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Abstract

We describe an approach to the analysis of chemical (and other) networks that,
in contrast to other schemes, is based on edges rather than vertices, naturally works
with directed and weighted edges, extends to higher dimensional structures like
simplicial complexes or hypergraphs, and can draw upon a rich body of theoretical
insight from geometry. As the approach is motivated by Riemannian geometry,
the crucial quantity that we work with is called Ricci curvature, although in the
present setting, it is of course not a curvature in the ordinary sense, but rather
quantifies the divergence properties of edges. In order to illustrate the method and
its potential, we apply it to metabolic and gene co-expression networks and detect
some new general features in such networks.

1 Introduction

In chemistry, at various levels of description, one encounters discrete representations of

chemical structures or processes. These could be the atoms and their bonds in a molecule,

strings of nucleotides or amino acids, the ingredients and products of chemical reactions,

metabolic flow networks. Also similarity or descendence relations can be represented
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by trees or other such geometric structures. Moreover, we also find the coauthorship or

citation networks of researchers in chemistry and other fields. In mathematics, systematic

theories of discrete structures are currently among the most active research topics. In this

contribution, we want to describe such an important recent research topic, that of discrete

curvatures, and start its application to the analysis of chemical data. The research agenda

developed here will then be applied more systematically in future research.

Let us start with perhaps the basic discrete structure relevant in this context, that of

a network. Networks are represented by graphs, formed by edges that express relations

between pairs of elements (vertices, nodes). These relations could be:

• binary (that is, present/absent, or in formal notation, 1/0)

• weighted

• directed

There could also exist relations between triples or n-tuples of elements. Such higher order

relations can no longer be expressed by graphs, and they would lead us to a representation

by more general mathematical objects, like simplicial complexes or hypergraphs.

In data analysis, when working with networks (or, similarly, more general such struc-

tures), we want to:

• identify qualitative properties of networks in a particular domain, and

• compare different networks, within or between domains,

• through computationally efficient and quick schemes.

In order to achieve this in a systematic and conceptually grounded manner, we take a look

at another discipline that has developed tools to study the geometry of configurations, in

order to see what we can use and what we need to develop on that basis. That discipline

is, perhaps at first somewhat surprisingly in this context, Riemannian geometry, with its

fundamental notion of curvature.

A crucial advantage of the approach presented here is that all prescriptions how to

define such curvature values are guided by systematic mathematical theory. This is in

stark contrast to the prevailing attitude in network analysis to introduce formal quantities

and measures in a rather adhoc manner.
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2 Curvature

In Riemannian geometry, curvature is defined in terms of first and second derivatives of

the metric tensor [8]. There are different notions of curvature

• Sectional curvature, associated to tangent planes

• Ricci curvature, associated to tangent vectors (directions), obtained from averaging

sectional curvatures

• Scalar curvature, associated to points, obtained from averaging Ricci curvatures

Sectional curvature is a full invariant, in the sense that it encodes all the (local) in-

formation about a Riemannian metric. It measures the divergence or convergence of

geodesics. Ricci curvature is weaker, but still surprisingly powerful. It measures the

growth of volumes and the coupling properties of random walks. Sectional curvature

becomes 0 precisely for (locally) Euclidean spaces. Thus, there is a reference space, Eu-

clidean space, that curvature allows a comparison with. Curvature measures the local

deviation of a space from being Euclidean. Spaces of positive curvature have a local

geometry similar to spheres, while those of negative curvature are similar to hyperbolic

spaces. The situation between positive and negative curvature is not entirely symmetric.

