Steiner Gutman Index
Yaping Mao ${ }^{a, b}$, Kinkar Ch. Das ${ }^{c, 1}$
${ }^{a}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China
${ }^{b}$ Center for Mathematics and Interdisciplinary Sciences of Qinghai Province, Xining, Qinghai 810008, China
maoyaping@ymail.com
${ }^{c}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea kinkardas2003@googlemail.com

(Received 22 March, 2017)

Abstract

The concept of Gutman index $\operatorname{SGut}(G)$ of a connected graph G was introduced in 1994. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. In this paper, we generalize the concept of Gutman index by Steiner distance. The Steiner Gutman k-index $\operatorname{SGut}_{k}(G)$ of G is defined by $\operatorname{SGut}_{k}(G)=\sum_{\substack{s \subset V(G) \\|S|=k}}\left[\prod_{v \in S} \operatorname{deg}_{G}(v)\right] d_{G}(S)$, where $d_{G}(S)$ is the Steiner distance of S and $\operatorname{deg}_{G}(v)$ is the degree of v in G. Expressions for SGut_{k} for some special graphs are obtained. We also give sharp upper and lower bounds of SGut_{k} of a connected graph, and get the expression of $\operatorname{SGut}_{k}(G)$ for $k=n, n-1$. Finally, we compare between k-center Steiner degree distance $S D D_{k}$ and SGut_{k} of graphs.

1 Introduction

In graph theory applied to chemical problems, a large number of molecular structure descriptors, so-called "topological indices", has been studied [27]. Many of these descriptors are defined in terms of vertex degrees; see $[6,16,27]$. Equally many of these descriptors are in terms of distance between vertices; see [27,28]. There are also several degree-and-distance-based topological indices; see [11, 13, 14, 18].

Throughout this paper graph is connected. For a graph G, let $V(G), E(G)$, and $m=|E(G)|$ denote the set of vertices, the set of edges, and the size of G, respectively.

[^0]The minimum vertex degree is denoted by δ and the maximum by Δ. Distance is one of the basic concepts of graph theory [4]. If G is a connected graph and $u, v \in V(G)$, then the distance $d(u, v)=d_{G}(u, v)$ between u and v is the length of a shortest path connecting u and v.

In [14], the degree distance of a graph G is defined as

$$
D D=D D(G)=\sum_{\{u, v\} \subseteq V(G)}\left[\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)\right] d_{G}(u, v),
$$

where $\operatorname{deg}_{G}(u)$ is the degree of the vertex $u \in V(G)$, and $d(u, v)$ is the distance between the vertices $u, v \in V(G)$. For more details on degree distance, we refer to [2,3,12,25].

In [18], the Gutman index of a graph G is defined as

$$
\operatorname{SGut}(G)=\sum_{\{u, v\} \subseteq V(G)}\left[\operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v)\right] d_{G}(u, v),
$$

where $\operatorname{deg}_{G}(u)$ is the degree of the vertex $u \in V(G)$, and $d(u, v)$ is the distance between the vertices $u, v \in V(G)$. For more details on Gutman index, we refer to [8, 12, 15, 27].

The Steiner distance of a graph, introduced by Chartrand et al. in 1989, is a natural and nice generalization of the concept of classical graph distance. For a graph $G(V, E)$ and a set $S \subseteq V(G)$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a such subgraph $T\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance $d(S)$ among the vertices of S (or simply the distance of $S)$ is the minimum size of a connected subgraph whose vertex set contain S. Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and $|E(H)|=d_{G}(S)$, then H is a tree. Clearly, $d_{G}(S)=\min \{|E(T)|, S \subseteq V(T)\}$, where T is subtree of G. Furthermore, if $S=\{u, v\}$, then $d_{G}(S)=d_{G}(u, v)$ is nothing new, but the classical distance between u and v. Clearly, if $|S|=k$, then $d_{G}(S) \geq k-1$.

If v is a vertex of a connected graph G, then the eccentricity $\varepsilon(v)$ of v is defined by $\varepsilon(v)=\max \{d(u, v) \mid u \in V(G)\}$. Furthermore, the radius $\operatorname{rad}(G)$ and diameter $\operatorname{diam}(G)$ of G are defined by $\operatorname{rad}(G)=\min \{\varepsilon(v) \mid v \in V(G)\}$ and $\operatorname{diam}(G)=\max \{\varepsilon(v) \mid v \in$ $V(G)\}$. Let n and k be integers such that $2 \leq k \leq n$. The Steiner k-eccentricity $\varepsilon_{k}(v)$ of a vertex v of G is defined by $\varepsilon_{k}(v)=\max \left\{d_{G}(S)|S \subseteq V(G),|S|=k\right.$, and $v \in S\}$. The Steiner k-radius of G is $\operatorname{srad}_{k}(G)=\min \left\{\varepsilon_{k}(v) \mid v \in V(G)\right\}$, while the Steiner k-diameter of G is $\operatorname{sdiam}_{k}(G)=\max \left\{\varepsilon_{k}(v) \mid v \in V(G)\right\}$. Note that for every connected graph G,
$\varepsilon_{2}(v)=\varepsilon(v)$ for all vertices v of $G, \operatorname{srad}_{2}(G)=\operatorname{rad}(G)$ and $\operatorname{sdiam}_{2}(G)=\operatorname{diam}(G)$. For more details on Steiner distance, we refer to $[1,5,7,9,10,26]$.

The following observation is easily seen.
Observation 1.1 Let k be an integer such that $2 \leq k \leq n$. If H is a spanning subgraph of G, then $\operatorname{sdiam}_{k}(G) \leq \operatorname{sdiam}_{k}(H)$.

