C

C

C

C
C

C

C
C

p2

C

C
C

C

C
C

C
C

C
C

C

C
C

C

C
C

p
C

C

C
C

C

C
C

C

C
C

(b) Chemical example

Figure 13. General rule composition where D is a common subgraph of both R1
and L2. The commutative diagram is shown in Fig. 9. a Abstract
depiction, with the common subgraph D shown as the intersection of
R1 and L2. b Chemical example; the rule for the Diels-Alder reaction
is composed with itself. The context graphs and D are omitted for
simplicity, though the embedding of the common graph D in R1 and
L2 is indicated by the red dashed lines.

Several further subclasses of composition can be defined, for example requiring D to
be maximal with respect to inclusion in R1 and L2, but we have not encountered a natural
use of further classes in the context of chemistry.

3.2 Binding, Unbinding, and Identification of Graphs

In the beginning of this section we argued that given a graph and a rule we can define how
to bind the graph onto the rule and obtain a new rule modelling the partial application.
To formalise graph binding we now consider a rule p1 = (∅ ← ∅ → G) to be equivalent
to the graph G, since it models the unconditional creation of G. The creation of H in
the derivation G p2,d1==⇒ H is then equivalent to the full composition p1 •⊇ p2 = (∅ ← ∅ →
G) •⊇ p2 = (∅ ← ∅ → H) (see Fig. 11b). Consider now a division of L2 into the disjoint
subgraphs L′2 and L′′2, and assume we want to model the binding of G to L′2. We can then
see this as the partial composition p = (∅ ← ∅ → G) •L′

2
p2, illustrated in Fig. 14.

-677-

∅

L′′
2

∅ ∅ G L2 K2 R2

L′′
2 L′′

2 C2 R

K

D ∼= L′
2

E ∼= G ∪ L′′
2

(1)

(2) (2’)(3) (3’)

(4)

(0)

d1 d2

u1 v1 e1 e2 v2 u2

w1 w2l r

r1

t1

l2

s2

r2

t2

l1

s1

Figure 14. Commutative diagram for binding a graph G to a rule p2 by reduction
to a partial composition (∅ ← ∅ → G) •c⊇ p2. Double-lines represent
isomorphisms. Pushout (0) makes L2 the disjoint union of L′2 and L′′2,
while the morphism d1 embeds L′2 into G. For (1) to be a pushout we
thus have E being the disjoint union of G and L′′2. Pushouts (2) and (3)
then propagates L′′2, the unbound part of L2, to be the left-side graph
of the resulting rule.

From the division of L2 into disjoint graphs and the definition of pushouts we have
that the resulting composed rule has L′′2 as its left-side graph, which exactly was the part
of L2 we did not want to bind onto.

Many reactions in biochemistry have compounds, such as water, as educts or products
that are present in a high quantity such that we can argue they are part of the environment
and hence are always present. Reaction patterns, in form of DPO rules, can then be
simplified by binding the abundant compounds to obtain the rules modelling only the
“interesting” part of the reaction pattern. Graph binding can only simplify the educt
side of the reaction pattern, while for the product side we need to use the symmetric
composition p1 •c⊇ (H ← ∅ → ∅), which we then refer to as graph unbinding.

The third trivial way of creating a rule from a graph G is to create the identity rule
(G ← G → G). We use this construction, together with full composition, to calculate
atom traces. The property we use is that the result of the composition (G← G→ G)•⊇p2

is a rule (G ← D → H) corresponding the lower half of the usual DPO diagram for the
direct derivation G p2=⇒ H.

Based on their use we refer to the rules (∅ ← ∅ → G), (G← ∅ → ∅), and (G← G→
G) respectively as the bind rule, unbind rule, and the identity rule for the graph G.

-678-

4 Chemical Graphs and Chemical Rules
So far our presentation has been motivated by chemical modelling, only with restrictions
on the morphism class to monomorphisms. The methods are thus generic and in principle
applicable in other areas.

However, the graph model of chemistry has additional intricacies that must be handled,
or can be exploited. For the sake of a streamlined presentation we focus here on or-
ganic chemistry. In particular, we ignore here organometallic complexes, compounds with
multi-centre bonds, as well as ionic crystal lattices, etc. That is, systems for which rep-
resentations in the form of (small) graphs are at least not obvious.

4.1 The Category of Simple Graphs

In our model of chemistry the connectivity of molecules is modelled by undirected graphs.
While a double bond is realised by twice as many electrons as a single bond, its behaviour
is not accurately reflected by encoding it as two parallel single bonds. We thus encode
bond orders in labels on edges, and require a molecular graph to have no loops or parallel
edges. This restriction forces us to consider multiple distinct constructions of pushout,
pullback, and pushout complement. To see this, consider the span in Fig. 15a.

(a) (b) (c)

Figure 15. The pushout object of a, for multigraphs is the graph depicted in c.
When restricted to simple graphs the result could be the graph depicted
in b, where the two edges are merged. However, for the modelling of
chemistry we define that the span can not form a pushout.

For graphs where parallel edges are allowed we can create the pushout object depicted
in Fig. 15c, which conforms to the idea of a disjoint union of the non-common vertices and
edges. However, for simple graphs this is not possible since parallel edges are not allowed.
Hence we either have to insist that no pushout exists for this span, or that non-common
edges can be merged in the pushout object and thus accept the graph in Fig. 15b as
the pushout object. In [28], the authors chose the latter option, which necessitates the
definition of minimal pushout complements.

For the modelling of chemistry it is more natural to take the first option. Hence
we posit that no pushout exists in this case. The span in Fig. 15a can arise in the

-679-

context of transformation of molecules if a rule asks for a bond to be created between two
atoms that are already connected by a chemical bond. In chemical terms, such a reaction
cannot take place since the existing bond cannot miraculously vanish and chemistry does
not provide a natural notion of “merging” chemical bonds between the same two atoms.
In both cases the transformation would have a side-effect not explicitly specified by the
rule. In chemistry all reactions are in principle invertible, but side-effects would hinder a
straightforward incorporation of this property in a graph transformation model.

4.2 Labelled Graph Transformation

Chemical graphs have labelled vertices and edges for encoding bond orders, atom types,
charges, etc. For a category of labelled graphs, let Ω be a set of labels used on vertices and
edges. We write `G(x) to denote the label attached to a vertex or edge x of a graph G.
A labelled graph morphism m : G → H must then fulfil that `G(x) = `H(m(x)) for each
vertex and edge in G, in addition to the usual graph morphism requirements. However,
now consider a rule (L l←− K

r−→ R), and some vertex or edge x of K. By the morphism
definition x must have the same label in L and R. Using labelled graphs it is thus not
possible to encode change of labels, which is needed for example for modelling charge
changes on atoms. For edges, we could perform a deletion and recreation with a different
label, but this is not possible for vertices in unknown context, as it would violate the
dangling condition.