Sectional curvature ≤ 0 is well understood. The geometry of negatively curved spaces

is very different from that of positively curved ones. Spaces of curvature ≥ 0 (or better

≥ K > 0) are more difficult. Concerning Ricci curvature, somewhat surprisingly, the sit-

uation seems opposite. Ricci curvature ≥ 0 (or better ≥ K > 0) enjoy strong restrictions,

whereas Ricci ≤ 0 has no consequences, because every manifold of dimension ≥ 3 carries

some complete metric of negative Ricci curvature, as was shown by Lohkamp [10]. Per-

haps that difference between sectional and Ricci curvature inequalities can be intuitively

explained by the fact that sectional curvature encodes global properties, whereas Ricci

curvature (and also scalar curvature) rather characterize local properties. For sectional

curvature, at least in the negative case, one captures its geometric content by zooming in

from infinity. In contrast, for the geometric content of Ricci curvature, in particular in

the positive case, one investigates local expansion properties. Scalar curvature is a much

weaker invariant than Ricci curvature. While it is nevertheless important in Riemannian

geometry, for our purposes, it will not play an essential role.
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Curvature, as originally defined by Riemann [15], is given in terms of certain combi-

nations of first and second derivatives of the metric tensor and thereby seems to require a

differentiable structure. But in modern research, it was found that curvature inequalities,

that is, some curvature being smaller or larger than some number K, can be equivalently

expressed in terms of certain local or global properties that for their formulation do not

require a differentiable structure. These properties could be certain distance relations in

triangles, intersection properties of distance balls, or relations between the volumes of

such balls of different radii.

3 Network curvature

Curvature can also be applied to networks, when conceived as geometric objects. For

instance, we may consider a network as a metric space. When the edges of the network

are unweighted and undirected, the distance between two vertices connected by an edge

would be 1. And when it takes at least n edges to get from one particular vertex to some

other one, their distance would be n.

More abstractly, in whichever way we geometrize networks, the basic idea in defining

curvature inequalities for networks consists in taking some of the local or global properties

that are equivalent to or implied by curvature inequalities in Riemannian geometry as

the definition and exploring their consequences. We start with the following translation

scheme.

• Sectional curvature was associated to tangent planes. As a plane is determined by

3 points, sectional curvatures should be assigned to collections of 3 vertices.

• Ricci curvature was associated to tangent vectors, that is, directions. Such a di-

rection is determined by 2 points, that is, an edge. Thus Ricci curvature would be

assigned to edges. Like a direction, that edge could be directed, and so, we should

get meaningful notions of Ricci curvature also for directed networks.

• Scalar curvature was associated to points. Therefore, in the context of networks, it

should be assigned to vertices.

As already mentioned, sectional curvature elucidates global properties, zooming in

from infinity. Therefore, when using sectional curvature tools to probe networks, one
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should naturally look at triples of vertices that are far apart from each other. In contrast,

Ricci curvature was associated with local properties. Therefore, in the network context,

we shall look at expansion of edges, or the transportation between vertices along edges.

Likewise, scalar curvature was related to local properties. In the network context, these

are simply the degrees of vertices. Of course, the vertex degrees are relatively weak

invariants, although the distribution of vertex degrees in a network does provide some

structural insight.

4 Ricci curvature of networks

While a good definition of sectional curvature for general metric spaces has been developed

in [1], this has not yet been systematically explored on empirical networks. Therefore,

in this contribution, we shall concentrate on Ricci curvature. There exist two different

notions of generalized Ricci curvature that are useful in the present context. We shall

now explore those.

4.1 Ricci curvature I: Ollivier

The starting point of Ollivier’s notion of generalized Ricci curvature [12, 13] is the trans-

portation distance between two points in a metric space. One compares the distance

between those points themselves with the distance between two small balls around them.

That is, each point in one ball has to be transported to some point in the other ball.

The transportation cost is given by the distance between those two points. One then tries

to arrange these pairs of points in the two balls optimally, in the sense that the total

transportation cost between the two balls is as small as possible.