Li et al. [19] generalized the concept of Wiener index by Steiner distance. The Steiner Wiener k-index or k-center Steiner Wiener index $S W_{k}(G)$ of G is defined by

$$
S W_{k}(G)=\sum_{\substack{S \subseteq V(G) \\|S|=k}} d_{G}(S)
$$

For $k=2$, the above defined Steiner Wiener index coincides with the ordinary Wiener index. It is usual to consider $S W_{k}$ for $2 \leq k \leq n-1$, but the above definition implies $S W_{1}(G)=0$ and $S W_{n}(G)=n-1$. For more details on the Steiner Wiener index, we refer to [19, 20, 24].

Recently, Gutman [17] generalized the concept of degree distance by Steiner degree distance. The k-center Steiner degree distance $S D D_{k}(G)$ of G is defined by

$$
S D D_{k}(G)=\sum_{\substack{S \subseteq V(G) \\|S|=k}}\left(\sum_{v \in S} \operatorname{deg}_{G}(v)\right) d_{G}(S)
$$

For more details on the Steiner degree distance, we refer to [18, 23].
We now generalize the concept of Gutman index by Steiner distance. The Steiner Gutman k-index $\operatorname{SGut}_{k}(G)$ of G is defined by

$$
\operatorname{SGut}_{k}(G)=\sum_{\substack{S \subset V(G) \\|S|=k}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right) d_{G}(S)
$$

The relations between the Steiner degree distance, Steiner Gutman index and Steiner Wiener index are shown in the following Table 1:

Table 1. Three Steiner distance parameters.

Parameters	Definitions
Steiner Wiener k-index	$S W_{k}(G)=\sum_{\substack{s \subset V(G) \\ \|S\|=k}} d_{G}(S)$
k-center Steiner Degree distance	$S D D_{k}(G)=\sum_{\substack{s \subset V(G) \\ \|S\| \mid k}}\left[\sum_{v \in S} d e g_{G}(v)\right] d_{G}(S)$
Steiner Gutman k-index	$\operatorname{SGut}_{k}(G)=\sum_{\substack{s \subset V(G) \\ \|S\|=k}}\left[\prod_{v \in S} d e g_{G}(v)\right] d_{G}(S)$

In Section 2, we obtain the exact values of the Steiner Gutman k-index of the complete graph, complete bipartite graph, path and star. When G is a connected graph or tree, we also get the expression of $\operatorname{SGut}_{k}(G)$ for $k=n, n-1$. In Section 3, we obtain sharp lower and upper bounds for SGut_{k} in terms of degree, or both order and size, or order. In Section 4, comparison between $S D D_{k}$ and SGut_{k} of graphs is given.

2 Results for some special graphs

Beginning this section, we note that the special case for $k=2$ of all formulas derived here for the Steiner Gutman k-index, thus pertaining to the ordinary Gutman index, are well known and mentioned many times in the earlier literature. From the definition of Steiner Gutman k-index, one can easily obtain the following result:

Proposition 2.1 Let K_{n} be the complete graph of order n, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\operatorname{SGut}_{k}\left(K_{n}\right)=\binom{n}{k}(n-1)^{k}(k-1)
$$

By the similar method in [22], we can derive the following result for complete bipartite graphs.

Theorem 2.1 Let $K_{a, b}$ be the complete bipartite graph of order $a+b(1 \leq a \leq b)$, and let k be an integer such that $2 \leq k \leq a+b$. Then

$$
\operatorname{SGut}_{k}\left(K_{a, b}\right)= \begin{cases}k a^{k}\binom{b}{k}+k b^{k}\binom{a}{k}+(k-1) \sum_{x=1}^{k-1}\binom{a}{x}\binom{b}{k-x} b^{x} a^{k-x} & \text { if } 1 \leq k \leq a \\ k a^{k}\binom{b}{k}+(k-1) \sum_{x=1}^{a}\binom{a}{x}\binom{b}{k-x} b^{x} a^{k-x} & \text { if } a<k \leq b \\ (k-1) \sum_{x=1}^{a}\binom{a}{x}\binom{b}{k-x} b^{x} a^{k-x} & \text { if } b<k \leq a+b\end{cases}
$$

The following corollary is immediate from the above theorem.
Corollary 2.1 Let S_{n} be the star of order $n(n \geq 3)$, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\operatorname{SGut}_{k}\left(S_{n}\right)=(k n-2 k+1)\binom{n-1}{k-1}
$$

For paths of order n, we have the following.

Proposition 2.2 Let P_{n} be the path of order n, and let k be an integer such that $2 \leq$ $k \leq n-2$. Then

$$
\operatorname{SGut}_{k}\left(P_{n}\right)=2^{k}(k-1)\binom{n}{k+1}+2^{k-2}(n-1)\binom{n-2}{k-2}
$$

Proof. Let $P_{n}=v_{1} v_{2} \ldots v_{n}$, and $G=P_{n}$. Note that $d_{G}\left(v_{1}\right)=d_{G}\left(v_{n}\right)=1$ and $d_{G}\left(v_{i}\right)=2$ for each $i(2 \leq i \leq n-1)$. We first regard the degree of both v_{1} and v_{n} as 2 . In this way, all the degree of $v_{1}, v_{2}, \ldots, v_{n}$ are 2 .

$$
\sum_{\substack{S \subset V(G) \\|S|=k}}\left(\prod_{v \in S} d e g_{G}(v)\right) d_{G}(S)=2^{k} \sum_{\substack{S \subset V(G) \\|S|=k}} d_{G}(S)=2^{k} S W_{k}(G) .
$$