The limitations of labelled graph transformation are well-known in the literature [15,
29], but can easily be circumvented, e.g., by using the more expressive framework of
typed attributed graphs [15], or simply allowing the graph K of a rule, and the graph of
a derivation D, to be partially labelled [29]. Following the latter approach, an unlabelled
vertex or edge x of a graph G is denoted `G(x) = ⊥. For a morphism m : G → H and a
vertex or edge x in G we then allow `G(x) = ⊥ 6= `H(m(x)). That is, an unlabelled vertex
(resp. edge) may be mapped to any vertex (resp. edge) irrespective of label. It is clear
that this is again a category since it contains the identity morphism and the composition
of morphisms is again a morphism on partially labelled graphs by virtue of the transitivity
of label matches.

In Fig. 16 a direct derivation with change of labels is depicted.

-680-

〈H, H+〉 〈O, O-〉

H C C

O H

H

〈-, =〉
〈=, -〉

-

-

-

-

D

H O

H C C

O H

H

-
-

=
-

-

-

-

G

H+ O

H C C

O H

H

-

=
-

-

-

-

-

H

〈H, H+〉 〈O, O-〉

C C
〈-, =〉

〈=, -〉

K

H O

C C
-

-
=

L

H O

C C

+ -

=
-

R

Figure 16. Example of a derivation using labelled graphs, but allowing partial
labelling of the context graphK and intermediary graphD, to facilitate
changing of labels. Each vertex and edge of these graphs without labels
are visualised with a pair of labels from L and R, respectively G and
H. To reduce clutter in illustrations we usually completely omit the
depiction of edges in K and D that change label.

Instead of using the no-label symbol ⊥ in K (resp. D) we instead depict the pair of
labels from the L and R (resp. G and H). To further reduce clutter in illustrations we
usually completely omit edges in K and D when they change labels.

4.3 Chemically Valid Rules

The general labelled graph transformation formalism allows arbitrary label changes, and
even insertion and deletion of vertices, in rules. A chemically valid rule in addition
must preserve the chemical elements, and only change charges. Bond orders may be
changed as well, but the overall change of the number of electrons must be balanced.
At present our implementation leaves it to the user to ensure that reaction rules are
chemically meaningful. We note that checking conservation constraints become easy when
a representation of molecules is chosen that explicitly describes the distribution of valence
electrons into bonding electron pairs and lone pairs. Lewis diagrams [30] may serve as an
example.

Note that if a rule p = (L l←− K
r−→ R) conserves the atoms, then the restrictions

l|V and r|V of the morphisms l and r to the vertices (atoms) necessarily are bijections.
Incidentally this means the dangling condition is trivially satisfied for all matches of such

-681-

a rule. Since the composition of bijections is again a bijection, conservation property of
chemical rules is preserved under rule composition. Similarly, conservation of chemical
elements and electrons is transitive under rule composition. However, we have found it
useful to work with rules that do not fulfil the conservation property, both in low-level
algorithms, and for certain types of modelling. In the following sections we therefore do
not assume the property to hold in general.

The basic graph-based model of chemistry does not include stereochemical informa-
tion. Based on permutation groups it is however possible to extend the model to cover
such local geometric information [31]. One can then define the additional constraints that
a stereochemically valid rule must satisfy as further discussed in [31].

5 Implementation Considerations
Transformation rules can in practice be represented in different ways, which in turn in-
fluences how best to implement an algorithm for rule composition. In this section we
describe details of our implementation in the software package MØD [32, 33].

5.1 Representation of Transformation Rules
A transformation rule p = (L l←− K

r−→ R) in the category of simple graphs could naturally
be represented directly by three graphs and two vertex maps. However, this is arguably a
rather verbose representation when restricted to monomorphisms, where K is a subgraph
of both L and R and thus stored three times. To obtain a more compact representation
that also allows for simpler algorithm implementations we disallow certain rules that have
alternative equivalent encodings. Consider the rule depicted in Fig. 17a, which models
first the removal and then the addition of an edge, but with a different label.

a

L K

b

R

(a)

a

L

〈a, b〉
K

b

R

(b)

Figure 17. The rule in a models the removal of an edge with label a and the
addition of the same edge but with label b. We do not represent this
kind of transformation, but instead allow rules to change labels as in
the rule in b.

Fig. 17b shows a functionally equivalent rule, which models the label change directly,
i.e., in the underlying graph the edge is invariant. Only if we were to attach auxiliary

-682-

data to edges then the application of these two rules would have observable differences.
To simplify our representation of a rule we opt not to allow rules such as in Fig. 17a.

That is, for all rules p = (L l←− K
r−→ R) we require that for pairs of vertices u, v ∈ K, if

(u, v) 6∈ EK then (l(u), l(v)) 6∈ EL ∨ (r(u), r(v)) 6∈ ER. Now let p = (L l←− K
r−→ R) be

a labelled transformation rule as described in the previous section, where Ω is the label
set for L and R. We can then create a new undirected, labelled graph Cp = (Vp, Ep,mp)
being the pushout object of L l←− K

r−→ R. The vertices and edges are labelled with the
function mp : Vp ∪Ep → Ω′ × Ω′, where Ω′ = Ω ∪ {⊥} is the original label set augmented
with a distinct new label ⊥ that indicates the absence of a label, as previously described.
Each vertex in Vp and each edge in Ep was created because it was in one of L\l(K),
R\r(K), or K. For vertices/edges created from L\l(K) with label α in L we attach the
new label 〈α,⊥〉. Similarly, a vertex/edge in R\r(K) has a label of the form 〈⊥, β〉, and a
vertex/edge in K on the form 〈α, β〉. Clearly the original rule can be recovered from the
placement of the ⊥ labels. In the following section we thus use L, K, and R as shorthands
for subgraphs of Cp with appropriate label projections.

Fig. 18 shows how the rule p = (L ← K → R) from Fig. 16 is represented by the
pushout object Cp.

〈H, H+〉 〈O, O-〉

C C
〈-, =〉

〈=, -〉

K

H O

C C
-

-
=

L

H O

C C

+ -

=
-

R

〈H, H+〉 〈O, O-〉

C C
〈-, ⊥〉

〈-, =〉
〈=, -〉

Cp

Figure 18. Pushout diagram for the construction of the graph Cp representing the
rule p = (L← K → R) from Fig. 16.

Note that the rules that are not representable in this manner are exactly those for
which we have previously opted not to define a pushout in the category of simple graphs.