Since in this paper, we consider the Ollivier curvature only for networks, we let (X, d)

be a finite graph with some notion of distance d between vertices. As explained, for

an unweighted graph, the distance between adjacent vertices is 1. Let m1,m2 be two

probability measures on X. Note that, for probability measures, 0 ≤ mi(A) ≤ 1, i = 1, 2,

for any subset A ofX. A coupling (or transport plan) ofm1 andm2 is a measure π onX×X

with marginals m1 and m2, i.e. such that, for all measurable sets A,B ⊂ X, the following

properties hold: π[A×X] = m1[A] and π[X×B] = m2[B], that is,
∑

x∈X π(x, y) = m2(y),

and
∑

y∈X π(x, y) = m1(y). Given a (positive) cost function1 c(x, y) on X ×X, one can

1The cost function c(x, y) should be viewed (as, indeed, intended originally by Monge), as the work
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define the Monge-Kantorovich minimization problem

min
∑
X×X

c(x, y)π(x, y) , (1)

where the minimum is taken over all the transport plans. The transport plans attaining

the minimum are called optimal transport plans.

The L1-Wasserstein (or transportation) distance between the measures m1,m2 is de-

fined as

W1(m1,m2) = min
∑
X

d(x, y)π(x, y) , (2)

where the minimum is taken over all the transportation plans between m1 and m2.

In the simplest case, we have an unweighted and undirected graph and consider two

neighboring vertices (x ∼ y), that is, x and y are connected by an edge and therefore have

distance 1. We let mx and my be the measures on the distance balls B(x, 1) = {z : z ∼

x}, B(y, 1) = {w : w ∼ y} (for simplicity, we omit the centers x and y, respectively, from

the balls, because we know that their distance is 1 anyway) around x and y, respectively,

of radius 1. The measure is mx = 1
dx

, where dx is the degree of x, that is, the number of

neighbors of x puts equal weight on all neighbors. W1(mx,my) then is the transportation

distance between the two measures mx and my.

The definition of the Ricci curvature then is

κ(x, y) := 1−W1(mx,my). (3)

When the transportation distance W1(mx,my) between the neighborhoods of x and

y, as represented by the measures mx and my, is smaller than the distance between their

centers, one has positive Ricci curvature in the sense of Ollivier, and when it is larger, the

Ricci curvature is negative. The geometric intuition is that the more positive the Ricci

curvature is, the more two distance balls centered at nearby points overlap, and therefore,

the cheaper it is to transport the mass from one to the other.

Triangles and quadrangles decrease transportation cost, hence increase Ricci curvature.

Here, a triangle is a configuration of three vertices x, y, z that are mutually neighbors.

Thus, such a z is contained in both B(x, 1) and B(y, 1), and therefore, it need not be

transported at all between the two balls. It therefore incurs a transportation cost of

0. Likewise, when we have a quadrangle involving x and y, that is, vertices z, w with

z ∼ x,w ∼ y and z ∼ w, then we can transport z to w with a cost of 1.

necessary (or amount of energy needed) to transport a unit mass from point x to the point y.
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For an illustration, based on [9], see Fig. 1.
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Figure 1. Illustration of optimal mass transportation on a simple graph
configuration: Starting configuration (top) The vertex x has 6 neigh-
bors, each of them getting mass 1

6 ; mass 0 at all other vertices; Target
configuration (middle) The vertex y has 5 neighbors, each getting mass
1
5 ; The optimal transportation plan (bottom) Mass is moved from vertices
with larger value to those with smaller ones. Since not all the mass from
the three vertices denoted x with label 3 can go the single neighbor de-
noted y with label 2 (x itself), some of it has to be transported to other
neighbors y with smaller labels. On the other hand, the two vertices of
the triangles with label 1 are neighbors of both x and y, and so, their
mass of 1

6 each need not be transported at all. However, as these vertices
have to acquire mass 1

5 in the target configuration, they still need to get
a little mass from other vertices.
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Recalling the defining Equation (3), and with the notation

](x, y) := number of triangles which include x, y as vertices, for x ∼ y, (4)

we have the inequality of [9], saying that

κ(x, y) ≥ −
(

1− 1

dx
− 1

dy
− ](x, y)

dx ∧ dy

)
+

−
(

1− 1

dx
− 1

dy
− ](x, y)

dx ∨ dy

)
+

+
](x, y)

dx ∨ dy
. (5)

where, for any real numbers s, t, we put s+ := max(s, 0), s ∨ t := max(s, t), s ∧ t :=

min(s, t).