Next, let us compute how we add additional contributions for $2^{k} S W_{k}(G)-\operatorname{SGut}_{k}(G)$ by assuming $d_{G}\left(v_{1}\right)=d_{G}\left(v_{n}\right)=2$. It is clear that

$$
\begin{aligned}
& 2^{k} \mathrm{SW}_{k}(G)-\operatorname{SGut}_{k}(G) \\
= & 2^{k-1} \sum_{\substack{S \subseteq V(G),|S|=k \\
v_{1} \in S, \operatorname{deg}_{G}\left(v_{n}\right)=2}} d_{G}(S)+2^{k-1} \sum_{\substack{S \subseteq V(G),|S|=k \\
v_{n} \in S, \operatorname{deg}_{G}\left(v_{1}\right)=2}} d_{G}(S)-2^{k-2} \sum_{\substack{S \subseteq V(G),|S|=k \\
v_{1} \in S, v_{n} \in S}} d_{G}(S),
\end{aligned}
$$

where $\operatorname{deg}_{G}\left(v_{1}\right)=2$ or $\operatorname{deg}_{G}\left(v_{n}\right)=2$ means that we regard the degree of v_{1} or v_{n} as 2 .
For symmetry, we only need to compute $\sum_{\substack{S \subseteq V(G)|S|=k \\ v_{1} \in S, S^{\prime}, d_{G}\left(v_{1}\right)=2}} d_{G}(S)$. Choose $S \subseteq V(G)$ and $|S|=k$. Without loss of generality, let $S=\left\{u_{1}, u_{i_{2}}, \ldots, u_{i_{k}}\right\}$ where $1<i_{2}<\cdots<$ $i_{k} \leq n$. Then $k \leq i_{k} \leq n$. Let $d_{G}\left(u_{1}, u_{i_{k}}\right)=j-1$. Since $d_{G}(S)=d_{G}\left(u_{1}, u_{i_{k}}\right)=j-1$, it follows that $k-1 \leq j-1 \leq n-1$, and hence $k \leq j \leq n$. Once the vertex $u_{i_{k}}$ is chosen, since $d_{G}\left(u_{1}, u_{i_{k}}\right)=j-1$, we have $\binom{j-2}{k-2}$ ways to choose $u_{i_{2}}, u_{i_{3}}, \ldots, u_{i_{k}-1}$. Therefore, we have

$$
\begin{aligned}
& 2^{k-1} \sum_{\substack{S \subseteq V(G)|S|=k \\
v_{1} \in S, d_{G} \\
d e g_{G}\left(v_{n}\right)=2}} d_{G}(S)+2^{k-1} \sum_{\substack{S \subseteq V(G),|S|=k \\
v_{n} \in \bar{S}, \operatorname{deg}_{G}\left(v_{1}\right)=2}} d_{G}(S) \\
= & 2 \cdot 2^{k-1} \sum_{\substack{\left.S \subseteq V, G_{1}\right),|S|=k \\
v_{1} \in S}} d_{G}(S)=2^{k} \sum_{k \leq j \leq n}(j-1)\binom{j-2}{k-2} \\
= & 2^{k}(k-1) \sum_{k \leq j \leq n}\binom{j-1}{k-1}=2^{k}(k-1)\binom{n}{k} .
\end{aligned}
$$

We now turn our attention to compute $\sum_{\substack{s \subseteq V(G),|S|=k \\ v_{1} \in S, v_{n} \in S}} d_{G}(S)$. Without loss of generality, let $S=\left\{u_{1}, u_{i_{2}}, \ldots, u_{i_{k-1}}, u_{n}\right\}$ where $1<i_{2}<\cdots<i_{k-1}<n$. Clearly, $d_{G}(S)=n-1$,
and we have $\binom{n-2}{k-2}$ ways to choose $u_{i_{2}}, u_{i_{3}}, \ldots, u_{i_{k-1}}$. Therefore, we have

$$
2^{k-2} \sum_{\substack{S \subseteq V \\ v_{1} G S,|,|S|=k}} d_{G}(S)=2^{k-2}(n-1)\binom{n-2}{k-2} .
$$

Therefore, we have

$$
\begin{aligned}
\operatorname{SGut}_{k}(G) & =2^{k} S W_{k}(G)-2^{k}(k-1)\binom{n}{k}+2^{k-2}(n-1)\binom{n-2}{k-2} \\
& =2^{k}(k-1)\binom{n+1}{k+1}-2^{k}(k-1)\binom{n}{k}+2^{k-2}(n-1)\binom{n-2}{k-2} \\
& =2^{k}(k-1)\binom{n}{k+1}+2^{k-2}(n-1)\binom{n-2}{k-2} .
\end{aligned}
$$

For $k=n$, the following result is immediate.

Observation 2.1 Let G be the connected graph of order n. Then

$$
\operatorname{SGut}_{n}(G)=(n-1) \prod_{v \in V(G)} d_{G}(v) .
$$

In [21], Mao obtained the following result.
Lemma 2.1 [21] Let G be a graph. Then sdiam ${ }_{n-1}(G)=n-2$ if and only if G is 2-connected.

We now give the expression of $\mathrm{SGut}_{n-1}(G)$ for a graph G.

Proposition 2.3 Let G be a connected graph of order n.
(1) If G is 2-connected, then

$$
\operatorname{SGut}_{n-1}(G)=(n-2)\left(\prod_{v \in V(G)} d_{G}(v)\right)\left(\sum_{v \in V(G)} \frac{1}{d_{G}(v)}\right) .
$$

(2) If $\kappa(G)=1$, then

$$
\operatorname{SGut}_{n-1}(G)=\left(\prod_{v \in V(G)} d_{G}(v)\right)\left[(n-2)\left(\sum_{v \in V(G)} \frac{1}{\operatorname{deg}_{G}(v)}\right)+\left(\sum_{i=1}^{p} \frac{1}{\operatorname{deg}_{G}\left(v_{i}\right)}\right)\right]
$$

where $v_{i}(1 \leq i \leq p)$ are all cut vertices of G.

