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Abstract

We investigate the diffusion of oxygen in a spherical cell including nonlinear up-
take kinetics. We study the Lane-Emden boundary value problem, with Michaelis-
Menten kinetics, to model the dimensionless oxygen concentration. Due to the
presence of singularity, this problem pose difficulties in obtaining its solutions. To
overcome the singular behavior at the spherical origin of the cell, Lane-Emden equa-
tion is transformed into an equivalent Fredholm integral equation. The optimal
homotopy analysis method (OHAM) is applied to solve the Lane-Emden integral
form for studying the concentration of oxygen within the spherical cell. To speed
up the calculations, the discrete averaged residual error is used to obtain optimal
value of the adjustable parameter c0 to control the convergence of solution. Un-
like, Adomian decomposition method (ADM) [1], the proposed method contains an
adjustable parameter c0 to control the convergence of series solutions.
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1 Introduction

In [2], Lin tried to predict the oxygen tension in a spherical cell by using an oxygen uptake

kinetics of the Michaelis-Menten type. If V is the maximum reaction rate, P the oxygen

tension and km the Michaelis-Menten constant, then unsteady state oxygen diffusion in a

spherical cell can be expressed mathematically as

∂P

∂t
= D

(
∂2P

∂r2
+

2

r

∂P

∂r

)
− V P

P + km
, (1.1)

and the initial and boundary conditions are given by

t = 0; P = 0, (1.2)

r = 0;
∂P

∂r
= 0, (1.3)

r = r0; D
∂P

∂r
= h(P0 − P ), (1.4)

in which D is the diffusion coefficient of oxygen in the protoplasm, r0 the radius of cell, h

the permeability of membrane, r the radial co-ordinate and t the time. For convenience

of computational purpose, equation (1.1) and the initial and boundary conditions can

be cast into dimensionless form by introducing the following dimensionless variables and

parameters

C =
P

P0

, τ =
tD

r20
, R =

r

r0
, α =

V r20
P0D

, K =
km
P0

, H =
hr0
D
.

Equations (1.1)–(1.4) are then transformed into

∂C

∂τ
=
∂2C

∂R2
+

2

R

∂C

∂R
− α

C

C +Km

, (1.5)

subject to the initial and boundary conditions

τ = 0; C = 0, (1.6)

R = 0;
∂C

∂R
= 0, (1.7)

R = 1;
∂C

∂R
= H(1− C). (1.8)

In [3], McElwain considered the steady state and reduced (1.5)–(1.8) into nonlinear sin-
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gular boundary value problems in the Lane-Emden form [1, 3–5] as

C ′′(R) +
2

R
C ′(R)− α

C(R)

C(R) +K
= 0, 0 < R < 1, where ′ =

d

dR
, (1.9)

subject to the boundary conditions

C ′(0) = 0, C ′(1) +HC(1) = H. (1.10)

Here, the variables C and R represent the oxygen concentration and the radial distance,

respectively. The parameters α, K and H are real constants that represent the maximum

reaction rate, the Michaelis constant, which is the half-saturation concentration, and the

permeability of the cell membrane, respectively [2, 3].

The boundary condition at R = 0 ensures that the oxygen distribution is symmetric at

the center of the sphere whereas the boundary condition at R = 1 states that the flux

of oxygen across the cell membrane, which is one less than the normalized concentration

at the cell membrane [6, 7]. Since the metabolic reactions in a cell are catalyzed by

enzymes, that is, it is plausible to express the oxygen uptake kinetics by the Michaelis-

Menten equation: oxygen uptake=α C(R)
C(R)+K

.