-683-

5.2 Enumeration of Compositions

The construction of pushouts and pushout complements are unique up to isomorphism,
and enumeration of compositions thus reduces to enumeration of spans R1 ← D → L2

for the given rules. In practice it is desirable to minimise the algorithmic overhead, and
we thus assume that the span is represented by a partial vertex map ψ : R1 � L2, which
implicitly encodes D. General compositions p1 •∩ p2 can thus be enumerated by finding
common subgraphs between R1 and L2. Full compositions p1 •⊇ p2 (and the symmetric
case: p1•⊆p2) can be enumerated by finding all monomorphisms L2 → R1 (symmetrically:
R1 → L2), e.g., using the VF2 algorithm [34, 35].

In [23] we described how the span enumeration for partial compositions p1 •c⊇ p2 can
be done by first considering all partial assignments of connected components of L2 to con-
nected components of R1. For each such assignment, the componentwise monomorphisms
can then be enumerated and merged.

5.3 Algorithm for Composition
Given two rules pi = (Li

li←− Ki
ri−→ Ri, i = 1, 2 and a span R1 ← D → L2 relating p1

and p2, we wish to either construct the composed rule p = (L l←− K
r−→ R) = p1 •D p2,

or determine that the composition is not defined. This can be done with the procedure
described earlier, but in practice it is desirable to avoid constructing intermediary graphs,
and instead create the resulting rule p directly. In [23] a brief sketch of such an algorithm
for this purpose was given. In the remainder of this section we provide the full details
with illustrations.

Using the rule representation described in Section 5.1, assume the input rules p1, p2

are given in the form of the two pushout objects Cp1 and Cp2 . With this representation
we further assume that the relation span R1 ← D → L2 is given in the form of a
partial vertex map ψ : R1 � L2. For simplicity of the description we extend ψ to the
edge set by induction, i.e., if e = (u, v) ∈ E(R1), both ψ(u) and ψ(v) are defined, and
(ψ(u), ψ(v)) ∈ E(L2), then ψ(e) = (ψ(u), ψ(v)). We say that a vertex/edge of R1 (resp.
L2) is matched if it is in the pre-image (resp. image) of ψ, otherwise it is unmatched.

We have assumed that all morphisms are injective, and given a morphism m and a
vertex/edge x in its domain we will therefore simply refer to x and m(x) as the same
vertex/edge being present in multiple graphs.

The algorithm has the following overall structure where it directly constructs first the

-684-

vertices and then the edges of the composed rule, represented by the graph Cp:

1. Handle each vertex v ∈ V (Cp1).

2. Handle each vertex v ∈ V (Cp2).

3. Handle each edge e ∈ E(Cp1).

4. Handle each edge e ∈ E(Cp2).

The following subsections provide a case-by-case description of how to handle each ver-
tex/edge. Due to the symmetry of the problem we describe the cases with p1 as starting
point, and only note the symmetric case. The handling of edges is similar to that of
vertices, except that additional dangling conditions must be checked. If we work in the
category of simple graphs, we must also check parallelism conditions.

In each case we use specialisations of the general commutative diagram for rule com-
position, shown in Figure 9.

5.3.1 Unmatched Vertices

Let v be a unmatched vertex of Cp1 (symmetrically Cp2), the vertex is simply copied to Cp:

Case v ∈ L1\K1 (symmetrically v ∈ R2\K2): The vertex is in L due to the morphism
u1. The vertex is not in K, as that implies it is both in C1 and C2 due to (4) being a
pullback. If it were in C1 it would be in K1 due to (3) being a pushout, thus contradicting
the assumption of the case.

L1 K1 R1 L2 K2 R2

D

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

u1

d1 d2

v1 e1 e2 v2 u2

w1 w2

l r

l1

s1

r1

t1

l2

s2

r2

t2

-685-

Case v ∈ R1\K1 (symmetrically v ∈ L2\K2): The common graph E is a pushout
object of (1), and the vertex is thus in E. The vertex is similarly in C2 and R due to
pushouts (2’) and (3’). The vertex is not in K as that would imply that is is also in C1.
If it were in C1, then it would be in K1 due to (2) being a pushout, thus a contradiction
of the assumption of the case.

L1 K1 R1 L2 K2 R2

D

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

e1

s2 t2

d1 d2

u1 v1 e2 v2 u2

w1 w2

l r

l1

s1

r1

t1

l2 r2

Case v ∈ K1 (symmetrically v ∈ K2): The vertex is by definition also in L1 and R1,
and following the previous case it is thus in R. From the morphisms u1 and v1 we get the
vertex into L and C1. The square (4) is a pullback, and as the vertex is in both C1 and
C2 it is then also in K.

L1 K1 R1 L2 K2 R2

D

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

l1 r1

u1 v1
e1

s1 t1 s2 t2

l
w1 w2

r

d1 d2

e2 v2 u2

l2 r2

-686-

5.3.2 Matched Vertices and Edges

The handling of matched edges is the same as for matched vertices. Let v be a matched
vertex. This means it is in D, R1, and L2.

Case v is not in K1 and not in K2: The squares (2) and (2′) are pushouts, and by
the case assumption the vertex is thus in neither of C1 and C2. The vertex is therefore
not represented in the resulting rule, and we say that it is deleted.

L1 K1 R1 L2 K2 R2

D

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

e1 e2
u1 v1 v2 u2

w1 w2

l r

l1

s1

r1

t1

l2

s2

r2

t2

Case v ∈ K1 (Symmetrically v ∈ K2): The vertex is in L and C1 due to the morph-
isms u1 and v1.

L1 K1 R1 L2 K2 R2

D

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

e1 e2

l1 r1

u1 v1

s1 t1

v2 u2

w1 w2

l r

l2

s2

r2

t2

-687-

Case v is in both K1 and K2: This is the combination of the previous case with its
symmetric case. We thus have the vertex in both C1 and C2, and to make (4) a pullback
the vertex must be in K as well.

L1 K1 R1 L2 K2 R2

D

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

e1 e2

l1 r1

u1 v1

s1 t1

l2 r2

u2v2

t2s2

l
w1 w2

r

5.3.3 Unmatched Edges

Let e = (u, v) be an edge, handled similar to an unmatched vertex, but with the following
extra conditions.

Case No Endpoints Matched: No extra conditions, the edge follows the same logic
as unmatched vertices.

Case One Endpoint Matched: Let u be the matched vertex.

Subcase e is in L1\K1 (symmetrically e in R2\K2): The edge is in L, but not
in C1 and thereby not in K.

