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Abstract

The first Zagreb index M1(G) is equal to the sum of squares of the degrees of
the vertices of the underlying molecular graph G. Finding sufficient conditions for
graphs possessing certain properties are important problems. In this paper, we give
sufficient conditions in terms of the first Zagreb index for a graph to be k-connected,
β-deficient or k-hamiltonian.

1 Introduction

All graphs considered in this paper are finite, undirected and simple connected graphs.

Let G = (V (G), E(G)) be a connected graph with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G), where |V (G)| = n, |E(G)| = m. Let degG(vi) or di be the degree of

a vertex vi in G. When the graph is clear from the context, we will omit the subscript G

from the notation. For other undefined terminology and notations from graph theory, the

readers are referred to [5].

Gutman and Trinajstić [12] derived a formula for estimating total π-electron energy of

conjugated systems. Their formula contained two terms that later became known as the

1Corresponding author

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 80 (2018) 141-151
                         

                                          ISSN 0340 - 6253 



Zagreb indices M1 and M2. The first Zagreb index M1(G) and the second Zagreb index

M2(G) of graph G are among the oldest and most studied topological indices. They are

defined as:

M1(G) =
∑

vi∈V (G)

deg(vi)
2 and M2(G) =

∑
vivj∈E(G)

deg(vi) deg(vj).

We encourage the reader to consult [1, 6, 10, 17, 20, 21] for historical background, compu-

tational techniques and mathematical properties of Zagreb indices.

The problem of deciding whether a given graph possesses certain properties is often

difficult. For example, determining whether a given graph is Hamiltonian or traceable is

NP-complete [14]. Thus, finding these sufficient conditions for graphs becomes meaningful

in graph theory. Up to now, there are lots of existing results. For example, in [3, Page

4], it is stated that if G is a simple graph of order n ≥ k + 1, and if its minimum degree

δ(G) ≥ 1
2
(n + k − 2), then G is k-connected. It is known that [7], for a graph G, if

δ(G) ≥ n+k
2
, then G is k-hamiltonian. In [5, Page 15], it declares that for a connected

graph G, if δ(G) ≥ n−β−1, then G contains a cycle of length at least n−β, and hence G

has a matching of size at least n−β
2
. However, there are only few such conditions in terms

of the topological indices. Hua and Wang [13] presented a sufficient condition for a graph

to be traceable by using the Harary index. By using the Wiener index, Yang [19] gave a

sufficient condition for a graph to be traceable. The above results are further generalized

by Liu et al. [15, 16]. Recently, in terms of the Wiener index or Harary index, Feng et

al. [9] presented several sufficient conditions for a graph to be k-connected, β-deficient,

k-hamiltonian, k-path-coverable or k-edge-hamiltonian. In this paper, we continue this

program to the first Zagreb index, and give sufficient conditions in terms of the first

Zagreb index for a graph to be k-connected, β-deficient or k-hamiltonian.

The paper is organized as follows. In the next section we give the necessary definitions

and some lemmas. Section 3 contains our main results. The last section is concerned with

possible directions of future research.

2 Preliminaries

In this section, we first give some definitions and notations which will be used throughout

the paper. A connected graph G is said to be k-connected (or k-vertex connected) if it has

more than k vertices and remains connected whenever fewer than k vertices are removed.

The deficiency of a graph G, denoted by def(G), is the number of vertices unmatched
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under a maximum matching in G. In particular, G has a 1-factor if and only if def(G)

= 0. We call G, β-deficient if def(G)≤ β. Thus a β-deficient graph G of order n has

matching number n−β
2
. A graph G is k-hamiltonian if for all |X| ≤ k, the subgraph

induced by V (G) \X is hamiltonian.

An integer sequence π = (d1 ≤ d2 ≤ · · · ≤ dn) is called graphical if there exists a

graph G having π as its vertex degree sequence; in that case, G is called a realization of

π. If P is a graph property, such as k-connectivity or hamiltonicity, we call a graphical

sequence π enforces P if every realization of π has property P .

For two vertex-disjoint graphs G1 and G2, we use G1 ∪G2 to denote their union. The

join G1∨G2 of graphs G1 and G2 is the graph obtained from the disjoint union of G1 and

G2 by adding all edges between V (G1) and V (G2). Given a graph G, a subset S of V (G)

is said to be an independent set of G if the subgraph G[S], induced by S, is a graph with

|S| isolated vertices. The independence number α(G) of G is the number of vertices in the

largest independent set of G. As usual, Kn denotes, the complete graph on n vertices.