The Lane–Emden equation has been used to model several phenomena in mathematical

physics and astrophysics, chemical reaction systems, and biological population phenom-

ena as described in [8–15] and some of the references cited therein. In [2], Lin presented

a numerical approximation which was later re-examined in [3] by McElwain by using the

fourth-order Runge–Kutta method and the bisection method to compute his approxima-

tions, which showed a substantially different result compared to that obtained in [2]. In

[16], Hiltmann and Lory used the multiple shooting method to show that the problem has

unique solution in the physically feasible range. In [7], Simpson and Ellery applied the

Maclaurin series to derive their approximations and examined the convergence and limi-

tations of those approximations. Moreover, in [1], the author used Volterra-integral form

of the Lane-Emden equation and the Adomian decomposition method to solve the prob-

lem analytically. In [4], a nonlinear model representing oxygen diffusion accompanied by

the Michaelis-Menten consumption kinetics inside a spherical cell was solved analytically

by the differential transform method (DTM) and the modified Adomian decomposition

method (MADM).
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The purpose of this paper is to apply the optimal homotopy analysis method (OHAM) to

find accurate approximate solutions of nonlinear Lane-Emden equation (1.1). To overcome

the singular behavior at the spherical origin of the cell, the Lane-Emden equation is

transformed into an equivalent Fredholm integral equation and then the OHAM is applied

to get approximate solutions. The most significant feature of the OHAM is the optimal

control of the convergence of solutions by a convergence-control parameter which ensures

a very fast convergence. The OHAM has been proved to be reliable and efficient. In

summary, the OHAM has the following advantages:

• Unlike ADM or MADM, the present approach does not require any additional com-

putational work for unknown constants;

• Guarantee of convergence;

• Flexibility on choice of base function and initial guess of solution;

• Useful analytic tool to investigate highly nonlinear problems with multiple solutions,

singularity and perturbed.

2 Description of the method

Our solution approach is very flexible and we will demonstrate this by studying a gener-

alization of Eqs. (1.9)-(1.10) which we write as

C ′′(R) +
2

R
C ′(R)− f(C) = 0, 0 < R < 1 (2.1)

subject to the boundary conditions

C ′(0) = 0, C ′(1) +HC(1) = H. (2.2)

Comparing (1.9) and (2.1) we see that (2.1) is valid for any uptake model f(C). By

setting Michaelis-Menten nonlinearity

f(C) = α
C(R)

C(R) +K
,

we recover the original non dimensional model (1.9).
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Our aim is now to solve the general problem (2.1). To do so, we first convert (2.1)-(2.2)

into integral equation. Integrating (2.1) w.r.to R first from 0 to R and then from R to 1,

then changing the order of integration, and applying the boundary conditions C ′(0) = 0

and C ′(1) + HC(1) = H, and with appropriate algebraic manipulations (for additional

details [17]) we get the equivalent the Fredholm integral form as

C(R) = 1 +

1∫
0

G(R, s)s2f(C(s))ds, (2.3)

N [C(R)] = C(R)− 1−
1∫

0

G(R, s)s2f(C(s))ds = 0 (2.4)

where Green’s function G(R, s) is given by

G(R, s) =


(
1− 1

s

)
− 1

H
, 0 < R ≤ s(

1− 1

R

)
− 1

H
, 0 < s ≤ R

(2.5)

According to homotopy analysis method or optimal homotopy asymptotic method [18–23],

we use q ∈ [0, 1] as an embedding parameter, the general zero-order deformation equation

is constructed as

(1− q)[φ(R, q)− C0(R)] = q c0 N [φ(R, q)]. (2.6)

Here, C0(R) denotes an initial guess for the exact solution C(R), c0 6= 0 is convergence-

controller parameter, φ(R, q) is an unknown function and N [φ(R, q)] is given by

N [φ(R, q)] = φ(R, q)− 1−
1∫

0

G(R, s)s2f(φ(s, q))ds = 0. (2.7)

The zero-order deformation (2.6) becomes φ(R, 0) = C0(R) at q = 0, and it leads to

N [φ(R, 1)] = 0, at q = 1, which is exactly the same as the original problem (2.3) provided

that φ(R, 1) = C(R).