-688-

u

v

L1 K1 R1 L2 K2 R2

D

u

v

L C1 C2 R

E

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

e1 e2

l1 r1

u1 v1

s1 t1

l2 r2

u2v2

t2s2

l
w1 w2

r

Subcase e is in R1 and u is in L2\K2 (symmetrically e in L2 and u in R1\K1):

The composition is undefined; As e is unmatched, it is supposed to be in E, C2, and
R. However, u is matched but deleted by p2, and the edge will dangle in C2. This is
equivalent to the dangling condition for a direct derivation from E with the rule p2.

u

v

R1 L2 K2

D

N/A

C2

u

v
E

(1)

(2’)

d1 d2

e1

e2 v2

l2

s2

Case Both Endpoints Matched: Both u and v are matched, but e is not. In addition
to the dangling condition described above, if the category is restricted to simple graphs
then certain parallel edge conditions must be checked.

Subcase e in L1\K1 (symmetrically e in R2\K2): The edge must be in L but
not in C1. However, if another edge (u, v) is in L2, the composition is not defined. Such
an edge would be in both E and C1, leaving the pushout object L of L1 ← K2 → C1

undefined when restricted to simple graphs (i.e., the pushout problem described in Section
4.1).

-689-

u

v

L1

u

v

K1

u

v

R1

u

v

L2

u

v
D

N/A

L

u

v

C1

u

v
E

(1)

(2)(3)

d1 d2

e1 e2
l1 r1

v1

v1

t1

u1

s1

Case e is in R1 (symmetrically e in L2): As the edge is unmatched is will be in
E, C2, and R. If the edge dangles, the composition is undefined. Otherwise, we have the
endpoints u and v present in K2, L2, C2, and R. If there is an equivalent edge in K2 it
would then also be in L2 and thereby be matched, contradicting the case assumptions.
However, if there is an equivalent edge in R2\K2, the square (3’) then has the pushout
problem described in Section 4.1. That is, the edge is not in K2, but in both C2 and R2.
In this case, when restricted to simple graphs, the pushout object R therefore does not
exist and the composition is undefined.

u

v

R1

u

v

L2

u

v

K2

u

v

R2

u

v
D

u

v

C2

u

v

R

u

v
E

(1)

(2’) (3’)

d1 d2

e1 e2

l2 r2

u2v2

t2s2

Case e is in both L1\K2 and R2\K2: This is a special case, as the edge will be in
both L and R, but in neither of C1 and C2, and thereby not in K. Due to our choice of
representation of DPO rules we can not represent this result. Instead of leaving the result
undefined we let the result be the equivalent rule where the edge is added to K as well.

-690-

u

v

L1

u

v

K1

u

v

R1

u

v

L2

u

v

K2

u

v

R2

u

v
D

u

v

L

u

v

C1

u

v

C2

u

v

R

u

v
E

u

v

K

(1)

(2) (2’)(3) (3’)

(4)

d1 d2

e1 e2

l1 r1

u1 v1

s1 t1

l2 r2

u2v2

t2s2

l r

w1 w2

6 Application to Computation of Atom Traces

Recall that reactions modelled by direct derivations G p=⇒ H can be represented by rules
(G g←− D

h−→ H) obtained through the enumeration of full compositions (G← G→ G)•⊇p.
The atom map for each such reaction is a bijection between the vertices of G and H,
commuting with the DPO diagram for the direct derivation. That is, the atom map
α : V (G)↔ V (H) is obtained as the vertex map composition α = h|V ◦ g−1

|V .
For a more concise notation we simply use • to mean •⊇, and ıG as a shorthand for the

identity rule (G← G→ G). Additionally we assume that the rule composition operator
is left-associative, i.e., a • b • c means (a • b) • c.

Given a multiset of educt graphsG and a sequence of transformation rules p1, p2, . . . , pk,
possibly modelling complete chemical reactions, we can compute all k-step reactions spe-
cified by the rules as ıG•p1•p2•. . .•pk. However, each step in the composition enumeration
may lead to multiple different rules. The final right-hand sides may thus be many different
combinations of molecules. For tracing atoms in a specific pathway we are only interested
in the composed rules that have the output of the pathway in their right-hand sides.
Denoting this target multiset of molecules by H, we can then extend the composition ex-
pression to ıG•p1•p2•. . .•pk•H ıH where the last composition implements an isomorphism
check of the right-hand side by composing with ıH using H as the common subgraph. If
we assume that H consists only of complete molecules, and that no complete molecule
is a proper subgraph of another complete molecule, we can simply use full composition
for this last step as well. Using full composition also enables the constraint that H only

-691-

specifies a sub-multiset of the produced molecules. Such a “check-point constraint” can
also be inserted in the middle of a composition sequence if there is a specific requirement
for an intermediary state of the system.

6.1 The β-lactamase Mechanism

β-lacatamases (MACiE entry 0002, EC number 3.5.2.6) are bacterial enzymes that con-
vey resistance against β-lactame antibiotics such as penicillins by catalysing the overall
reaction

β-Lactam
(CHEBI:35627)

+ water
(CHEBI:15377)

→ substituted β-amino acid
(CHEBI:33705)

by means of a 5-step mechanism. Using rule composition of those steps we will compute
overall rules for the complete enzyme mechanism.

The individual steps in the enzyme mechanism are detailed in the MACiE database
[36] as follows (see database entry for full details):

1. Lys73 deprotonates Ser70 thereby initiating a nucleophilic addition onto the car-
bonyl carbon of the β-lactam.

2. The resulting intermediate collapses, cleaving the C-N bond of the β-lactam and
the nitrogen deprotonates Ser130.

3. Ser130 deprotonates Lys73.

4. Glu166 deprotonates water, which initiates a nucleophilic addition at the carbonyl
carbon.

5. Collapse of this intermediate leads to cleavage of the acyl-enzyme bond and liberates
Ser70, which in turn deprotonates the Glu166.

The 5 individual steps were modelled as transformation rules p1, . . . , p5 depicted in Fig. 19.

-692-

C

C

C

O

O

H

NH2

C

C

L

C

C

C

O

O

H

NH2

C

C

K

C

C

C

O−

O

H

N+

H2

C

C

R

(a) p1

C

C C

N
O−

O

O
H

C

L

C

C C

N
O

O

O
H

C

K

C

C C

N
O

O

O−
H

C

R

(b) p2

O− N+

H2

HC C

L

O NH2

HC C

K

O NH2

HC C

R

(c) p3

C

C

C

N

OO

OH O− O

CH

C

L

C

C

C

N

OO

OH O O

CH

C

K

C

C

C

N

O−O

OH O O

CH

C

R

(d) p4

C

C

C

N

O−

O

OH

OO

C H

C

C

L

C

C

C

N

O

O

OH

OO

C H

C

C

K

C

C

C

N

O

O

OH

O−O

C H

C

C

R

(e) p5

Figure 19. Transformation rules for the 5-step enzyme β-lacatamase mechanism
(MACIE entry 0002, EC number 3.5.2.6).