Next, we give some lemmas which will be used later.

Lemma 2.1. [4] Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence with n ≥ 2 and

1 ≤ k ≤ n− 1. If

di ≤ i+ k − 2 ⇒ dn−k+1 ≥ n− i for 1 ≤ i ≤ 1

2
(n− k + 1),

then π is enforces k-connected.

Lemma 2.2. [18] Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence, and also let

0 ≤ β ≤ n with n ≡ β (mod 2). If

di+1 ≤ i− β ⇒ dn+β−i ≥ n− i− 1 for 1 ≤ i ≤ 1

2
(n+ β − 2),

then π is enforces β-deficient.

Lemma 2.3. [8] Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and 0 ≤ k ≤ n−3.

If

di ≤ i+ k ⇒ dn−i−k ≥ n− i for 1 ≤ i <
1

2
(n− k),

then π is enforces k-hamiltonian.

Lemma 2.4. [2] Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and k ≥ 1. If

dk+1 ≥ n− k, then π is enforces α(G) ≤ k.
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3 Main results

In this section we present sufficient conditions in terms of the first Zagreb index for a

graph to be k-connected, β-deficient or k-hamiltonian.

Theorem 3.1. Let G be a connected graph of order n ≥ k + 1. If

M1(G) > f(n, k), where f(n, k) = (k − 1)2 + (n− k)(n− 2)2 + (k − 1)(n− 1)2,

then G is k-connected. Moreover, M1(G) = f(n, k) if and only if G ∼= Kk−1∨(K1∪Kn−k).

Proof: Suppose that G is not k-connected. Then by Lemma 2.1, there exists an integer

i
(
1 ≤ i ≤ 1

2
(n− k + 1)

)
such that di ≤ i + k − 2 and dn−k+1 ≤ n − i − 1. Note that

1 ≤ k ≤ n− 1. Then by the definition of the first Zagreb index, we have

M1(G) =
n∑

i=1

d2i

≤ i(i+ k − 2)2 + (n− k − i+ 1)(n− i− 1)2 + (k − 1)(n− 1)2

= (3n+ k − 5)i2 − (3n+ k − 5)(n− k + 1)i+ n(n− 1)2.

Denote

f(x) = (3n+ k − 5)
[
x2 − (n− k + 1)x

]
with 1 ≤ x ≤ 1

2
(n− k+1). By taking the first derivative of f(x) on 1 ≤ x ≤ 1

2
(n− k+1),

we have

f ′(x) = (3n+ k − 5)
[
2x− (n− k + 1)

]
.

Evidently, f ′(x) ≤ 0 when 1 ≤ x ≤ 1
2
(n − k + 1). Thus f(x) is a decreasing function on

x ∈ [1, n−k+1
2

], and consequently f(x) ≤ f(1). Thus

M1(G) ≤ (k − 1)2 + (n− k)(n− 2)2 + (k − 1)(n− 1)2 = f(n, k),

which contradicts to the assumption, and the conclusion follows.

If G ∼= Kk−1∨(K1∪Kn−k), then one can easily see thatM1(G) = f(n, k). Conversely,

letM1(G) = f(n, k). Then all the inequalities in the proof should be equalities. So i = 1,

and hence d1 = k − 1, d2 = · · · = dn−k+1 = n − 2, dn−k+2 = · · · = dn = n − 1. Thus

G = Kk−1 ∨ (K1 ∪Kn−k).

Remark 3.2. By [2], graph Kk−1 ∨ (K1 ∪Kn−k) is not k-connected.
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Theorem 3.3. Let G be a connected graph of order n ≥ 10 with n ≡ β (mod 2) and

0 ≤ β ≤ n. If

M1(G) > g(n, β), where g(n, β) = 2(β − 1)2 + (n+ β − 3)(n− 3)2 − (β − 1)(n− 1)2,

then G is β-deficient. Moreover, M1(G) = g(n, β) if and only if G ∼= K1 ∨ (2K1 ∪Kn−3).

Proof: Suppose that G is not β-deficient. Then from Lemma 2.2, there exists an integer i

(1 ≤ i ≤ n+β−2
2

) such that di+1 ≤ i− β and dn+β−i ≤ n− i− 2. Again from the definition

of the first Zagreb index, we have

M1(G) =
n∑

i=1

d2i

≤ (i+ 1)(i− β)2 + (n+ β − 2i− 1)(n− i− 2)2 + (i− β)(n− 1)2

= −i3 + (5n− β − 8)i2 + (β2 + 2β − 3n2 − 2nβ + 12n− 11)i+ β2

+ (n− 2)2(n+ β − 1)− β(n− 1)2.