Expanding φ(R, q) in a Taylor series with respect to the parameter q, we obtain

φ(R, q) = C0(R) +
∞∑

m=1

Cm(R)q
m, (2.8)
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where Cm(R) is given by

Cm(R) =
1

m!

∂m

∂qm
[φ(R, q)]

∣∣∣∣
q=0

. (2.9)

The series (2.8) converges for q = 1 if c0 6= 0 is chosen properly and it becomes

φ(R, 1) ≡ C(R) = C0(R) +
∞∑

m=1

Cm(R), (2.10)

which will be one of solutions of the problem (2.3).

Defining the vector
−→
Cm = {C0(R), C1(R), . . . , Cm(R)} and differentiating Eq. (2.6), m

times with respect to the parameter q, dividing it by m!, setting subsequently q = 0, the

mth-order deformation equation is obtained

Cm(R)− χm Cm−1(R) = c0 Rm(
−→
Cm−1, R), (2.11)

where χm is given by

χm =

{
0, m ≤ 1

1, m > 1
(2.12)

and

Rm(
−→
Cm−1, R) =

1

(m− 1)!

[
∂m−1

∂qm−1
N [φ(R, q)]

]∣∣∣∣
q=0

=
1

(m− 1)!

[
∂m−1

∂qm−1
N
( ∞∑

k=0

Ckq
k

)]∣∣∣∣
q=0

= Cm−1(R)− (1− χm)
c

a
−

1∫
0

G(R, s) sα Dm−1[f(φ)] ds (2.13)

where Dm−1)[f(φ)] is the (m− 1)th-order homotopy-derivative operator [24] given by

Dm−1[f(φ)] =
1

(m− 1)!

∂m−1

∂qm−1
f

( ∞∑
k=0

Ckq
k

)∣∣∣∣
q=0

. (2.14)

Using (2.11) and (2.13), the mth-order deformation equation is simplified as

Cm(R)− χmCm−1(R) = c0

[
Cm−1(R)− (1− χm)−

1∫
0

G(R, s)s2Dm−1[f(φ)]ds

]
. (2.15)
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In this paper, we choose an initial guess C0(R) = 1, the solution components Cm, m =

1, 2, . . . are successively obtained as

C1(R) = c0

[
C0(R)− 1−

1∫
0

G(R, s) s2 D0[f(φ)]ds

]
(2.16)

Cm(R) = (1 + c0) Cm−1(R)− c0

[ 1∫
0

G(R, s) s2 Dm−1[f(φ)]ds

]
, m = 2, 3, . . . (2.17)

The Mth-order approximate solution of the problem (2.3) is given by

ϕM(R, c0) = C0(R) +
M∑

m=1

Cm(R, c0). (2.18)

Appropriate selection of the convergence control parameter c0 has a big influence on the

convergence region of series (2.10) and on the convergence rate as well [24, 25]. One of the

methods for selecting the value of convergence control parameter is the so-called c0-curve

and the horizontal line may be considered as the valid interval for c0 [19, 26]. This method

enables to determine the effective region of the convergence control parameter, however

it does not give the possibility to determine the value ensuring the fastest convergence

[24]. Another way to find the optimal value of the convergence-control parameter c0 is

obtained by minimizing the squared residual of governing equation

EM(c0) =

∫ 1

0

(N [ϕM(R, c0)])
2dR. (2.19)

The squared residual error defined by (2.19) is a kind of measurement of the accuracy

of the Mth-order approximation. However, the exact squared residual error is expensive

to calculate when M is large. For speed up the calculations Liao [24, 27] suggested to

replace the integral in formula (2.19) by its approximate value obtained by applying the

quadrature rules. So, we approximate EM by the discrete averaged residual error defined

by

EM(c0) ≈
1

n

n∑
j=1

(N [ϕM(jh, c0)])
2, (2.20)

where 0 = R1 < R2 < . . . Rj−1 < Rj < . . . < Rn = 1 with Rj = jh, h = Rj − Rj−1.