Of course, one can also consider κ(x, y) for two vertices that are not neighbors. One simply

puts κ(x, y) := 1 − W1(mx,my)

dist(x,y)
, where, as explained, dist(x, y) is the minimal number of

edges needed to get from x to y. For studying graphs and networks, it seems more useful,

however, to work with the neighborhood graphs introduced in [2] instead.

Ollivier’s notion of Ricci curvature can be extended to weighted and directed networks.

When the vertices v have weights wv, the mass is distributed among the neighbors z of

x according wz∑
v∼x wv

, and accordingly for y. When the edges have weights, the trans-

portation cost should get multiplied by the inverse of the edge weights, because edges of

smaller weight have less carrying capacity. And when the network is directed, we can

only use directed edge paths going from a neighbor of x to some neighbor of y. Then the

transportation distance from x to y will be different in general from that from y to x, and

therefore in general κ(x, y) 6= κ(y, x).

The Ollivier-Ricci has many nice properties. In particular, it controls eigenvalues of

the graph Laplacian [12, 13], with improved estimates via neighborhood graphs [2]. This is

important because those eigenvalues yield much insight into the global and local structure

of a network and therefore constitute important tools in network analysis. But instead of

exploring that aspect, we now turn to the second notion of generalized Ricci curvature.

4.2 Ricci curvature II: Forman

The idea behind Forman’s definition [7] of generalized Ricci curvature is that Ricci curva-

ture measures how fast the volume of distance ball grows. For networks, that means how

fast edges spread in different directions. In particular, edges with very negative curvature
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should play a special role for the spreading out and hence for, e.g., information dispersal

in a network.

Forman’s curvature [17] for an undirected edge e of weight we with endpoints v1 and

v2 with weights wv1 , wv2 is

Ric(e) = we

wv1

we

+
wv2

we

−
∑

ev1 ,ev2∼e

[
wv1√
wewev1

+
wv2√
wewev2

] (6)

where ev1 , ev2 are the edges connected to nodes v1 and v2. (Note that here the second

sum should not be interpreted as a double sum, but rather like the sum over all the edges

incident to e.) When all nonzero weights are 1, or equivalently, when the network is

unweighted, this reduces to

Ric(e) = 4− deg(v1)− deg(v2) =
2∑

i=1

(2− deg(vi)) . (7)

This quantity can be easily understood. It measures the spreading or dispersion at the

vertices of the edge e. Thus

Ric(e)� 0 if both vertices have high degree. (8)

In contrast,

Ric(e) = 0 if both vertices have degree 2, (9)

and so, a graph has a cycle has Ric ≡ 0. (The other only configuration having Ric ≡ 0 is,

as one can easily check, a tripod.) This is in contrast to the Ollivier curvature, where the

length of the cycle affects the magnitude of the curvature. Thus, typically, the Forman-

Ricci curvature of an edge is negative, in contrast to the Ollivier-Ricci curvature which is

frequently positive. Therefore, we might expect that these two notions of Ricci curvature

capture different properties of a network. Nevertheless, it turns out that in empirical

networks, they are usually highly correlated. This is useful, because the Forman curvature

is much easier to compute than the Ollivier curvature [16].