Denote

g(x) = −x3 + (5n− β − 8)x2 + (β2 + 2β − 3n2 − 2nβ + 12n− 11)x+ β2

+ (n− 2)2(n+ β − 1)− β(n− 1)2

with 1 ≤ x ≤ 1
2
(n + β − 2) and 0 ≤ β ≤ n. Then the first and second derivative of g(x),

respectively, are

g′(x) = −3x2 + 2(5n− β − 8)x+ β2 + 2β − 3n2 − 2nβ + 12n− 11,

and

g′′(x) = 2(−3x+ 5n− β − 8).

Since n ≥ 10, n ≥ β and x ≤ 1
2
(n+ β − 2), we have

g′′(x) = 3(−2x+ n+ β − 2) + 7n− 5β − 10

≥ 5(n− β) + 2(n− 5) > 0.

Therefore g(x) is a convex function on x ∈ [1, n+β−2
2

]. So g(x) ≤ max
{
g(1), g(n+β−2

2
)
}
.

Direct calculations yield

g(1) = 2β2 + 4(1− n)β + n3 − 8n2 + 25n− 24,
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g

(
n+ β − 2

2

)
=

1

8
β3 − 1

8
(n− 6)β2 − 1

8
(5n2 − 4n− 8)β +

5

8
n3 − 9

4
n2 + 2n.

After subtraction,

g

(
n+ β − 2

2

)
−g(1) = 1

8

[
β3−(n+10)β2−(5n2−36n+24)β−3n3+46n2−184n+192

]
.

Define φ(β) = β3− (n+10)β2− (5n2−36n+24)β−3n3+46n2−184n+192 as a function

of β on the interval [0, n]. Then

φ′(β) = 3β2 − 2(n+ 10)β − (5n2 − 36n+ 24),

and

φ′′(β) = 2
(
3β − n− 10

)
.

Case 1 : β ∈ [0, n+10
3

]. Then φ′′(β) ≤ 0. So φ′(β) is a decreasing function on β ∈ [0, n+10
3

],

and consequently φ′(β) ≤ φ′(0). Note that φ′(0) = −(5n2 − 36n + 24) < 0 as n ≥ 10.

Therefore φ′(β) < 0 for β ∈ [0, n+10
3

].

Case 2 : β ∈ (n+10
3
, n]. Then φ′′(β) > 0. So φ′(β) is an increasing function on β ∈

(n+10
3
, n], and consequently φ′(β) ≤ φ′(n). Note that φ′(n) = −4(n2 − 4n + 6) < 0 as

n ≥ 10. Therefore φ′(β) < 0 for β ∈ (n+10
3
, n].

FromCase 1 andCase 2, we conclude that φ(β) is a decreasing function on β ∈ [0, n].

Thus φ(β) ≤ φ(0). An elementary calculation gives φ(0) = −3n3+46n2− 184n+192 < 0

as n ≥ 10, that is, φ(β) < 0. Implying that g
(
n+β−2

2

)
− g(1) < 0, and consequently

g(x) ≤ g(1). Hence

M1(G) ≤ 2(β − 1)2 + (n+ β − 3)(n− 3)2 − (β − 1)(n− 1)2 = g(n, β),

a contradiction. So the result follows.

If G ∼= K1 ∨ (2K1 ∪Kn−3), then one can easily see that M1(G) = g(n, β). Conversely,

let M1(G) = g(n, β). Then i = 1. Since β ≤ i, either β = 0 or β = 1. If β = 1, then

d1 = d2 = 0 and therefore graph G is disconnected, a contradiction. Otherwise, β = 0.

Then d1 = d2 = 1, d3 = · · · = dn−1 = n− 3, dn = n− 1. Thus G ∼= K1 ∨ (2K1 ∪Kn−3).