The optimal value c0 is obtained by solving dEM

dc0
= 0, and optimal value will satisfy
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EM(ĉ0) < EM(c0). Having computed the optimal value ĉ0 and substituting in (2.18), the

approximate solution will be obtained.

3 Numerical Results

In this paper, we consider the effects of the biologically relevant parameters on the di-

mensionless oxygen concentration C(R,α,K,H) by using OHAM and ADMGF approx-

imations to perform parametric simulations. To examine the accuracy and applicability

of the OHAM, we define the residual and maximum absolute residual errors as

EM
res(R) =

∣∣∣∣ϕ′′
M +

2

R
ϕ′
M − α

ϕM

ϕM +K

∣∣∣∣ and EM = max
0≤R≤1

|EM
res(R)| (3.1)

eMres(R) =

∣∣∣∣ψ′′
M +

2

x
ψ′
M − α

ψM

ψM +K

∣∣∣∣ and eM = max
0≤R≤1

|eMres(R)|, (3.2)

where ϕM is the Mth-order OHAM solution and ψM = ϕM(R,−1) is the Adomian de-

composition method with Green’s function (ADMGF) solution. Note that the optimal

homotopy analysis method (2.15) reduce to ADMGF when parameter c0 = −1 (for details

[17]).

3.1 For H = 5

Applying (2.15) with an initial guess C0(R) = 1, we approximate solution ϕM(R). Using

(2.19), we obtain optimal values [ĉ0 = −1.045949,−1.010201] for (α = 0.76129, K =

0.03119) and [ĉ0 = −0.920111,−0.909001] for (α = 4, K = 3) with M = 5 and M = 10,

respectively. In Tables 1 and 2 we give the comparison of the absolute residual errors and

the approximate solutions obtained by OHAM and ADMGF, respectively. Tables show

a rapid rate of convergence for low-stage approximations by both the methods and the

residual error approaches to zero.
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Table 1 Results of residual error and solution α = 0.76129, K = 0.03119, H = 5 in [17, 28]

R e5res E5
res e10res E10

res ψ10(ADMGF) ϕ10(OHAM)
0.0 2.91E-06 8.32E-07 2.13E-10 1.14E-10 0.82848329 0.82848329
0.1 2.80E-06 7.95E-07 1.95E-10 1.04E-10 0.829706092 0.829706092
0.2 2.49E-06 6.94E-07 1.50E-10 7.76E-11 0.833374734 0.833374734
0.3 2.03E-06 5.54E-07 9.42E-11 4.61E-11 0.839489914 0.839489914
0.4 1.50E-06 4.07E-07 4.56E-11 2.00E-11 0.848052785 0.848052785
0.5 9.93E-07 2.83E-07 1.45E-11 4.59E-12 0.859064927 0.859064927
0.6 5.66E-07 2.01E-07 6.60E-13 1.23E-12 0.872528320 0.87252832
0.7 2.63E-07 1.59E-07 2.52E-12 1.82E-12 0.888445306 0.888445306
0.8 8.70E-08 1.49E-07 1.77E-12 9.98E-13 0.906818548 0.906818548
0.9 1.13E-08 1.52E-07 7.45E-13 4.01E-13 0.927650988 0.927650988
1.0 5.97E-09 1.54E-07 2.54E-13 1.69E-13 0.950945798 0.950945798