As, we have seen in the preceding simple examples, Forman’s Ricci curvature can infer

global (i.e. topological) facts about a network solely from local information (namely cur-

vature). Below, we shall illustrate this for metabolic flow networks. Since those networks

are directed, we shall now describe our generalization of the Forman-Ricci curvature to

directed networks [18]. For this purpose, we separate the contributions of the two vertices
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involved,

Ric(e) = we

wv1

we

−
∑

ev1 ∼ e

wv1√
wewev1

+ we

wv2

we

−
∑

ev2 ∼ e

wv2√
wewev2

 (10)

and define the curvature of a directed edge by only using the term involving its initial ver-

tex, or alternatively that for its terminal vertex. While computing the Forman curvature

of a directed edge e = −−→v1v2 that originates from node v1 and terminates at node v2, we

take into account only those directed edges that either terminate at node v1 or originate

at node v2 [18]. Alternatively, for a node in a directed network, we can distinguish its

incoming and outgoing edges. Denote the set of incoming and outgoing edges for a node

v by EI,v and EO,v. We then define the In Forman curvature RicI(v) and the Out Forman

curvature RicO(v) by

RicI(v) =
∑

e∈EI,v

Ric(ev) (11)

RicO(v) =
∑

e∈EO,v

Ric(ev) , (12)

summing over only the incoming or outgoing edges, respectively.

The total amount of flow through a node v then is

RicI/O(v) = RicI(v)− RicO(v) . (13)

Similarly, for a directed edge, we can take the difference inflow − outflow at the initial

vertex and outflow − inflow at the terminal vertex.

We underline the importance of the In and Out Forman curvatures in the study of

directed (hyper-)networks arising in Chemistry in Section 5.1 (see, in particular, Figure 3).

With Forman’s curvature notion, one can also construct a Ricci flow [19, 20] to

smoothen a network or to identify sensitive regions

γ̃(e)− γ(e) = −RicF (γ(e)) · γ(e) , (14)

where γ̃(e) denotes the new (updated) weighting scheme with γ(e) being the initial (given)

one.

Summarizing some of the preceding leads us to a comparison between Ollivier-Ricci

and Forman-Ricci, involving the following items
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• They emphasize different aspects: clustering vs. dispersion.

• Forman is simpler to compute.

• Ollivier is related to network coherence (via eigenvalue estimates).

• There is a natural Ricci flow for Forman.

• Empirically, they are strongly correlated.

Remark As already mentioned in the introduction, not all discrete structures arising

in chemistry can be fully captured by networks, that is, graphs. When we have also

higher order relations, we are naturally lead to simplicial complexes or hypergraphs. For

a simplicial complex, we have vertices v1, . . . , vN . A k-dimensional simplex is given by a

relation among k+1 distinct vertices, say, vi0 , . . . , vik , and it is required that whenever we

have such a simplex, also all its subsimplices are members of the complex. That means

that whenever we have such a k-simplex, and {j0, . . . , j`} ⊂ {i0, . . . , ik} (all indices in

a set are assumed to be distinct, and so ` ≤ k), then also the `-simplex with vertices

vj0 , . . . , vj` belongs to the complex. When this condition is not satisfied, we speak of a

hypergraph instead of a simplicial complex.

Forman’s notion of Ricci curvature naturally extends to weighted simplicial complexes.

According to this formula, for a higher dimensional simplicial complex, we also get positive

contributions to the curvature of an edge from two-dimensional faces containing the edge

in question. That is, whenever an edge is contained in a triangle, this increases its

curvature. Thus, when, for instance, we insert triangles to express triple relations, we

increase the Ricci curvature [21].

5 Application of Forman-Ricci curvature to meta-

bolic and gene co-expression networks

5.1 Metabolic networks

Metabolism plays a central role in living organisms. Biochemical reactions in the metabolic

network of a cell are responsible for converting nutrient metabolites into key metabolites

required for growth and maintenance of an organism. As an example of application of

Forman-Ricci curvature to chemical networks, we here present results from an analysis of
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metabolic networks inside two well-studied models, Escherichia coli and Saccharomyces

cerevisiae.

