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Abstract

We apply the concepts of importance and redundancy to compute and analyze the
partition of π-electrons among faces of nanotubical fullerenes. We also discuss the
deviation from uniform distribution as a potential predictor of fullerene stability.

1 Introduction

In this paper we consider the π-electron content in faces of several classes of fullerene

graphs and its deviations from the uniform distribution. There are several ways to define

and compute the average π-electron content of a ring of carbon atoms. Here we use the

edge-based approach employed in several recent papers [1–3,12,16–21,27–29], where it was

applied to various benzenoid and coronoid species. The method relies on the Pauling bond

order, and hence requires counting Kekulé structures in the considered clusters. We extend

this line of research to three-dimensional structures, first by deriving explicit formulas for

the Pauling bond order of edges in nanotubical carbon clusters, and then by deriving

explicit formulas for the average π-electron content of faces in such structures. From

these formulas we then obtain the deviation of the so computed π-electron content from
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the uniform distribution, in which an atom shared by k rings contributes 1/k electrons

to each ring. We show that there is a net migration of electrons among various regions of

considered clusters and we determine the patterns of such migrations.

Besides obtaining analytical results for narrow nanotubes with sufficiently high sym-

metry, we have also computed the average π-electron content of all faces of fullerene graphs

for several numbers of atoms for which stable isomers were experimentally verified. Our

results indicate that some local aspects of π-electron distribution might be relevant for

fullerene stability.

2 Preliminaries

In this section we introduce basic concepts needed for our task. We model the carbon

clusters by their graphs, in which vertices represent carbon atoms, and edges represent the

bonds between them. All clusters considered in this paper are represented by graphs that

are finite, simple and connected; in addition, all of them are 3-regular and 3-connected.

We refer the reader to any classical monograph on graph theory (such as, e.g., [33]) for

definitions of those and related concepts.

2.1 Importance, redundancy, and Pauling bond order

A matching M in a graph G is a collection of edges of G such that no two edges from

M share a vertex. If each vertex of G is incident with an edge of M , the matching M

is called perfect. The number of perfect matchings of G is usually denoted by K(G).

It follows easily from a classical result of Petersen that all graphs considered in this

paper have at least one perfect matchings. Perfect matchings figure prominently in both

the mathematical and in the chemical literature, where they are usually called Kekulé

structures. For a comprehensive treatment of matchings we refer the reader to [24].

Let e be an edge of G. The importance ι(e) of e is defined as the number of perfect

matchings in G that contain e. A closely related concept has been long known in chemistry

under the name of Pauling bond order: The Pauling bond order p(e) of an edge e is

obtained by dividing its importance by the total number of perfect matchings in G,

p(e) = ι(e)/K(G). Another closely related concept is redundancy of an edge. Its is

defined as the number of perfect matchings in G that do not contain e, and denoted by

ρ(e). Since the set of all perfect matchings in G can be partitioned to those matchings
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that contain e and to those that do not contain e, we have ι(e) + ρ(e) = K(G), for any

edge e of G. If the edge e connects vertices u and v in G, we can write [7]

ι(e) = K(G− u− v), ρ(e) = K(G− e).

For any vertex u ∈ V (G) we have

K(G) =
∑
e=uv

ι(e),

where we sum over all edges of G incident with u.

2.2 π-electron distribution

In the clusters considered here, each carbon atom is adjacent to three other carbon atoms.

This leaves one π-electron per carbon atom for forming carbon-carbon double bonds. Since

in our clusters no carbon atom can participate in more than one double bond, any pattern

of double bonds obviously forms a Kekulé structure that is mathematically represented

by a perfect matching.

While the number of π-electrons that participate in Kekulé structures is equal to the

number of atoms in the compound, the pattern of their distribution among the bonds

is described by the distribution of Pauling bond orders [18]. Since that quantity can be

thought of as a measure of the π-electron content of a given bond, we can also use it to

measure the π-electron content of rings of carbon clusters.