Theorem 3.4. Let G be a connected graph of order n ≥ 5 and 0 ≤ k ≤ n− 3. If

M1(G) > h(n, k), where h(n, k) = (k+1)2+(n− k− 2)(n− 2)2+(k+1)(n− 1)2, (1)

then G is k-hamiltonian. Moreover, M1(G) = h(n, k) if and only if G ∼= Kk+1 ∨ (K1 ∪
Kn−k−2).
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Proof: Suppose that G is not k-hamiltonian. Then by Lemma 2.3, there exists an integer

i (1 ≤ i < n−k
2
) such that di ≤ i + k and dn−i−k ≤ n − i − 1. From the definition of the

first Zagreb index of graph G, we have

M1(G) =
n∑

i=1

d2i

≤ i(i+ k)2 + (n− 2i− k)(n− i− 1)2 + (i+ k)(n− 1)2

= −i3 + (5n+ k − 4)i2 +
[
k2 − 2(n− k)(n− 1)− (n− 1)2

]
i+ n(n− 1)2.

Since i is an integer with 1 ≤ i < n−k
2
, we have 1 ≤ i ≤ n−k−1

2
. Denote

h(x) = −x3 + (5n+ k − 4)x2 +
[
k2 − 2(n− k)(n− 1)− (n− 1)2

]
x

with 1 ≤ x ≤ 1
2
(n− k − 1) and 0 ≤ k ≤ n− 3. Since x is an integer, we have to consider

n− k − 1 is odd or even.

Case 1 : n− k − 1 is odd. Then 1 ≤ x ≤ 1
2
(n− k − 2) and 0 ≤ k ≤ n− 4. Hence

h′(x) = −3x2 + 2(5n+ k − 4)x+ k2 − 2(n− k)(n− 1)− (n− 1)2,

and

h′′(x) = 2
(
− 3x+ 5n+ k − 4

)
= 3

(
10n

3
− 2x+

2k

3
− 8

3

)
≥ 7n+ 5k − 2 > 0 as n− 2x− k − 2 ≥ 0,

and consequently h(x) is a convex function on 1 ≤ x ≤ 1
2
(n − k − 2). It implies that

h(x) ≤ max
{
h(1), h(n−k−2

2
)
}
. Direct calculations yield

h(1) = k2 + (2n− 1)k − 3n2 + 9n− 6,

and

h

(
n− k − 2

2

)
= −1

8
k3 − 1

8
(n− 6)k2 +

1

8
(5n2 − 4n+ 8)k − 3

8
n3 − 1

4
n2 + 3n− 2.

After subtraction,

h

(
n− k − 2

2

)
−h(1) = −1

8

[
k3+(n+2)k2− (5n2− 20n+16)k+3n3− 22n2+48n− 32

]
.

Define φ(k) = k3+(n+2)k2− (5n2− 20n+16)k+3n3− 22n2+48n− 32 as a function of

k on the interval [0, n− 4]. By taking the first and second derivative of φ(k), respectively,

we have

φ′(k) = 3k2 + 2(n+ 2)k − (5n2 − 20n+ 16),
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and

φ′′(k) = 6k + 2(n+ 2).

Since 0 ≤ k ≤ n− 4 and n ≥ 5, we have φ′′(k) ≥ 0. So φ′(k) is an increasing function on

k ∈ [0, n − 4], and consequently φ′(k) ≤ φ′(n − 4). Note that φ′(n − 4) = −8n + 16 < 0

as n ≥ 5, thus φ′(k) < 0 for k ∈ [0, n− 4]. It follows that φ(k) is a decreasing function on

k ∈ [0, n− 4]. Thus φ(k) ≥ φ(n− 4). Note that φ(n− 4) = 0, so φ(k) ≥ 0, implying that

h
(
n−k−2

2

)
− h(1) ≤ 0. Therefore, h(x) ≤ h(1). Hence

M1(G) ≤ (k + 1)2 + (n− k − 2)(n− 2)2 + (k + 1)(n− 1)2 = h(n, k),

a contradiction, by (1). Hence G is k-hamiltonian.

Case 2 : n − k − 1 is even. Then 1 ≤ x ≤ 1
2
(n − k − 1). In this case k = n − 3 or

k ∈ [0, n− 5].

Subcase 2.1 : k = n− 3. Then n− k − 1 = 2 and x = 1. Thus

M1(G) ≤ (n− 2)
[
2(n− 2) + (n− 1)2

]
= h(n, n− 3),

a contradiction, by (1). Hence G is k-hamiltonian.

Subcase 2.2 : k ∈ [0, n − 5]. Then similar to Case 1, we get that h(x) is a convex

function on 1 ≤ x ≤ 1
2
(n− k− 1). Therefore h(x) ≤ max

{
h(1), h(n−k−1

2
)
}
. Note that the

value of h(1) is already known in Case 1, so we only need to calculate h(n−k−1
2

). Direct

calculations yield

h

(
n− k − 1

2

)
=

1

8

[
− k3 − (n− 3)k2 + (5n2 − 6n+ 1)k − 3n3 + 3n2 + 3n− 3

]
.