Table 2 Results of residual error and solution when α = 4, K = 3, H = 5

R e5res E5
res e10res E10

res ψ10(ADMGF) ϕ10(OHAM)
0.0 0 0 0 0 0.794152518 0.794152518
0.1 1.20E-06 1.52E-07 5.99E-11 5.72E-12 0.795548497 0.795548497
0.2 2.41E-06 2.26E-07 1.17E-10 9.14E-12 0.799743414 0.799743414
0.3 3.62E-06 1.62E-07 1.68E-10 8.92E-12 0.806758213 0.806758213
0.4 4.75E-06 6.44E-08 2.08E-10 5.13E-12 0.816627817 0.816627817
0.5 5.71E-06 4.32E-07 2.29E-10 1.09E-12 0.829401148 0.829401148
0.6 6.35E-06 8.58E-07 2.26E-10 8.16E-12 0.845141155 0.845141155
0.7 6.52E-06 1.20E-06 1.98E-10 1.44E-11 0.863924839 0.863924839
0.8 6.12E-06 1.26E-06 1.52E-10 1.78E-11 0.885843276 0.885843276
0.9 5.12E-06 8.16E-07 9.91E-11 1.48E-11 0.911001636 0.911001636
1.0 3.64E-06 3.71E-07 5.16E-11 4.40E-13 0.939519180 0.939519180

3.2 For K = 2, H = 4

We fix the Michaelis constant K = 2 and permeability of the cell membrane parameter

H = 4, we consider the influence of the maximum reaction rate for different values of α

on the dimensionless oxygen concentration C(R,α,K = 2, H = 4) which is approximated

by OHAM and ADMGF methods explained in section 2. The numerical results of the

maximum residual errors and approximate solutions are shown in Tables 3 and 4.
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Table 3 Maximum absolute residual error eM and EM when K = 2,H = 4

α e5 E5 e10 E10

0.5 8.21E-11 1.51E-12 1.21E-14 2.40E-16
1.5 4.90E-08 7.91E-09 1.10E-13 6.50E-15
2.5 1.39E-06 3.08E-08 2.44E-11 5.13E-13
3.5 1.08E-05 2.45E-07 9.08E-10 7.63E-12
4.5 3.81E-02 8.77E-03 1.38E-08 7.75E-10

Table 4 numerical results of approximate solutions when K = 2, H = 4

R ϕ5, (α = 0.1) ϕ5, (α = 0.5) ϕ5, (α = 1.5) ϕ5, (α = 2.5) ϕ5, (α = 3.5)

0.0 0.959175169 0.882446456 0.811973631 0.747370694 0.688240945
0.1 0.959445297 0.883211957 0.813177164 0.748958305 0.690162386
0.2 0.960255869 0.885510117 0.816792326 0.753729956 0.695941026
0.3 0.961607438 0.889345907 0.822832797 0.761712100 0.705619806
0.4 0.963500929 0.894727606 0.831321355 0.772948772 0.719270237
0.5 0.965937637 0.901666790 0.842289836 0.787501525 0.736992313
0.6 0.968919225 0.910178318 0.855779082 0.805449312 0.758914353
0.7 0.972447723 0.920280312 0.871838869 0.826888339 0.785192780
0.8 0.976525529 0.931994135 0.890527815 0.851931857 0.816011781
0.9 0.981155406 0.945344363 0.911913264 0.880709902 0.851582850
1.0 0.986340481 0.960358747 0.936071155 0.913368955 0.892144159

3.3 For α = 2, H = 4

Now by fixing the maximum reaction rate α = 2 and permeability of the cell membrane

parameter H = 4, we consider the influence of the Michaelis constant for different values

of K on the dimensionless oxygen concentration C(R,α = 2, K,H = 4) which is approxi-

mated by OHAM and ADMGF methods. The numerical results of the maximum residual

errors and approximations of solutions are shown in Table 5 and 6.

Table 5 Maximum absolute residual error when α = 2,H = 4

K e5 E5 e10 E10

0.1 2.83E-04 2.16E-06 7.91E-07 1.47E-09
0.5 2.85E-05 3.24E-07 1.14E-08 3.72E-10
1.5 1.43E-06 5.52E-07 3.67E-11 7.31E-13
2.5 2.47E-07 3.68E-09 9.28E-13 8.15E-14
3.5 9.13E-08 6.40E-09 5.88E-14 7.82E-15
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Table 6 Results of approximate solution when α = 2, H = 4

R ϕ5, (K = 0.1) ϕ5, (K = 0.5) ϕ5, (K = 1.5) ϕ5, (K = 2.5) ϕ5, (K = 3.5)