A

B

C

D

E

FR1

R2

R1

R2

A 3B+ 2C 4D+

3E F+C

12

3 4

1

3

1

Figure 2. Construction of directed bipartite graph for metabolic net-
works. In this figure, we have shown the construction of the directed
bipartite graph for two biochemical reactions. Here, metabolites in the
graph are depicted as circles while reactions are depicted as rectangles.

For our analysis, we have used the E. coli metabolic network iJR904 [14] which con-

tains 931 reactions involving 761 metabolites, and the S. cerevisiae metabolic network

iND750 [5] which contains 1149 reactions involving 1061 metabolites. Starting from the

list of biochemical reactions in the E. coli and S. cerevisiae metabolic networks, we have

constructed a directed bipartite graph of reactions and metabolites as follows. As a first

step, we have converted each reversible reaction in the network into two irreversible reac-

tions corresponding to forward and backward reactions. Subsequently, we have converted

each irreversible reaction into directed edges which connect either the substrate metabo-

lites to the reaction or the reaction to product metabolites (Fig. 2). Moreover, we assign

a weight to each directed edge in the bipartite graph which corresponds to the stoichiom-

etry of the involved metabolite (substrate or product) in the reaction under consideration

(Fig. 2). For example, a reaction R1 where 1 molecule of metabolite A combines with

3 molecules of metabolite B to produce 2 molecules of metabolite C and 4 molecules of

metabolite D leads to the following 4 edges, A→ R1 with weight 1, B → R1 with weight

3, R1 → C with weight 2, and R1 → D with weight 4, in the bipartite graph (Fig. 2).

Using the constructed directed bipartite graph for the metabolic networks of E. coli

and S. cerevisiae, we have computed the distributions of the Forman curvature of a di-

rected edge [18] in the metabolic networks of the two organisms which are shown in Fig.

-616-



3. From Fig. 3, it is seen that the distribution of Forman curvature is broad in the

metabolic networks of the two organisms. Moreover, we find that there are some perspic-

uous secondary peaks in the Forman curvature distribution of the two organisms in the

range from –400 to –200 with frequency greater than 50, apart from the main peak near 0

(Fig. 3). Specifically, there are 3 such peaks in the Forman curvature distribution of the

E. coli network and 2 such peaks in the distribution of the S. cerevisiae network. We then

extracted the edges in the directed bipartite graph that contribute to these secondary

peaks in the Forman curvature distribution for the metabolic networks of the two organ-

isms. Interestingly, we found that all the edges that give rise to these secondary peaks

in the Forman curvature distribution of the two metabolic networks are between a single

metabolite (H+ or proton) and different reactions in the network. Thus, these secondary

peaks in the curvature range from –400 to –200 correspond to the connections of high

degree metabolite H+ which is ubiquitous in any metabolic network. Thus, our analysis

can detect substructures inside a network that belong to particular classes of vertices or

edges. Once they are identified, one can then analyze their chemical role in detail. In

the present example, this is rather straightforward, but in our second case study, where

a similar phenomenon will be seen, this will already be more subtle.

We have also computed the In and Out Forman curvatures both of edges and of

nodes. As can be seen in Fig. 3, the distributions of these directed versions are, with the

exception of a number of sparse, isolated peaks, strongly concentrated towards (and, in

fact, even at) 0. However, secondary peaks (“humps”) appear in the distribution of the In

and Out Forman curvatures of reaction nodes. In contrast, such peaks are absent in the

distributions of In Forman curvature of metabolite nodes and Out Forman curvature of

metabolite nodes. Moreover, the distributions of In Forman curvature of metabolite nodes

and Out Forman curvature of metabolite nodes is broad in comparison to the distributions

of In Forman curvature of reaction nodes and Out Forman curvature of reaction nodes