After subtraction,

h

(
n− k − 1

2

)
− h(1) = −1

8

[
k3 + (n+5)k2 − (5n2 − 22n+9)k+3n3 − 27n2 +69n− 45

]
.

Define ψ(k) = k3 + (n+ 5)k2 − (5n2 − 22n+ 9)k+ 3n3 − 27n2 + 69n− 45 is a function of

k on the interval [0, n− 5]. Then

ψ′(k) = 3k2 + 2(n+ 5)k − (5n2 − 22n+ 9),

and

ψ′′(k) = 2
(
3k + n+ 5

)
.

Since 0 ≤ k ≤ n − 5 and n ≥ 5, ψ′′(k) > 0. So ψ′(k) is an increasing function on

k ∈ [0, n−5], and consequently ψ′(k) ≤ ψ′(n−5). Note that ψ′(n−5) = −8n+16 < 0 as
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n ≥ 5. Thus ψ′(k) < 0 for k ∈ [0, n− 5]. It follows that ψ(k) is a decreasing function on

k ∈ [0, n−5]. Thus ψ(k) ≥ ψ(n−5). Note that ψ(n−5) = 0, so ψ(k) ≥ 0 on k ∈ [0, n−5],

implying that h
(
n−k−1

2

)
− h(1) ≤ 0. Therefore h(x) ≤ h(1). Similarly, by Case 1, G is

k-hamiltonian.

Second Part: IfG ∼= Kk+1∨(K1∪Kn−k−2), then one can easily see thatM1(G) = h(n, k).

Conversely, let M1(G) = h(n, k). Then for each Case 1, Subcase 2.1 and Subcase 2.2,

we have i = 1. Hence d1 = k + 1, d2 = · · · = dn−k−1 = n − 2, dn−k = · · · = dn = n − 1.

Thus G ∼= Kk+1 ∨ (K1 ∪Kn−k−2).

Let k = 0 in Theorem 3.4, then we immediately obtain the following corollary:

Corollary 3.5. Let G be a connected graph of order n ≥ 5. If

M1(G) > n3 − 5n2 + 10n− 6,

then G is hamiltonian. Moreover, M1(G) = n3 − 5n2 + 10n − 6 if and only if G ∼=
K1 ∨ (K1 ∪Kn−2).

Theorem 3.6. Let G be a connected graph of order n. If

M1(G) > ζ(n, k), where ζ(n, k) = (n− 1)3 + (n− 1)2 − 2(n− 1)k(k + 1) + k2(k + 1),

then G satisfies α(G) ≤ k. Moreover, M1(G) = ζ(n, k) if and only if G ∼= Kk+1∨Kn−k−1.

Proof: Suppose that α(G) > k. Then by Lemma 2.4, dk+1 ≤ n − k − 1. From the

definition of the first Zagreb index, we have

M1(G) =
n∑

i=1

d2i

≤ (k + 1)(n− k − 1)2 + (n− k − 1)(n− 1)2

= (n− 1)3 + (n− 1)2 − 2(n− 1)k(k + 1) + k2(k + 1),

a contradiction. So the result follows.

If G ∼= Kk+1 ∨Kn−k−1, then one can easily see that M1(G) = ζ(n, k). Conversely, let

M1(G) = ζ(n, k). Then from the above M1(G) = (n − 1)3 + (n − 1)2 − 2(n − 1)k(k +

1) + k2(k + 1), that is, d1 = · · · = dk+1 = n− k − 1, dk+2 = · · · = dn = n− 1. Therefore

G ∼= Kk+1 ∨Kn−k−1.
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4 Conclusion

In this paper, by using the first Zagreb index, we provide sufficient conditions for a graph

to possess certain properties. Can these results be extended for the other popular Zagreb

index, named the second Zagreb index, and for other properties such as toughness and

the thickness? We will leave them for further studies.
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Graphes ( Ph.D. thesis), Université Paris VI CPierre et Marie Curie, 1972.

[19] L. Yang, Wiener index and traceable graphs, Bull. Aust. Math. Soc. 88 (2013)

380–383.

[20] B. Zhou, I. Gutman, Relations between Wiener, hyper–Wiener and Zagreb indices,

Chem. Phys. Lett. 394 (2004) 93–95.

[21] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math.

Comput. Chem. 54 (2005) 233–239.

-151-