For step (2) an alternative mechanism has been suggested [37]: protonation of the
β-lactam nitrogen occurs as the first step in the reaction as an initiation step and not as
a consequence of the C-N bond cleavage. We modelled this alternative as a replacement
of rule p2 by two transformation rules p1b and p2b, depicted in Fig. 20.

C

C C

N

O
H

C

L

C

C C

N

O
H

C

K

C

C C

N+

O−
H

C

R

(a) p1b

CC

C NH+

O−

O

L

CC

C NH

O

O

K

CC

C NH

O

O

R

(b) p2b

Figure 20. Transformation rules to replace step p2 from Fig. 19, based on the
mechanism as suggested in [37].

The atom traces for the overall reaction are computed by a composition of the rules

-693-

p1, . . . , p5 with the identity rule for the input compounds, i.e., the β-lactam, water, and the
amino acid catalysts (Glu, Lys, and two Ser). Let G and H be the graph representation
of the input and output compounds, respectively. The overall composition enumeration

ıG • p1 • p2 • p3 • p4 • p5 • ıH (1)

results in the two overall rules depicted in Fig. 21.

Figure 21. The two overall reactions resulting from either composition Eq. (1)
and (2), using the elementary steps of the β-lactamase (MACiE entry
0002, EC number 3.5.2.6). Red bonds are broken and green bonds
are formed during the transformation. While the overall reactions (as
typically found in metabolic databases such as KEGG or MetaCyc) are
identical, they differ in their hydrogen trace and the size (8 or 10) of
the cyclic virtual transition state. Note that the acid/basic catalysts
(the two amino acids lysine and glutamic acid) needed for the reaction
to work still show up as precondition in the overall rules. Using partial
composition results in two more generic overall reactions. These two
rules are depicted as the strict subgraphs resulting from removing the
grey parts from the catalysts.

Both are in agreement with the overall mechanism given in MACiE and differ only in
their hydrogen traces. The overall cyclic virtual transition states are an 8 cycle and a 10
cycle, which only differ by the exchange of a hydrogen in the amino group of Lys. The
alternative model for step 2, which corresponds to

ıG • p1 • p1b • p2b • p3 • p4 • p5 • ıH (2)

results in the same two overall rules.
In order to check the flexibility of the reaction with respect to the order of the in-

dividual steps of the enzyme mechanism, we investigated all permutations of the rules

-694-

O

S

H

H

O

O

H

H

CO2H

NH2

CO2H

CO2H

N

C

O

O

N
H

N
H2 Ph

O

N
H

Ph

NH2

NH2

CO2H

NH2

CO2H

N

C

O
H

H

O

O
HH

N

S
CO2H

OCO2H

CO2HN

N

H2

H2

CO2H

NH2

NH2

CO2H

8 10

H

C

C

C

C

C
C

CC
CO2- CO2-

(a)

O

S

H

H

O

O

H

H

CO2H

NH2

CO2H

CO2H

N

C

O

O

N
H

N
H2 Ph

O

N
H

Ph

NH2

NH2

CO2H

NH2

CO2H

N

C

O
H

H

O

O
HH

N

S
CO2H

OCO2H

CO2HN

N

H2

H2

CO2H

NH2

NH2

CO2H

8 10

H

C

C

C

C

C
C

CC
CO2- CO2-

(b)

for the composition order and verified whether the resulting overall rule produces the
substituted β-amino acid as final product. Formally, we compute

ıG • pσ(1) • . . . pσ(5) • ıH

for all 120 permutations σ. Only the following three compositions are well-defined and res-
ult in the expected overall rules: (p1, p2, p3, p4, p5), (p1, p2, p4, p3, p5), and (p1, p2, p4, p5, p3).
A detailed inspection shows that step p3 is the recycling step of the mechanism, which
can be applied concurrently to steps p4 and p5.

The same experiment based on the rule set {p1, p1b, p2b, p3, p4, p5} shows that eight
compositions are possible, all resulting in the same atom traces as given above. The first
two steps need to be p1 and p1b, their relative order however is arbitrary. The subsequent
rules p2b, p4, and p5 must be in this order. The recycling step p3 requires the rules p1 and
p1b as prerequisite, but can be performed concurrently to the remaining steps, i.e., it may
appear in position 3, 4, 5, or 6, thus accounting for the 8 feasible permutations.

This method allows for an automated analysis of the flexibility of the ordering of
individual steps. Usually, only a relatively small number of all possible permutations has
to be computed, as most often already the composition of a prefix of an arbitrarily chosen
permutation is not possible. In the previous example, for instance, only two of the 30
possible initial two steps are feasible, which prunes most compositions early. The DPO
framework provides an inroad to reduce the computational efforts even further. Since
each rule is reversible, feasibility can be tested by exploring the space of overall rules
from both ends and checking for overlaps at intermediate steps rather then expanding the
possible pathways from one end only.

When using full composition we must specify all educt molecules in the initial graph,
but we can instead use partial composition to automatically detect the required function-
ality of the catalysts and the additional compounds (in this case a water molecule). Let
G′ be the graph representation of β-lactam which is the core compound of the reaction,
and H ′ the corresponding core product molecule. The partial composition of the rules

ıG′ •c⊇ p1 •c⊇ p2 •c⊇ p3 •c⊇ p4 •c⊇ p5 •c⊇ ıH′

result in the overall rule as depicted highlighted in Fig. 21, i.e., any grey molecule or
edge disappears. The overall rules show the automatic inference of the necessity of the
four functional units of the catalysts and the necessity of the water molecule, as they are
subsequently added to the left side of the overall rule during the partial rule composition.

-695-

When defining transformation rules the difficulty often lies in the question of defining the
size of the context around a reaction centre: a large context leads to a very specific rule,
while a too small context might lead to chemically invalid reactions. Comparing full and
partial compositions can be employed as a method to detect the functional units of the
catalysts.

The atom mapping of the full composition result shows that in the composed rule
with the 8-cycle the acid-base catalysts lysine and glutamic acid are unmodified during
the overall process although they are necessary for the mechanism. In the composed rule
with the 10-cycle only the acid-base catalyst glutamic acid is unmodified. The other
catalysts and the water molecule are modified, however only based on the fact that the
hydrogen atom for proton donation is different from the accepting hydrogen.

6.2 The Glycolysis Pathway
Glycolysis is one of the central pathways in carbon metabolism, which converts 1 glucose
molecule (a C6 sugar) into 2 pyruvate molecules (a C3 acid) while creating energy-rich
ATP molecules. There are multiple variations of the glycolysis process (see [38] for a
review), with the most common being the Embden-Meyerhof-Parnas (EMP) pathway.
An alternate pathway is the Entner-Doudoroff (ED) pathway [39], which only creates 1
ATP molecule as opposed to the EMP which creates 2 ATP molecules for each glucose. In
this section we illustrate how rule composition expressions can be used to automatically
create accurate atom maps for the overall EMP and ED pathways.