Let G be a planar graph with a perfect matching, and H one of its faces. We denote

the boundary of H (i.e., the set of all edges incident with H) by ∂H. Let M be a perfect

matching of G. Each edge from ∂H participating in M represents a double bond and

hence carries two electrons. As the edge is shared between two faces, each of them gets

one of its electrons. Under such scheme, the total number of electrons given to H by M is

obtained by counting edges from ∂H in M . The total π-electron content of H, π(H),

is obtained by summing such contributions over all perfect matchings of G. The average

π-electron content of a face H, π(H), is then obtained by dividing its total π-electron

content by the number of perfect matchings in G. Hence, π(H) = π(H)
K(G)

.

By double counting of edges, one can obtain a simple expression for the total π-electron

content of a face in terms of importances of edges from ∂H.

Theorem A

π(H) =
∑
e∈∂H

ι(e).
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By dividing the above expression by K(G) we obtain a formula for π(H) equivalent to

formula (1) of reference [18]. However, we find formula from Theorem A more convenient

for computations that follow.

A similar formula, in which U denotes the unbounded face of G,

π(H) =
∑
e∈∂H

ι(e) +
∑

e∈∂H∩∂U

ι(e)

was employed in ref. [12] for computing the π-electron content of rings of a class of

benzenoid compounds known as benzenoid parallelograms. The difference arises from the

fact that the unbounded face of a planar graph representing a benzenoid parallelogram

does not belong to the parallelogram. Hence the pairs of electrons in double bonds lying

on ∂U are not shared and must be counted twice in bounded faces that share them with

U .

There are also other ways to define the π-electron content of a face of G. The simplest

one is to assume that an atom (i.e., a vertex) shared by k rings gives 1/k of its π-electron

to each ring. Since all atoms in our clusters are shared by exactly three rings, this method

gives the same number of electrons to all faces of the same size in G, hence it is very coarse.

In spite of that, it could be used as kind of baseline for comparisons with other, more

sophisticated, distributions. As it is atom-based, we denote the so constructed π-electron

content of a ring H by πa(H). The difference between π(H) and πa(H) is called the π-

electron excess of a face H of G and denoted by επ(H). Hence, επ(H) = π(H)−πa(H).

In the next section we compute π(H) and επ(H) for all faces of narrow nanotubi-

cal fullerenes. A similar problem was considered in ref. [3], where the authors looked

at the distribution of π-electrons in trivalent regular and semi-regular polyhedra (three

Platonic and seven Archimedean polyhedra). In order to obtain the distributions, they

first construct all perfect matchings and then compute their contributions to particular

faces and the corresponding averages. Here we employ much faster approach following

from Theorem A.

3 Nanotubical fullerenes

Fullerene graphs are 3-connected, cubic planar graphs with only pentagonal and hexagonal

faces. Due to Euler’s formula, the number of pentagonal faces in a fullerene graph is

always twelve. If the pentagons are grouped into two more or less compact patches, we
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obtain a class of tubular fullerene graphs called nanotubes. In nanotubes, two pentagon-

containing caps are separated by a number of layers of hexagons. When the caps are

hemi-dodecahedral, we obtain the narrowest possible nanotube in which the caps are

separated by certain number of belts composed of 5 hexagons. Such nanotubes exist for

any number of vertices m = 10p, where p ≥ 2. For p = 2 we get the dodecahedron as

a special case of nanotube without hexagonal faces. We refer the reader on ref. [14] for

background information on fullerenes.

In the rest of this section we denote by Tn the narrow nanotube in which two hemi-

dodecahedral caps are separated by n belts of 5 hexagons. The two pentagons adjacent

only to other pentagons are called polar pentagons; one of them is the northern, the other

the southern polar pentagon. We denote the polar pentagonal edges with a, and radial

edges with b. As before, K(Tn) denotes the number of perfect matchings in Tn. We denote

Figure 1. Ki (Tn) number of perfect matchings in Tn involving i radial edges.

by Ki (Tn) the number of perfect matchings in Tn including i radial edges incident with

the northern polar pentagon. Because of the parity, it must be i = 1, 3 or 5. It follows

K (Tn) = K1 (Tn) +K3 (Tn) +K5 (Tn) .