Proof. (1) Since G is 2-connected, it follows from Lemma 2.1 that $d_{G}(S)=n-2$ for any $S \subseteq V(G)$ and $|S|=n-1$, and hence
$\operatorname{SGut}_{n-1}(G)=(n-2) \sum_{\substack{S \in V(G) \\|S|=n-1}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right)=(n-2)\left(\prod_{v \in V(G)} d_{G}(v)\right)\left(\sum_{v \in V(G)} \frac{1}{d_{G}(v)}\right)$.
(2) Note that $v_{1}, v_{2}, \ldots, v_{p}$ are all the cut vertices in G. For any $S \subseteq V(G)$ and $|S|=n-1$, if $V(G)-S=\left\{v_{i}\right\}$ for some $i(1 \leq i \leq p)$, then it follows from Lemma 2.1 that $d_{G}(S)=n-1$; if $V(G)-S \neq\left\{v_{i}\right\}$ for each $i(1 \leq i \leq p)$, then it follows from Lemma 2.1 that $d_{G}(S)=n-2$. Let $U=\left\{v_{p+1}, v_{p+2}, \ldots, v_{n}\right\}$ be the set of non-cut vertices. Then

$$
\begin{aligned}
& \operatorname{SGut}_{n-1}(G) \\
= & (n-2) \sum_{\substack{S \in V(G)|S|=n-1, V(G)-S=\left\{v_{i}\right\}, p+1 \leq i \leq n}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right)+(n-1) \sum_{\substack{S \in V(G)|S|=n-1, V(G)-S=\left\{v_{i}\right\}, 1 \leq i \leq p}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right) \\
= & (n-2)\left(\prod_{v \in V(G)} d_{G}(v)\right)\left(\sum_{i=p+1}^{n} \frac{1}{\operatorname{deg}_{G}\left(v_{i}\right)}\right)+(n-1)\left(\prod_{v \in V(G)} d_{G}(v)\right)\left(\sum_{i=1}^{p} \frac{1}{\operatorname{deg}_{G}\left(v_{i}\right)}\right) \\
= & (n-2)\left(\prod_{v \in V(G)} d_{G}(v)\right)\left(\sum_{v \in V(G)} \frac{1}{\operatorname{deg}_{G}(v)}\right)+\left(\prod_{v \in V(G)} d_{G}(v)\right)\left(\sum_{i=1}^{p} \frac{1}{\operatorname{deg}_{G}\left(v_{i}\right)}\right) .
\end{aligned}
$$

The following corollary is immediate.
Corollary 2.2 Let T be a tree of order n. If $v_{1}, v_{2}, \ldots, v_{p}$ are all the pendent vertices in T, then
$\operatorname{SGut}_{n-1}(T)=(n-2)(n-p)\left(\prod_{i=1}^{p} \frac{1}{\operatorname{deg}_{T}\left(v_{i}\right)}\right)+(n-1)\left(\prod_{i=1}^{p} \frac{1}{\operatorname{deg}_{T}\left(v_{i}\right)}\right)\left(\sum_{i=1}^{p} \frac{1}{d e g_{T}\left(v_{i}\right)}\right)$.

3 Lower and upper bounds for general graphs

In this section, we give upper and lower bounds of $\operatorname{SGut}_{k}(G)$.

3.1 Bounds in terms of degree

The following bounds are sharp for $\operatorname{SGut}_{k}(G)$.
Theorem 3.1 Let G be a connected graph of order n. Then

$$
\delta(G)^{k} S W_{k}(G) \leq \operatorname{SGut}_{k}(G) \leq \Delta(G)^{k} S W_{k}(G)
$$

with equality if and only if G is a regular graph.

Proof. From the definition of Steiner degree distance, we have

$$
\operatorname{SGut}_{k}(G)=\sum_{\substack{S \subseteq V(G) \\|S|=k}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right) d_{G}(S) \leq \sum_{\substack{S \subset V(G) \\|S|=k}} \Delta(G)^{k} d_{G}(S)=\Delta(G)^{k} S W_{k}(G)
$$

and

$$
\operatorname{SGut}_{k}(G)=\sum_{\substack{S \subseteq V(G) \\|S|=k}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right) d_{G}(S) \geq \sum_{\substack{S \subseteq V(G) \\|S|=k}} \delta(G)^{k} d_{G}(S)=\delta(G)^{k} S W_{k}(G)
$$

To show the sharpness of the upper and lower bounds, we consider a r-regular graph G. Then $\Delta(G)=\delta(G)=r$, and $\operatorname{SGut}_{k}(G)=r^{k} S W_{k}(G)=\Delta(G)^{k} S W_{k}(G)=\delta(G)^{k} S W_{k}(G)$.