(see Fig. 3, (b) and (e) vs. (c) and (f)).
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Figure 3. Distribution of Forman curvature of edges, In Forman curav-
ture of nodes and Out Forman curvature of nodes in metabolic
networks. (a-c) E. coli and (d-f) S. cerevisiae. In the bipartite graph
associated with the metabolic networks, there are two types of nodes:
metabolites and reactions. In (b) and (c), insets show the distributions
of In Forman curvature of reaction nodes and Out Forman curvature of
reaction nodes in E. coli, and in (e) and (f), insets show the distributions
of In Forman curvature of reaction nodes and Out Forman curvature of
reaction nodes in S. cerevisiae. We find that the distributions of In For-
man curvature of reaction nodes and Out Forman curvature of reaction
nodes show secondary peaks while such peaks are absent in the distri-
butions of In Forman curvature of metabolite nodes and Out Forman
curvature of metabolite nodes. Moreover, the distributions of In Forman
curvature of metabolite nodes and Out Forman curvature of metabolite
nodes is broader compared to the distributions of In Forman curvature
of reaction nodes and Out Forman curvature of reaction nodes.
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5.2 Gene co-expression networks

In a second study, we analyze a gene co-expression network with the Forman-Ricci for-

malism. The analysis of gene co-expressions is a popular method in genomics. Pairwise

correlations of gene expression levels are computed across a set of samples to identify genes

with highly correlated expression profiles. Such pairs of co-expressed genes are likely to

have functional and regulatory commonalities making co-expression analysis a widely used

tool for studying relationships among genes. Aiming to identify such functional substruc-

tures, we evaluate the curvature distribution across a co-expression network.

In this study, we analyze a gene co-expression network built from gene expression

measurements in human brain tissue. We use publicly available gene expression data

from the Brainspan atlas [3, 11] containing measurements for 17290 genes across 508

tissue samples. The construction of co-expression networks from experimental data is

shown in Fig. 4. With a significance threshold for pairwise co-expression of ∼ 0.8 the

resulting network has ∼ 1 Million edges.

Figure 4. Construction of co-expression networks. In a first step, we com-
pute the correlations of N gene expression levels across a set of M sam-
ples. The resulting N × N matrix contains the pairwise co-expression
among all genes. We apply a threshold to maintain only significant co-
expression pairs, the resulting sparse matrix is the adjacency matrix of
the corresponding co-expression network. The network is weighted; edge
weights encode the co-expression value of the respective gene pair.

The computation of Forman-Ricci curvature across the network revealed the distri-

bution shown in Fig. 5. We identify a major hump at curvature-values of ∼ −200 and

smaller humps at ∼ −80 and ∼ −30. Starting from this observation, we performed a

closer analysis of the genes associated with the subnetworks underlying the humps.
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Figure 5. Distribution of Forman-Ricci curvature in gene co-expression
networks. The analysis indicates the presence of three substructures,
corresponding to a major hump at curvature-values of ∼ 200 and smaller
humps at ∼ 80 and ∼ 30.

For this, we analyzed the frequency of housekeeping genes in each of the three subnet-

works with the following protocol: We identified the edges that contribute to each of the

three humps and their vertices. From the set of vertices for each subnetwork, we selected

the most frequent 100vertices. With the help of the Ensembl database [4] we identified

the standard gene names corresponding to these vertices and compared them with a list

of housekeeping genes by Eisenberg and Levanon [6]. This gave the following results:

• hump 1: 26/100 are housekeeping genes (26%)

• hump 2: 19/100 are housekeeping genes (19%)

• hump 3: 16/100 are housekeeping genes (16%)

In contrast, overall we find only 8.9% housekeeping genes with the same protocol, indi-

cating that housekeeping genes occur with higher frequency in the three subnetworks.

These results provide further evidence for the conclusions in our first study, namely

that curvature detects structurally important vertices corresponding to frequent elements

in the underlying system. Moreover, the results indicate that curvature highlights the

connectivity among those elements; a structural property described as the backbone effect

[19].
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