It is immediately clear that K5(Tn) = 1: The five radial edges incident with the northern

polar pentagon force the five radial edges shared by five hexagons in the first hexagonal

belt, they in turn force next five radial edges, and so on, all the way to the southern polar

pentagon. Hence, K5(Tn) = 1.

Next in the order of difficulty is computing K1(Tn). Look at a perfect matching

containing one radial edge incident with the norther polar pentagon. It saturates exactly

one vertex on the first circle parallel with the polar pentagon. There are five different

ways to saturate the remaining four vertices on this circle. Each of them uses exactly one
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radial edge from the next layer of hexagons, and the whole situation shifts one step toward

south, again all the way to the southern polar pentagon. Hence, in each perfect matching

counted by K1(Tn) there is exactly one out of five radial edges from each hexagonal belt

and exactly one radial edge incident with a polar hexagon. That gives K1(Tn) = 5n+2.

The case K3(Tn) is the most complicated. Look at the northernmost belt of Tn. Any

three edges contained in a perfect matching counted by K3(Tn) must saturate consecutive

vertices on the northern polar pentagon. Denote by T ′
n the open (on the northern side)

nanotube that remains when we delete the polar pentagon and any three radial edges

incident with it that participate in a perfect matching. Here the parameter n counts

the intact hexagonal belts. By T ′′
n we denote a similar nanotube, the one that remains

when three non-consecutive edges from a hexagonal belt participate in a perfect matching.

Again, n counts intact hexagonal belts. Graphs T ′
n and T ′′

n are shown in Fig. 2. If a perfect
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Figure 2. K3 (Tn) number of perfect matchings in Tn involving 3 radial edges.

matching in T ′
n contains the edge denoted by e in Fig. 2a, then it forces the two bold

edges on the outer circle, leaving graph T ′′
n . If e is not contained in a perfect matching,

then its end-vertex on the outer circle must be saturated by one of the two remaining

edges. If it is saturated with the edge on the right, denoted by a double line, then the

other edges denoted by double lines are forced, and the remaining graphs is T ′
n−1. By

symmetry, the left edge does the same. Hence,

K(T ′
n) = 2K(T ′

n−1) +K(T ′′
n ).
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Let us now look at T ′′
n . Each perfect matching in T ′′

n contains one and exactly one of pairs

{e, e′}, {e, f ′}, {e′, f} and {f, f ′}. The pair {e, e′} forces all bold edges, leaving the graph

T ′
n−2. The pair {f, f ′} forces the edges denoted by double lines, leaving T ′′

n−1. Finally,

{e, f ′} (and then, by symmetry, {e′, f}) forces the edges denoted by dashed lines, leaving

again T ′′
n−1. Hence,

K(T ′′
n ) = K(T ′

n−2) + 3K(T ′′
n−1).

Denote now K(T ′
n) = t′n, K(T ′′

n ) = t′′n. We have a system of linear recurrences

t′n = 2t′n−1 + t′′n

t′′n = t′n−2 + 3t′′n−1.

By expressing t′′n from the first relation and plugging it into second, we obtain a linear

two-term recurrence with constant coefficients for t′n,

t′n = 5t′n−1 + 5t′n−2

with the initial conditions t′0 = 50, t′1 = 175. This recurrence has the explicit solution

t′n = 5

[
(5− 2

√
5)

(
5−

√
5

2

)n

+ (5 + 2
√
5)

(
5 +

√
5

2

)n]
.

This can be further simplified by noting that

5(5− 2
√
5) =

(
5−

√
5

2

)3

, 5(5 + 2
√
5) =

(
5 +

√
5

2

)3

,

finally yielding

t′n =

(
5−

√
5

2

)n+3

+

(
5 +

√
5

2

)n+3

.

Since there are five different ways to have three edges incident with a polar pentagon in

a perfect matching, we finally obtain

K3(Tn) = 5t′n−3 = 5

[(
5−

√
5

2

)n

+

(
5 +

√
5

2

)n]
.