Li et al. [19] obtained the following sharp bounds for $S W_{k}(G)$.
Lemma 3.1 [19] Let G be a connected graph of order n, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\binom{n}{k}(k-1) \leq S W_{k}(G) \leq(k-1)\binom{n+1}{k+1} .
$$

Moreover, the lower bound is sharp.
The following result can be easily seen.
Proposition 3.1 Let G be a connected graph of order n, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\delta(G)^{k}\binom{n}{k}(k-1) \leq \operatorname{SGut}_{k}(G) \leq \Delta(G)^{k}(k-1)\binom{n+1}{k+1}
$$

Moreover, the bounds are sharp.
Proof. From Theorem 3.1 and Lemma 3.1, we have

$$
\operatorname{SGut}_{k}(G) \geq \delta(G)^{k} S W_{k}(G) \geq \delta(G)^{k}\binom{n}{k}(k-1)
$$

Similarly, from Theorem 3.1 and Lemma 3.1, we have

$$
\operatorname{SGut}_{k}(G) \leq \Delta(G)^{k} S W_{k}(G) \leq \Delta(G)^{k}(k-1)\binom{n+1}{k+1}
$$

To show the sharpness of lower bound, we consider the complete graph K_{n}. Since $\delta\left(K_{n}\right)=n-1$, it follows from Proposition 2.1 that

$$
\operatorname{SGut}_{k}\left(K_{n}\right)=\binom{n}{k}(n-1)^{k}(k-1)=\delta\left(K_{n}\right)^{k}\binom{n}{k}(k-1)
$$

To show the sharpness of upper bound, we consider the path P_{2}. For $k=2$, since $\Delta\left(P_{2}\right)=1$, it follows from Proposition 2.2 that

$$
\operatorname{SGut}_{2}\left(P_{2}\right)=1=\Delta\left(P_{2}\right)^{k}(k-1)\binom{n+1}{k+1}
$$

3.2 Bounds in terms of order and size

For graph G having n vertices and m edges, we have the following upper and lower bounds of $\operatorname{SGut}_{k}(G)$.

Theorem 3.2 Let G be a connected graph n vertices and m edges, and let k be an integer with $2 \leq k \leq n$. Then

$$
(n-1)\left(\frac{2 m}{k}\right)^{k}\binom{n-1}{k-1}^{k} \geq \operatorname{SGut}_{k}(G) \geq \begin{cases}2 m(k-1)\binom{n-1}{k-1} & \text { if } \delta(G) \geq 2 \\ (k-1)\binom{n}{k} & \text { if } \delta(G)=1\end{cases}
$$

Moreover, the upper and lower bounds are sharp.
Proof. For any $S \subseteq V(G)$ and $|S|=k$, we have $k-1 \leq d_{G}(S) \leq n-1$, and hence

$$
(k-1) \sum_{\substack{S \subseteq V(G) \\|S|=k}}\left(\prod_{v \in S} d e g_{G}(v)\right) \leq \operatorname{SGut}_{k}(G) \leq(n-1) \sum_{\substack{S \subseteq V(G) \\|S|=k}}\left(\prod_{v \in S} d e g_{G}(v)\right)
$$

Let

$$
M=\sum_{\substack{S \subset V(G) \\|S|=k}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right)=\sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)} \operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right) \ldots \operatorname{deg}_{G}\left(v_{k}\right)
$$

and

$$
N=\sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)}\left[\operatorname{deg}_{G}\left(v_{1}\right)+\operatorname{deg}_{G}\left(v_{2}\right)+\ldots+\operatorname{deg}_{G}\left(v_{k}\right)\right] .
$$

Since

$$
\operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right) \ldots \operatorname{deg}_{G}\left(v_{k}\right) \leq \frac{1}{k^{k}}\left[\operatorname{deg}_{G}\left(v_{1}\right)+\operatorname{deg}_{G}\left(v_{2}\right)+\ldots+\operatorname{deg}_{G}\left(v_{k}\right)\right]^{k}
$$

it follows that

$$
\begin{aligned}
M & =\sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)} \operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right) \ldots \operatorname{deg}_{G}\left(v_{k}\right) \\
& \leq \frac{1}{k^{k}} \sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)}\left[\operatorname{deg}_{G}\left(v_{1}\right)+\operatorname{deg}_{G}\left(v_{2}\right)+\ldots+\operatorname{deg} g_{G}\left(v_{k}\right)\right]^{k} \\
& \leq \frac{1}{k^{k}}\left[\sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)}\left(\operatorname{deg}_{G}\left(v_{1}\right)+\operatorname{deg}_{G}\left(v_{2}\right)+\ldots+\operatorname{deg}_{G}\left(v_{k}\right)\right)\right]^{k} \\
& \leq \frac{1}{k^{k}} N^{k} .
\end{aligned}
$$

For each $v \in V(G)$, there are $\binom{n-1}{k-1} k$-subsets in G such that each of them contains v. The contribution of vertex v is exactly $\binom{n-1}{k-1} \operatorname{deg}_{G}(v)$. From the arbitrariness of v, we have

$$
N=\binom{n-1}{k-1} \sum_{v \in V(G)} \operatorname{deg}_{G}(v)=2 m\binom{n-1}{k-1},
$$

and hence

$$
\operatorname{SGut}_{k}(G) \leq(n-1) M \leq(n-1) \frac{1}{k^{k}} N^{k} \leq\left(\frac{2 m}{k}\right)^{k}\binom{n-1}{k-1}^{k}(n-1)
$$

If $\delta(G) \geq 2$, then $\operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right) \ldots \operatorname{deg}_{G}\left(v_{k}\right) \geq \operatorname{deg}_{G}\left(v_{1}\right)+\operatorname{deg}_{G}\left(v_{2}\right)+\ldots+\operatorname{deg}_{G}\left(v_{k}\right)$, and hence

$$
\begin{aligned}
\operatorname{SGut}_{k}(G) & \geq(k-1) \sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)} \operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right) \ldots \operatorname{deg}_{G}\left(v_{k}\right) \\
& \geq(k-1) \sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)}\left[\operatorname{deg}_{G}\left(v_{1}\right)+\operatorname{deg}_{G}\left(v_{2}\right)+\ldots+\operatorname{deg}_{G}\left(v_{k}\right)\right] \\
& =(k-1) N \\
& =2 m(k-1)\binom{n-1}{k-1} .
\end{aligned}
$$