Isotope labelling experiments in glycolysis are commonly used to analyse the activity
of the different pathway variations (e.g., see [40]). It is known that the EMP and ED
pathways lead to different carbon traces, but since atom maps are usually not available
in databases it can be tedious and error prone to analyse trace data manually. Here
we demonstrate that a chemistry model based on DPO transformation rules enables the
automatic inference of atom traces for complete pathways, illustrated with the EMP and
ED pathways. The two pathways have been modelled using the following transformation
rules:

p1 Pyranose-furanose

p2 Furanose-linear

p3 Ketose-aldose

p4 ATP-phosphorylation

p5 ATP-dephosphorylation

p6 NAD+-phosphorylation

p7 Phosphomutase

p8 Enolase

p9 Keto-enol

p10 NAD+-oxoreductase

p11 Lactonohydrolase

p12 Hydrolyase

-696-

p13 Reverse aldolase

The rules were manually created using information from MACiE database (described in
Sec. 6.1) to ensure accurate atom maps for the individual reaction patterns. They are
visualised in Fig. 22 and Fig. 23.

C

C
C

C

C
O

H

L

C

C
C

C

C
O

H

K

C

C
C

C

C
O

H

R

(a) p1, Pyranose-furanose

C

C
C

C

O

H

L

C

C
C

C

O

H

K

C

C
C

C

O

H

R

(b) p2, Furanose-linear

OC

C
H

O H

H

L

OC

CHO H

H

K

OC

CHO H

H

R

(c) p3, Ketose-aldose

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

L

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

K

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

R

(d) p4, ATP-phosphorylation

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

L

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

K

C

OH

AZP

O
Pi

O
Pi

O Pi

OH

R

(e) p5, ATP-dephosphorylation

C

O

H

NAD+

OH

Pi

O

H

L

C

O

H

NAD

OH

Pi

O

H

K

C

O

H

NAD

OH

Pi

O

H+

R

(f) p6, NAD+-phosphorylation

PiO

C
C

OH

L

PiO

C
C

OH

K

PiO

C
C

OH

R

(g) p7, Phosphomutase

OH

CH2 C

H

L

OH

CH2 C

H

K

OH

CH2 C

H

R

(h) p8, Enolase

H

O C

C

L

H

O C

C

K

H

O C

C

R

(i) p9, Keto-enol

Figure 22. Transformation rules for modelling the reactions in the EMP and ED
pathways for glycolysis. In the modelling we have abbreviated certain
groups into graphs with non-chemical labels. For example, part of
phosphate groups are represented by vertices with the label Pi, and
adenosine is represented by the label AZP. See also Fig. 23.

-697-

O

C

O

H

H

NAD+

L

O

C

O

H

H

NAD

K

O

C

O

H+

H

NAD

R

(a) p10, NAD+-oxoreductase

C

O

C
O

OH

H

L

C

O

C
O

OH

H

K

C

O

C
O

OH

H

R

(b) p11, Lactonohydrolase

CC

OH

O H

H

C

O

L

CC

OH

O H

H

C

O

K

CC

OH

O H

H

C

O

R

(c) p12, Hydrolyase

O
C

C

C O

H

L

O
C

C

C O

H

K

O
C

C

C O

H

R

(d) p13, Reverse aldolase

Figure 23. Further transformation rules for modelling the reactions in the EMP
and ED pathways for glycolysis. See also Fig. 22.

We use G(EMP) to denote the graph of educts to the EMP pathway, consisting
of 1 glucose, 2 ATP, 2 ADP, 2 phosphates, and 2 NAD+. For the ED pathway we
likewise have G(ED), consisting of 1 glucose, 1 ATP, 1 ADP, 1 phosphate, and 2 NAD+.
Correspondingly we have H(EMP) as the output graph of the EMP pathway, with 2
pyruvates, 4 ATP, 2 NADH, 2 water, and 2 H+. In the case of the ED pathway H(ED)
models 2 pyruvates, 2 ATP, 2 NADH, 2 water, and 2 H+. Note that the same approach as
presented in the β-lactamase example (Sec. 6.1) for automatically inferring the necessary
functional groups could be applied, and an explicit definition of the catalysts in G(·) and
H(·) would not be necessary.

For EMP we compute the composition enumeration

ıG(EMP) •
Glucose → 2 G3P︷ ︸︸ ︷

p4 • p1 • p4 • p2 • p13 • p3

• (p6 •∅ p6) • (p5 •∅ p5) • (p7 •∅ p7) • (p8 •∅ p8) • (p5 •∅ p5) • (p9 •∅ p9)︸ ︷︷ ︸
2 G3P → 2 Pyruvate

•ıH(EMP)

and for ED we compute

ıG(ED) • p4 • p10 • p11 • p12 • p13︸ ︷︷ ︸
Glucose → G3P + Pyruvate

• p6 • p5 • p7 • p8 • p5 • p9︸ ︷︷ ︸
G3P + Pyruvate → 2 Pyruvate

•ıH(ED)

The resulting rules are depicted in Fig. 24.

-698-

CH2〈6〉

C 〈5〉
H

CH 〈4〉

C
H

〈3〉

C
H

〈2〉

CH〈1〉

OH

OH

OH

OH
OH

O

L

CH2〈6〉

C
〈5〉

C〈4〉

C〈3〉

C
〈2〉

CH
〈1〉

O

O

H

OH

O

H

K

CH3〈6〉

C
〈5〉

C
〈4〉

C
〈3〉

C
〈2〉

CH3〈1〉

OH

OH

O

O

O

O

R

(a) EMP

CH2〈6〉

CH〈5〉

CH
〈4〉

CH
〈3〉

CH 〈2〉

CH
〈1〉

OH

OHOH

OH

OH

O

L

CH2〈6〉

C〈5〉

C
〈4〉

CH
〈3〉

C〈2〉

C
〈1〉

OH

O
H

O

O

H

K

CH3〈6〉

C
〈5〉

C
〈4〉

CH3
〈3〉

C
〈2〉

C
〈1〉

OH

O

O

O

O

OH

R

(b) ED

Figure 24. Simplified transformation rule for the overall a EMP pathway and b ED
pathway, with each carbon atom labelled. The green and blue hydroxyl
groups are those that are respectively removed and introduced through
molecules other than glucose and pyruvate.