From this we readily obtain the importance of a radial edge as

ιn(r) =
1

5
K1(Tn) +

3

5
K3(Tn) + 1

= 5n+1 + 3

[(
5−

√
5

2

)n

+

(
5 +

√
5

2

)n]
+ 1.
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The importance of non-radial edges is now given by

ιn(b) = 2 · 5n+1 +

(
5−

√
5

2

)n

+

(
5 +

√
5

2

)n

,

and the total number of perfect matchings in Tn is given as

K(Tn) = 5n+2 + 5

[(
5−

√
5

2

)n

+

(
5 +

√
5

2

)n]
+ 1.

This result was reported in [30] and also in [26] along with some other results on the

number of perfect matchings in various types of nanotubes.

It follows immediately that the number of π-electrons given to hexagonal faces is

equal to 2ιn(r)+4ιn(b)
ιn(r)+2ιn(b)

= 2, independent of n. The number of π-electrons in polar pentagons

tends to 2 with increasing n, while the number of electrons in non-polar pentagons ap-

proaches the value of 8
5
= 1.6. We see that the hexagonal faces obtain the same number

of π-electrons as under the uniform distribution, while the polar pentagons acquire some

electrons at the expense of their non-polar pentagonal neighbors. Their excess is, however,

rather small, as the whole net migration includes 2/3 of one electron for long nanotubes.

That does not appear very surprising, given rather large degree of similarity among the

hexagonal faces. We have wondered whether similar patterns are observed also for wider

nanotubes and for general fullerenes.

We have performed some preliminary computations for another class of narrow nan-

otubes, with two caps in which one hexagon is surrounded with six pentagons and those

caps are connected by a number of belts of six hexagons. It turns out that, again, the non-

polar hexagons are given 2 electrons each. For other fullerenes we were unable to obtain

explicit formulas, but we found the emerging patterns nevertheless very interesting.

4 Fullerene stability

There are many more possible fullerene structures than there are observed fullerene

species. Many graph-theoretic invariants have been tested, with mixed results, as possi-

ble predictors and selectors of stable isomers. We mention here the number of pentagon-

pentagon adjacencies, the independence number [13,15], the bipartite edge frustration [11]

and bipartivity [8], the smallest eigenvalue [10], the separator [9], and many others [22,32].

See a nice review in ref. [23]. In any case, it became clear very soon that the number of

perfect matchings is not very useful as a predictor of fullerene stability: The most stable
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isomer of C60, the one with full icosahedral symmetry group known also as the buck-

minsterfullerene, has 12500 perfect matchings, while the narrow nanotube on 60 atoms,

considered to be the least stable isomer, has 16501 perfect matchings. This stands in

marked contrast to the benzenoid case, where the number of perfect matchings is strongly

correlated with their stability [6]. However, our results indicate that there still might be

a relationship, though a more subtle one, between perfect matchings and stability.

In the rest of this section Cn : m(S) denotes the fullerene isomer on n atoms that

appears with number m in spiral algorithm of ref. [14] and has the symmetry group S.

For example, the buckminsterfullerene is C60 : 1812(Ih), while the narrow nanotube on

60 atoms is C60 : 1(D5h).

In the previous section we have found that the total number of electrons in each

hexagon of a narrow nanotube is equal to 2, the same as under uniform distribution.

Since there are n
2
− 10 hexagonal faces, this leaves 20 electrons that are awarded to

pentagonal faces, independent on the number of vertices. On the other hand, in ref. [3] it

was reported that each of 20 hexagons in the buckminsterfullerene receives 54
25

electrons,

and each of 12 pentagons only 35
25

electrons. Hence the total number of electrons given

to all pentagons in buckminsterfullerene is only 16.8. Motivated by this observation, we

have performed computations for all 1812 isomers of C60 and found out that the total

number of electrons in pentagons remains between those two extreme values. Moreover,

the extremal values are achieved only on one isomer each.

LetG be a fullerene graph on n vertices. As before, we denote π6(G) = 1
n/2−10

∑
H π(H)

and π5(G) = 1
12

∑
P π(P ). In this notation, our observation about the total number of

π-electron assigned to hexagonal faces can be compactly stated.