If $\delta(G)=1$, then

$$
\operatorname{SGut}_{k}(G) \geq(k-1) \sum_{\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G)} \operatorname{deg}_{G}\left(v_{1}\right) \operatorname{deg}_{G}\left(v_{2}\right) \ldots \operatorname{deg}_{G}\left(v_{k}\right) \geq(k-1)\binom{n}{k} .
$$

To show the sharpness of the lower bound for $\delta=1$ and the upper bound, we let $G=P_{2}$. For $k=2$, we have

$$
(n-1)\left(\frac{2 m}{k}\right)^{k}\binom{n-1}{k-1}^{k}=1=\operatorname{SGut}_{k}\left(P_{2}\right)=(k-1)\binom{n}{k}
$$

To show the sharpness of the lower bound for $\delta \geq 2$, we let $G=C_{3}$. For $k=2$, we have

$$
\operatorname{SGut}_{k}\left(C_{3}\right)=12=2 m(k-1)\binom{n-1}{k-1} .
$$

3.3 Bounds in terms of order

In this subsection we prove that the complete graph K_{n} gives the maximum Steiner Gutman k-index of graphs.

Theorem 3.1 Let G be a connected graph of order n. If there is a positive integer $k>$ $0.618 n$, then

$$
\begin{equation*}
\operatorname{SGut}_{k}(G) \leq\binom{ n}{k}(n-1)^{k}(k-1) \tag{1}
\end{equation*}
$$

with equality holding if and only if $G \cong K_{n}$.
Proof. We have

$$
k>0.618(n-1)>\frac{(\sqrt{5}-1)(n-1)}{2}>\frac{-(n-1)+\sqrt{(n-1)^{2}+4\left(n^{2}-2 n\right)}}{2},
$$

that is,

$$
(2 k+n-1)^{2}>(n-1)^{2}+4\left(n^{2}-2 n\right),
$$

that is,

$$
\begin{equation*}
\frac{n+1}{k+1}<1+\frac{k}{n-2}<\left(1+\frac{1}{n-2}\right)^{k}=\left(\frac{n-1}{n-2}\right)^{k} \tag{2}
\end{equation*}
$$

Again since $k>0.618(n-1)$, then one can easily see that

$$
k(k-1) \geq n-2, \quad \text { that is, } \quad\left(\frac{n-1}{n-2}\right)^{k}>1+\frac{k}{n-2} \geq \frac{k}{k-1} .
$$

From the above, we get

$$
\begin{equation*}
(n-1)^{k}(k-1)>(n-2)^{k} k . \tag{3}
\end{equation*}
$$

First we assume that $\Delta=n-1$. If $G \cong K_{n}$, then by Proposition 2.1, the equality holds in (1). Otherwise, $G \nsubseteq K_{n}$. For any $S \subseteq V(G)$ and $|S|=k$, without loss of generality, we let $S=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Since $\Delta=n-1$, we have two possibilities: (i) $\operatorname{deg}_{G}\left(u_{i}\right)=n-1$, $u_{i} \in S$ and (ii) $\operatorname{deg}_{G}\left(u_{i}\right) \leq n-2$, for any $u_{i} \in S$.

Case $(i): \operatorname{deg}_{G}\left(u_{i}\right)=n-1, u_{i} \in S$. In this case the tree T induced by the edges in $\left\{u_{i} u_{1}, u_{i} u_{2}, \ldots, u_{i} u_{i-1}, u_{i} u_{i+1}, \ldots, u_{i} u_{k}\right\}$ is a Steiner tree connecting S, which implies
$d(S) \leq k-1$. Since $|S|=k$, it follows that $d_{G}(S) \geq k-1$. Therefore, $d_{G}(S)=k-1$. For each $v \in V(G)$, we have $\operatorname{deg}_{G}(v) \leq n-1$. Thus we have

$$
\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right) d_{G}(S) \leq(n-1)^{k}(k-1)
$$

with equality holding if and only if $\operatorname{deg}_{G}(v)=n-1$ for any $v \in S$.
$\operatorname{Case}(i i): \operatorname{deg}_{G}\left(u_{i}\right) \leq n-2$, for any $u_{i} \in S$. Let w be a vertex of degree $n-1$ as $\Delta=n-1$. In this case the tree T induced by the edges in $\left\{w u_{1}, w u_{2}, \ldots, w u_{k}\right\}$ is a Steiner tree connecting S. One can easily see that $d(S)=k$. For each $v \in S$, we have $d e g_{G}(v) \leq n-2$. Thus we have

$$
\left(\prod_{v \in S} d e g_{G}(v)\right) d_{G}(S) \leq(n-2)^{k} k
$$

with equality holding if and only if $\operatorname{deg}_{G}(v)=n-2$ for any $v \in S$.
Since $G \nsubseteq K_{n}$, using (3) with the above results, we get

$$
\operatorname{SGut}_{k}(G)=\sum_{\substack{s \subset V(G) \\|S|=k}}\left(\prod_{v \in S} \operatorname{deg}_{G}(v)\right) d_{G}(S)<\binom{n}{k}(n-1)^{k}(k-1) .
$$

Next we assume that $\Delta \leq n-2$. By (2), we have

$$
\frac{n+1}{k+1}<\left(\frac{n-1}{n-2}\right)^{k} \leq\left(\frac{n-1}{\Delta}\right)^{k}
$$

From Proposition 3.1 with the above result, we have

$$
\operatorname{SGut}_{k}(G)<\frac{k+1}{n+1}(n-1)^{k}(k-1)\binom{n+1}{k+1}=\binom{n}{k}(k-1)(n-1)^{k}
$$