To reduce clutter we only draw the glucose and pyruvate components. Formally this
can be achieved by composing with rules on the left and right that bind and unbind
the unwanted components. Clearly, the carbon traces of the two rules differ. Such an
approach can be used for an automated design of labelling experiments to detect the
activity of pathway alternatives.

The prefixes of the rule composition expressions allow the inference of all the interme-
diate compounds and their corresponding atom traces relative to the input compounds.
The summary of this analysis is depicted in Fig. 25 for both pathways, though only with
the traces for carbon atoms shown.

-699-

O OH

OH

OH

HO

HO
O OH

OH

OH

HO

PO

PO OH

OH

OHHO

O
PO

OH

OHHO

O

OP

O

PO

OH

OH

OP

O

+

66

66

6

5

5

5 5

5

44

44

4

33

33

22

22

2

3

11

11

1

O

PO

OH6

5

4

PO

O

PO

OH6

5

4

O

6

5

4

-O

OP

HO

O

6

5

4

OP

O

6

5

4

O

OP2

3

1HO

O

OP2

3

1HO

O

PO

2

3

1

O

PO

OH

2

3

1

O

PO

2

3

1

O

O

O

OH

OH

HO

PO
6

5

4

3

2

1

O

OH

OH

HO

PO
6

5

4

3

2

1

OOH

OH

OHHO

PO
6

5

4

3

2

1

OOH

OH

OP2

3

1HO

OPO

O

OH

O

1

2
3

HO
HO

HO
HO

HO
HO

Figure 25. Carbon trace of two glycolysis pathways. The Embden-Meyerhof-
Parnas pathway (EMP) is depicted with black reaction arrows, and
the Entner-Doudoroff pathway (ED) is depicted with green reaction
arrows. The six carbon atoms from glucose are converted into two pyr-
uvate molecules, highlighted in blue, in two different ways depending
on whether EMP or ED was used to catabolise glucose. The trace for
one pyruvate overlaps in the pathways, while the sequence of carbons
is inverted in the other pyruvate.

The black reaction arrows show the EMP pathway, while the green arrows show the ED
pathway. The six carbon atoms from glucose are converted into two pyruvate molecules
in two different ways depending on whether EMP or ED was used to catabolise glucose.

-700-

While the EMP pathway has a fructose 1,6-bisphosphate as an intermediate, in which a
pentose ring is cleaved, in the ED pathway the hexose ring of the glucose 6-phosphate is
cleaved. The carbon trace of one of the two pyruvates is identical, while it is inverted in
the other pyruvate.

7 Concluding Remarks
The main purpose of this contribution was to provide a concise and complete description of
rule composition in graph transformation systems. In particular, we have shown that rule
composition as implemented in MØD is firmly grounded in category theory, and several
special cases of composition have interesting semantics in the context of chemistry. This
sets the stage for the analysis of complex overall reactions, since these have consistent
representations as compositions of elementary reactions. The implementation in MØD is
indeed capable of explicitly computing step-wise reaction mechanisms given a set of rules
for plausible elementary steps. An important property of chemical rules is the explicit
representation of atom maps, which derives from the restriction of morphisms to the
vertex sets, in direct derivations. An immediate benefit is that composite reactions are
also endowed with valid atom maps. As an application we have shown that this feature
makes is possible to compute isotope traces explicitly. DPO graph transformation thus
provide a framework in which otherwise difficult questions in computational chemistry
can be dealt with easily and efficiently.

Still, many open questions remain for future developments. Although the DPO frame-
work has been chosen to be particularly accommodating to chemical applications, at
present the adherence to the semantics of chemistry is entirely left to the reader. While
it does not seem desirable to specialise neither the mathematical specification nor the
implementation of MØD further towards chemistry as a specific application, it would
be extremely useful to develop a chemistry-specific layer to facilitate the construction of
chemical rules by enforcing and/or checking conservation of mass, atom type, and charges
that are required for chemical reactions. This could be achieved with the help of refined
graph models that explicitly represent valence and bond electrons and their changes in
a reaction so that chemical conservation laws correspond to graph invariants. We will
pursue this issue in forthcoming work.

The mathematical structure of the transformation system also deserves further ana-
lysis. The composition of rules is not unique in general because different common sub-

-701-

graphs may exist. This begs the question whether rule composition is associative at the
set level. An affirmative answer, which we conjecture, ensures for instance that efficient
strategies for decomposing composite reactions into their elementary constituents are ex-
haustive. We will address this technical point in a forthcoming manuscript.

Finally, it is a continuing enterprise to develop a foundational computational frame-
work for graph-based modelling of chemical systems. This for example includes the in-
corporation of stereochemical information, which we have only briefly alluded to [31]. It
involves an extension of the vertex and edge labels with permutations groups for encoding
local geometry, and an introduction of non-trivial stereo-morphisms taking these labels
into account. In future work we will explore the details of this stereochemical extension
in the context of rule composition.

Acknowledgements: This work was supported in part by the Volkswagen Stiftung
proj. no. I/82719, the COST-Action CM1304 “Systems Chemistry”, by the Danish Coun-
cil for Independent Research, Natural Sciences, grants DFF-1323-00247 and DFF-7014-
00041, and by the National Science Foundation (INSPIRE 1648973). It is also supported
by the ELSI Origins Network (EON), which is supported by a grant from the John Tem-
pleton Foundation. The opinions expressed in this publication are those of the authors
and do not necessarily reflect the views of the John Templeton Foundation.

Bibliography
[1] J. B. Hendrickson, Comprehensive system for classification and nomenclature of or-

ganic reactions, J. Chem. Inf. Comp. Sci. 37 (1997) 852–860.

[2] G. Benkö, C. Flamm, P. F. Stadler, A graph-based toy model of chemistry, J. Chem.
Inf. Comp. Sci. 43 (2003) 1085–1093.

[3] G. Berry, G. Boudol, The chemical abstract machine, in: POPL ’90 – Proceedings
of the 17th ACM SIGPLAN-SIGACT symposium on principles of programming lan-
guages, Assoc. Computing Machinery, New York, 1990, pp. 81–94.

[4] P. Dittrich, J. Ziegler, W. Banzhaf, Artificial chemistries — a review, Artif. Life 7
(2001) 225–275.

[5] W. Fontana, L. W. Buss, What would be conserved if “the tape were played twice”?
Proc. Natl. Acad. Sci. USA 91 (1994) 757–761.

[6] A. Regev, E. Shapiro, Cells as computation, Nature 419 (2002) 343–343.

[7] V. Danos, Formal molecular biology, Theor. Comp. Sci. 325 (2004) 69–110.

[8] M. L. Blinov, J. Yang, J. R. Faeder, W. S. Hlavacek, Graph theory for rule-based
modeling of biochemical networks, in: C. Priami, A. A. Ingólfsdóttir, B. Mishra, H. R.
Nielson (Eds.), Transactions on Computational Systems Biology VII , Springer, 2006,
pp. 89–106.