Observation

π6(C60 : 1(D5h)) < π6(C60 : p) < π6(C60 : 1812(Ih)).

We have done computations also for all 8192 isomers of C70 and observed the same

pattern. It seemed as if the more stable isomers have more of their π-electrons assigned

to hexagonal faces. Hence we formulated the following

Hypothesis

π6(Cn : p) > π6(Cn : q) =⇒ Cn : p is more stable than Cn : q.

In order to empirically test the hypothesis, we have computed the amount of π-

electrons assigned to hexagonal faces for all fullerene isomers with isolated pentagons
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on 76, 78, 80, 82 and 84 vertices, as well as for all fullerene isomers on 32, 36 and 40

vertices. We have then taken eleven experimentally verified isolated pentagon isomers

and examined how were they ranked by our criterion among all isomers on the same

number of vertices. The considered isomers were C60 : 1(Ih), C70 : 1(D5h), C76 : 1(D2),

C78 : 1(D3), C78 : 2(C2v), C78 : 3(C2v), C80 : 1(D5d), 2(D2), C82 : 3(C2), C84 : 22(D2),

C84 : 23(D2d) [25]. (Here the numbers denote the order in which the isomer appears in

spiral algorithm among all IP isomers on the given number of vertices.) In addition, we

considered isomers C32 : 6(D3) [5], C36 : 15(D6h) and C40 : 38(D2), C40 : 39(D5d) indicated

by energy calculations as the most stable non-IP isomers on 32, 36 and 40 vertices. In a

way of comparison, we have also looked at the rank given to the same isomers by their

bipartivity, a well-performing indicator of stability. The results are shown in Table 1.

Table 1. Ranking of most stable isomers by bipartivity β(Cn) and by the number
of π-electrons in hexagons π6(Cn).

n Isomer no. β(Cn) π6(Cn)

60 1 1 1
70 1 1 1
76 1 2 1
78 1 4 3

2 3 2
3 2 4

80 1 1 1
2 2 2

82 3 7 3
84 22 3 16

23 4 15

32 6 1 1
36 15 6 15
40 38 2 2

39 1 1

One can see that two indicators have rather similar performances, with some ex-

ceptions: π6(Cn) is better than bipartivity for isomers with 82 atoms, while bipartivity

outperforms π6(Cn) on isomers with 84 and 36 vertices. Hence, the amount of π-electrons

assigned to hexagons is not itself sensitive enough to accurate predict stable isomers.

Nevertheless, we believe that by closer analysis of local aspects of π-electron distributions

we might be able to identify some structural properties indicative of greater stability.

In this direction we have investigated various extremal and statistical properties of the
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distribution, such as, e.g., the spread of values assigned to faces of different types. The

results are not conclusive, but we find them promising.

5 Concluding remarks

In this paper we have computed the patterns of partition of π-electrons among faces of

several classes of fullerene graphs. In particular, we have obtained explicit formulas for

narrow fullerene nanotubes. We have also computed the number of π-electrons assigned

to pentagons and hexagons for large number of fullerene isomers and investigated its

potential as a predictor of fullerene stability. The results are not completely satisfactory,

but we believe that potentially useful information is contained in local patterns of those

distributions.

The methods used here could be adapted to work also for other interesting classes

of polyhedral clusters, such as, e.g., the prisms, m-barrels and m-generalized fullerenes

considered in ref. [4]. Also, in spite of lot of work done on them, there are still many

classes of benzenoid and coronoid compounds that have not been investigated.
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[4] A. Behmaram, T. Došlić, S. Friedland, Matchings in m-generalized fullerene graphs,

Ars Math. Contemp. 11 (2016) 301–313.

[5] Y. Chang, A. F. Jalbout, J. Zhang, Z. Su, R. Wang, Theoretical study of C32

fullerenes and derivatives, Chem. Phys. Lett. 428 (2006) 148–151.

-277-
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[10] T. Došlić, The smallest eigenvalue of fullerene graphs – closing the gap, MATCH

Commun. Math. Comput. Chem. 70 (2013) 73–78.
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