4 Comparison between $S D D_{k}$ and SGut_{k} of graphs

In this section we compare between $S D D_{k}$ and SGut_{k} of graphs.
Example 1 Let S_{n} be the star of order $n(n \geq 3)$, and let k be an integer such that $2 \leq k \leq n$. Then

$$
\operatorname{SGut}_{k}\left(S_{n}\right)=(k n-2 k+1)\binom{n-1}{k-1} .
$$

Example 2 [23] Let S_{n} be the star of order n. Then

$$
S D D_{k}\left(S_{n}\right)=(2 k n-n-3 k+2)\binom{n-1}{k-1}
$$

Proposition 4.1 Let G be a connected graph of order n with minimum degree δ, and let k be an integer with $3 \leq k \leq n$. Let r be the number of the pendant vertices in G.
(1) If $\delta(G) \geq 2$, then

$$
\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}(G)
$$

(2) If $\delta(G)=1, r+3 \leq k$ and $2^{k-r} \geq 2(k-r)+r$, then

$$
\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}(G)
$$

(3) If $\delta(G)=1$, and $r=n-1$, then

$$
\operatorname{SDD}_{k}(G)>\operatorname{SGut}_{k}(G)
$$

Proof. (1) For any $S \subseteq V(G)$ and $|S|=k$, we let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Let $\operatorname{deg} g_{G}\left(v_{i}\right)=x_{i}$ for $i(1 \leq i \leq k)$. To show $\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}(G)$, from the arbitrariness of S and the definitions, it suffices to show that $\prod_{i=1}^{k} x_{i} \geq \sum_{i=1}^{k} x_{i}$. Let $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{1} x_{2} \ldots x_{k}-$ $\left(x_{1}+x_{2}+\ldots+x_{k}\right)$. Since $\delta(G) \geq 2$, it follows that $x_{i} \geq 2$ for each $i(1 \leq i \leq k)$, and hence

$$
\frac{\partial f}{\partial x_{i}}=x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{k}-1>0
$$

Therefore, $f\left(x_{1}, x_{2}, \ldots x_{k}\right)$ is a monotone increasing function. Clearly, $f\left(x_{1}, x_{2}, \ldots, x_{k}\right) \geq$ $f(2,2, \ldots, 2)=2^{k}-2 k \geq 0$. So, we have $\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}(G)$.
(2) For any $S \subseteq V(G)$ and $|S|=k$, we let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Let $\operatorname{deg}_{G}\left(v_{i}\right)=x_{i}$ for $i(1 \leq i \leq k)$. To show $\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}(G)$, from the arbitrariness of S and the definitions, it suffices to show that $\prod_{i=1}^{k} x_{i} \geq \sum_{i=1}^{k} x_{i}$. Since there are $r \geq 1$ pendant vertices in G, we can assume that $x_{1}=x_{2}=\ldots=x_{r}=1$. Then $x_{i} \geq 2$ for each $i(r+1 \leq i \leq k)$. Let $f\left(x_{r+1}, x_{r+2}, \ldots, x_{k}\right)=x_{r+1} x_{r+2} \ldots x_{k}-\left(x_{r+1}+x_{r+2}+\ldots+x_{k}\right)-r$. Then

$$
\frac{\partial f}{\partial x_{i}}=x_{r+1} x_{r+2} \ldots x_{i-1} x_{i+1} \ldots x_{k}-1>0
$$

Therefore, $f\left(x_{r+1}, x_{r+2}, \ldots, x_{k}\right)$ is monotone increasing. Clearly, $f\left(x_{r+1}, x_{r+2}, \ldots, x_{k}\right) \geq$ $f(2,2, \ldots, 2)=2^{k-r}-2(k-r)-r \geq 0$ as $2^{k-r} \geq 2(k-r)+r$. Therefore we have $\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}(G)$.
(3) If $\delta(G)=1$ and $r=n-1$, then $G=K_{1, n-1}$ is a star of order n. From Examples 1 and 2, we have $\operatorname{SDD}_{k}(G)>\operatorname{SGut}_{k}(G)$.

Proposition 4.2 Let G be a connected graph of order n with maximum degree Δ, and let k be an integer with $2 \leq k \leq n$.
(1) If $\Delta(G) \leq k-1$, then

$$
\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}\left(K_{n}\right)
$$

(2) If $\Delta(G)=n-1$, then

$$
\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}\left(K_{n}\right)
$$

Proof. (1) For any $S \subseteq V(G)$ and $|S|=k$, since $\Delta(G) \leq k-1$, we have

$$
\left[\sum_{v \in S} \operatorname{deg}_{G}(v)\right] d_{G}(S) \leq(k-1)^{k} d_{G}(S) \leq(k-1)^{k}(n-1) .
$$

For this S in complete graph K_{n},

$$
\left[\prod_{v \in S} \operatorname{deg}_{K_{n}}(v)\right] d_{K_{n}}(S)=(n-1)^{k}(k-1)
$$