-702-

[9] G. Păun, Computing with membranes, J. Comp. Syst. Sci. 61 (2000) 108–143.

[10] L. Cardelli, Brane calculi, in: V. Danos, V. Schachter (Eds.), Computational Methods
in Systems Biology, CMSB’04 , Springer, 2005, pp. 257–278.

[11] C. Arnold, P. F. Stadler, S. J. Prohaska, Chromatin computation: Epigenetic inher-
itance as a pattern reconstruction problem, J. Theor. Biol. 336 (2013) 61–74.

[12] W. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, W. Fontana, Rules
for modeling signal-transduction systems, Science’s STKE 2006 (2006) 334–re6.

[13] J. A. Sekar, J. R. Faeder, Rule-based modeling of signal transduction: a primer,
Methods Mol. Biol. 880 (2012) 139–218.

[14] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe, Algebraic
approaches to graph transformation – Part I: Basic concepts and double pushout
approach, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by
Graph Transformation, World Scientific, 1997, pp. 163–245.

[15] H. Ehrig, K. Ehrig, U. Prange, G. Taenthzer, Fundamentals of Algebraic Graph
Transformation, Springer, Berlin, 2006.

[16] H. Ehrig, Introduction to the algebraic theory of graph grammars (a survey), in:
V. Claus, H. Ehrig, G. Rozenberg (Eds.), Graph-Grammars and Their Application
to Computer Science and Biology, Springer, Berlin, 1979, pp. 1–69.

[17] U. Sauer, Metabolic networks in motion: 13C-based flux analysis, Mol. Syst. Biol. 2
(2006) 62–62.

[18] N. Zamboni, 13C metabolic flux analysis in complex systems, Curr. Opin. Biotech.
22 (2011) 103–108.

[19] M. Durot, P.-Y. Bourguignon, V. Schachter, Genome-scale models of bacterial meta-
bolisn: reconstruction and applications, FEMS Microbiol. Rev. 33 (2009) 164–190.

[20] A. M. Feist, M. J. Herrgård, I. Thiele, J. L. Reed, B. Ø. Palsson, Reconstruction of
biochemical networks in microorganisms, Nat. Rev. Microbiol. 7 (2009) 129–143.

[21] V. Danos, J. Feret, W. Fontana, R. Harmer, J. Hayman, J. Krivine, C. Thompson-
Walsh, G. Winskel, Graphs, rewriting and pathway reconstruction for rule-based
models, in: D. D’Souza, T. Kavitha, J. Radhakrishnan (Eds.), IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2012), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, 2012,
pp. 276–288.

[22] L. Félix, F. Rosselló, G. Valiente, Efficient reconstruction of metabolic pathways by
bidirectional chemical search, B. Math. Biol. 71 (2009) 750–769.

[23] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Inferring chemical reaction
patterns using rule composition in graph grammars, J. Syst. Chem. 4 (2013) 4.

[24] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, 50 Shades of rule composition:
From chemical reactions to higher levels of abstraction, in: F. Fages, C. Piazza (Eds.),
Formal Methods in Macro-Biology, Springer, Berlin, 2014, pp. 117–135.

-703-

[25] M. Schönfinkel, Über die Bausteine der mathematischen Logik, Math. Ann. 92 (1924)
305–316.

[26] H. Ehrig, A. Habel, H. J. Kreowski, F. Parisi-Presicce, Parallelism and concurrency
in high-level replacement systems, Math. Struct. Comp. Sci. 1 (1991) 361–404.

[27] U. Golas, Analysis and Correctness of Algebraic Graph and Model Transformations,
Vieweg+Teubner, Wiesbaden, 2010.

[28] B. Braatz, U. Golas, T. Soboll, How to delete categorically — two pushout comple-
ment constructions, J. Symb. Comput. 46 (2011) 246–271.

[29] A. Habel, D. Plump, Relabelling in graph transformation, in: A. Corradini, H. Ehrig,
H. J. Kreowski, G. Rozenberg (Eds.), Graph Transformation: First International
Conference, ICGT 2002 Barcelona, Spain, October 7–12, 2002 Proceedings, Springer,
Berlin, 2002, pp. 135–147.

[30] G. N. Lewis, The atom and the molecule, J. Am. Chem. Soc. 38 (1916) 762–785.
[31] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, Chemical graph transformation

with stereo-information, in: Graph Transformation: 10th International Conference,
ICGT 2017 , 2017, accepted.

[32] J. L. Andersen, MedØlDatschgerl (MØD), http://mod.imada.sdu.dk, 2016.
[33] J. L. Andersen, C. Flamm, D. Merkle, P. F. Stadler, A software package for chemic-

ally inspired graph transformation, in: R. Echahed, M. Minas (Eds.), Graph Trans-
formation: 9th International Conference, ICGT 2016, in Memory of Hartmut Ehrig,
Held as Part of STAF 2016, Vienna, Austria, July 5-6, 2016, Proceedings, Springer,
Cham, 2016, pp. 73–88.

[34] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, An improved algorithm for matching
large graphs, in: Proc. of the 3rd IAPR-TC15 Workshop on Graph-based Represent-
ations in Pattern Recognition, 2001, pp. 149–159.

[35] L. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism algorithm
for matching large graphs, IEEE T. Pattern Anal. 26 (2004) 1367–1367.

[36] G. L. Holliday, C. Andreini, J. D. Fischer, S. A. Rahman, D. E. Almonacid, S. T.
Williams, W. R. Pearson, MACiE: exploring the diversity of biochemical reactions.,
Nucleic Acids Res. 40 (2012) D783–D789.

[37] B. P. Atanasov, D. Mustafi, M. M. W., Protonation of the beta-lactam nitrogen is
the trigger event in the catalytic action of class A beta-lactamases, Proc. Natl. Acad.
Sci. USA 97 (2000) 3160–3165.

[38] A. Bar-Even, A. Flamholz, E. Noor, R. Milo, Rethinking glycolysis: on the biochem-
ical logic of metabolic pathways, Nat. Chem. Biol. 8 (2012) 509–517.

[39] N. Entner, M. Doudoroff, Glucose and gluconic acid oxidation of pseudomonas sac-
charophila, J. Biol. Chem. 196 (1952) 853–862.

[40] I. Borodina, C. Schöller, A. Eliasson, J. Nielsen, Metabolic network analysis of strep-
tomyces tenebrarius, a streptomyces species with an active entner-doudoroff pathway,
Appl. Environ. Microb. 71 (2005) 2294–2302.

-704-

http://mod.imada.sdu.dk