0.0 0.56480555 0.696364355 0.817189609 0.867425946 0.895656092
0.1 0.567638453 0.698305227 0.818365494 0.868284779 0.896335413
0.2 0.576144680 0.704135966 0.821897088 0.870863551 0.898374852
0.3 0.590346397 0.713880791 0.827796192 0.875169074 0.901778840
0.4 0.610279291 0.727579575 0.836082433 0.881212700 0.906554761
0.5 0.635990799 0.745287118 0.846783197 0.889010311 0.912712958
0.6 0.667537855 0.767072173 0.859933541 0.898582316 0.920266736
0.7 0.704984339 0.793016253 0.875576070 0.909953634 0.929232365
0.8 0.748398470 0.823212259 0.893760798 0.923153679 0.939629085
0.9 0.797850337 0.857762978 0.914544965 0.938216347 0.951479115
1.0 0.853409775 0.896779499 0.937992841 0.955179981 0.964807654

3.4 For α = 2, K = 4

Finally, we now fix the parameters α = 2 and K = 4, we consider the influence of

permeability of the cell membrane parameter for the different values of H. The numerical

results of the maximum residual errors and approximations of solutions are shown in

Tables 7 and 8.

Table 7 Maximum absolute residual error when α = 2,K = 4

H e5 E5 e10 E10

0.2 8.11E-03 1.08E-04 2.68E-04 8.04E-07
0.5 1.05E-04 1.63E-06 6.29E-08 2.52E-09
1.0 4.64E-06 9.97E-07 1.24E-10 1.04E-13
3.0 1.02E-07 2.99E-09 4.33E-14 5.34E-15
10 1.23E-08 3.18E-10 1.41E-14 7.96E-16
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Table 8 Results of approximate solution when α = 2, K = 4

R ϕ5, (H = 0.2) ϕ5, (H = 0.5) ϕ5, (H = 1.0) ϕ5, (H = 3.0) ϕ5, (H = 10)

0.0 0.564805550 0.696364355 0.817189609 0.867425946 0.895656092
0.1 0.567638453 0.698305227 0.818365494 0.868284779 0.896335413
0.2 0.576144680 0.704135966 0.821897088 0.870863551 0.898374852
0.3 0.590346397 0.713880791 0.827796192 0.875169074 0.901778840
0.4 0.610279291 0.727579575 0.836082433 0.881212700 0.906554761
0.5 0.635990799 0.745287118 0.846783197 0.889010311 0.912712958
0.6 0.667537855 0.767072173 0.859933541 0.898582316 0.920266736
0.7 0.704984339 0.793016253 0.875576070 0.909953634 0.929232365
0.8 0.748398470 0.823212259 0.893760798 0.923153679 0.939629085
0.9 0.797850337 0.857762978 0.914544965 0.938216347 0.951479115
1.0 0.853409775 0.896779499 0.937992841 0.955179981 0.964807654

4 Conclusions

In this paper, we have examined the Lane-Emden equation that describes the diffusion

of oxygen in an idealized spherical cell including the effects of nonlinear oxygen uptake

as modeled by Michaelis-Menten kinetics [2]. To overcome the singular behavior at the

spherical origin of the cell, Lane-Emden equation is transformed into an equivalent Fred-

holm integral equation. The numerical results obtained by present method are better than

the results obtained by other methods such as the ADMGF [17], as shown in Tables 1-8.

Unlike ADM, the proposed OHAM does not require the computation of unknown con-

stant and provides direct scheme for obtaining the approximation of the solution. Unlike

ADMGF and MADM [1, 17], the OHAM always gives better convergent series solution.

To speed up the calculations, the discrete averaged residual error has been used to obtain

optimal value of the adjustable parameter c0 to control the convergence of solution. The

evaluated approximations show enhancements over existing techniques where the minimal

size of the obtained errors emphasize these improvements.
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