Since $k \leq n$, it follows that $(k-1)^{k}(n-1) \leq(n-1)^{k}(k-1)$. From the arbitrariness of S, we have $\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}\left(K_{n}\right)$.
(2) If $\Delta(G)=n-1$, then there exists a vertex v such that $\operatorname{deg}_{G}(v)=n-1$. For any $S \subseteq V(G)$ and $|S|=k$, we have $v \in S$ or $v \notin S$. If $v \in S$, then $d_{G}(S)=k-1$, and hence

$$
\left[\sum_{v \in S} d e g_{G}(v)\right] d_{G}(S) \leq(n-1)^{k}(k-1)
$$

From the arbitrariness of S, we have $\operatorname{SDD}_{k}(G) \leq \operatorname{SGut}_{k}\left(K_{n}\right)$.
If $v \notin S$, then $d_{G}(S)=k-1$ or $d_{G}(S)=k$. If $d_{G}(S)=k-1$, then it is true as the case $v \in S$. If $d_{G}(S)=k$, then $G[S]$ is not connected, and there is at most one vertex of degree $k-2$ in $G[S]$. Therefore, there are at most two vertices in S of degree less than or equal to $n-2$ and all the other vertices in S are of degree at most $n-3$. Then

$$
\left[\sum_{v \in S} \operatorname{deg}_{G}(v)\right] d_{G}(S) \leq\left[(n-3)^{k-2}+2(n-2)\right] k
$$

It suffices to show that $\left[(n-3)^{k-2}+2(n-2)\right] k \leq(n-1)^{k}(k-1)$, that is,

$$
\begin{equation*}
\frac{k}{n-1}\left[\frac{(n-3)^{k-2}}{(n-1)^{k-1}}+\frac{2(n-2)}{(n-1)^{k-1}}\right] \leq \frac{(n-3)^{k-2}}{(n-1)^{k-1}}+\frac{2(n-2)}{(n-1)^{k-1}} \leq k-1 . \tag{4}
\end{equation*}
$$

One can easily see that (4) is true for $3 \leq k \leq n-1$. For $k=n$, one can easily prove that the result holds as $d_{G}(S)=n-1$. For $k=2$, we have

$$
\left[\sum_{v \in S} \operatorname{deg}_{G}(v)\right] d_{G}(S) \leq 4(n-2) \leq(n-1)^{2}
$$

as $n \geq 3$. This completes the proof of the result.

Acknowledgment: The first author was supported by the National Science Foundation of China (Nos. 11601254, 11551001, 11161037, 11461054) and the Science Found of Qinghai Province (Nos. 2016-ZJ-948Q, and 2014-ZJ-907).

References

[1] P. Ali, P. Dankelmann, S. Mukwembi, Upper bounds on the Steiner diameter of a graph, Discr. Appl. Math. 160 (2012) 1845-1850.
[2] P. Ali, S. Mukwembi, S. Munyira, Degree distance and vertex-connectivity, Discr. Appl. Math. 161 (2013) 2802-2811.
[3] M. An, L. Xiong, K. C. Das, Two upper bounds for the degree distances of four sums of graphs, Filomat 28 (2014) 579-590.
[4] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
[5] J. Cáceresa, A. Márquezb, M. L. Puertasa, Steiner distance and convexity in graphs, Eur. J. Comb. 29 (2008) 726-736.
[6] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inf. Sci. 278 (2014) 22-33.
[7] G. Chartrand, O. R. Oellermann, S. Tian, H. B. Zou, Steiner distance in graphs, Časopis Pest. Mat. 114 (1989) 399-410.
[8] S. Chen, Cacti with the smallest, second smallest, and third smallest Gutman index, J. Comb. Optim. 31 (1) (2016) 327-332.
[9] P. Dankelmann, R. Entringer, Average distance, minimum degree, and spanning trees, J. Graph Theory 33 (2000) 1-13.
[10] P. Dankelmann, O. R. Oellermann, H. C. Swart, The average Steiner distance of a graph, J. Graph Theory 22 (1996) 15-22.
[11] K. C. Das, I. Gutman, M.J. Nadjafi-Arani, Relations between distance-based and degree-based topological indices, Appl. Math. Comput. 270 (2015) 142-147.
[12] K. C. Das, G. Su, L. Xiong, Relation between degree distance and Gutman index of graphs, MATCH Commun. Math. Comput. Chem. 76 (2016) 221-232.
[13] M. Dehmer, M. Grabner, B. Furtula, Structural discrimination of networks by using distance, degree and eigenvalue-based measures, PLOS ONE 7 (2012) e38564.
[14] A. Dobrynin, A. Kochetova, Degree distance of a graph: a degree analogue of the wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
[15] L. Feng, W. Liu, The maximal Gutman index of bicyclic graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 699-708.
[16] B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices, Appl. Math. Comput. 219 (2013) 8973-8978.
[17] I. Gutman, On Steiner degree distance of trees, Appl. Math. Comput. 283 (2016) 163-167.
[18] I. Gutman, Selected properties of Schultz molecular topological index, J. Chem. Inf. Coumput. Sci. 34 (1994) 1087-1089.
[19] X. Li, Y. Mao, I. Gutman, The Steiner Wiener index of a graph, Discuss. Math. Graph Theory 36 (2016) 455-465.
[20] X. Li, Y. Mao, I. Gutman, Inverse problem on the Steiner Wiener index, Discuss. Math. Graph Theory., in press.
[21] Y. Mao, The Steiner diameter of a graph, Bull. Iran. Math. Soc., in press.
[22] Y. Mao, Steiner Harary index, Kragujevac J. Math. 42 (2018) 29-39.
[23] Y. Mao, Z. Wang, I. Gutman, A. Klobučar, Steiner degree distance, MATCH Commun. Math. Comput. Chem. 78 (2017) 221-230.
[24] Y. Mao, Z. Wang, I. Gutman, H. Li, Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, Discr. Appl. Math. 219 (2017) 167-175.
[25] S. Mukwembi, S. Munyira, Degree distance and minimum degree, Bull. Austral. Math. Soc. 87 (2013) 255-271.
[26] O. R. Oellermann, S. Tian, Steiner centers in graphs, J. Graph Theory 14 (1990) 585-597.
[27] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2009.
[28] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.

[^0]: ${ }^{1}$ Corresponding author

