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Abstract

The revised Szeged index of a graph is defined as Sz∗(G) =
∑

e=uv∈E(nu(e) +
n0(e)
2 )(nv(e)+

n0(e)
2 ), where nu(e) and nv(e) are, respectively, the number of vertices

of G lying closer to vertex u than to vertex v and the number of vertices of G lying

closer to vertex v than to vertex u, and n0(e) is the number of vertices equidistant

to u and v. In the paper, we acquired the lower bound of revised Szeged index

among all tricyclic graphs, and the extremal graphs that attain the lower bound are

determined.

1 Introduction

A map taking graphs as arguments is referred to as a graph invariant if it assigns equal

values to isomorphic graphs. These invariants have been used for modeling some prop-

erties of chemical compounds and capturing the structural essence of compounds with

respect to a molecule, which, (in chemical) graph theory, are also called the topological

indices.
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They include graph energy, various of graph like-energies, Randić index, Zagreb index,

PI index and graph entropies, etc, see literatures [2, 5, 9, 13, 14, 17, 18, 22, 23, 25, 26, 33, 34]

and cited in them for properties and applications of the variants.

For a simple connected graph G, Wiener gives the definition of Wiener index as follows:

W (G) =
∑

{u,v}⊆V

d(u, v). (1)

This topological index has been extensively studied, see [12, 13, 15, 34]. Let e = uv be an

edge of G, and define three subsets of V (G) below.

Nu(e) = {w ∈ V : d(u,w) < d(v, w)},

Nv(e) = {w ∈ V : d(u,w) > d(v, w)},

N0(e) = {w ∈ V : d(u,w) = d(v, w)}.

By the way {Nu(e), Nv(e), N0(e)} consists of a partition of vertices set V with respect

to e. The number of vertices of Nu(e), Nv(e), N0(e) are denoted by nu(e), nw(e), n0(e),

respectively. As we known, Wiener index has the following formula:

W (G) =
∑

e=uv∈E

nu(e)nv(e), (2)

which is applicable for trees. Using the above formula, Gutman [11] introduced a graph

invariant named the Szeged index (Sz) as extension of the Wiener index and defined it by

Sz(G) =
∑

e=uv∈E

nu(e)nv(e).

The two invariants have a simple and interesting relation [32]

Sz(G) ≥ W (G), (3)

with equality if and only if all blocks of G are complete graphs. Short later, Randić [31]

observed that the Szeged index does not take into account the contributions of the vertices

at equal distances from the endpoints of an edge, and so he conceived a modified version

of the Szeged index which is named the revised Szeged index (Sz∗). The revised Szedged

index of a connected graph G is defined as

Sz∗(G) =
∑

e=uv∈E

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
).

Note that Sz∗(G) ≥ Sz(G), and equality holds if and only if G is a bipartite graph. Since

Inequality (3), the differences Sz(G)−W (G) and Sz∗(G)−W (G) are interesting and has

attracted many mathematicians to focus, see [3, 6, 8, 20,27,28,35] for details.
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In addition, some properties and applications of these two topological indices have

been reported in [21,22,29,30,32]. Aouchiche and Hansen [1] showed that for a connected

graph G of order n and m, an upper bound of the revised Szeged index of G is n2m
4
.

In [36], Xing and Zhou acquired the unicyclic graphs of order n with the smallest and

largest revised Szeged indices for n ≥ 5.

Theorem 1.1 Among unicyclic graphs with n ≥ 3, Sn,3 for 12 ≥ n ≥ 3 and Sn,4 for

n ≥ 13 are the unique graphs with the smallest revised Szeged index, where Sz∗(Sn,3) =

1
4
(5n2 − 4n− 6) and Sz∗(Sn,4) = n2 + 3n− 12.

Hansen et al. [16], utilizing the Autographix, proposed the upper bound of bicyclic graphs

as a conjecture. One of present authors with Li [24] completely approved the conjecture.

Short recently, the lower bound of bicyclic graphs and the graphs attached the bound are

determined in [19].

Theorem 1.2 Let G be a connected bicyclic graph G of order n(n ≥ 6). Then

Sz∗(G) ≥


n2 + 8n− 29, if n ≥ 17, and ‘=’ holds iff G ∼= A1,

355, if n = 16, and ‘=’ holds iff G ∼= A1, A2,
5
4
n2 + 3n− 13, if 9 ≤ n ≤ 15, and ‘=’ holds iff G ∼= A2,

91, if n = 8, and ‘=’ holds iff G ∼= A2, A3.
3
2
n2 − 5, if n = 6, 7, and ‘=’holds iff G ∼= A3.

These graphs A1, A2 and A3 are presented in Fig.2.

In addition, Li et al. [7] got the upper bound for the topological index among all tricyclic

graphs. It is natural to think about the dual problem. In the paper, for tricyclic graphs,

the lower bound of Sz∗ are obtained and these graphs for which the bound are attained

are characterized completely.

Theorem 1.3 Let G be a connected tricyclic graph G of order n(≥ 8) . Then

Sz∗(G) ≥
{

n2 + 13n− 50, if n ≥ 20, and ‘=’ holds iff G ∼= C1,
5
4
n2 + 7n− 114

4
, if 19 ≥ n ≥ 8, and ‘=’ holds iff G ∼= C4.

Where, C1 and C4 are shown in Fig. 6.

We now introduce some graph-theoretical notations and terminology. For other undefined

ones, see the book [4]. All graph considered in the paper are finite, undirected and simple.

Let Sn and Cn be the star and cycle on n vertices, respectively. G1 ·G2 denote the graph

obtained from G1 and G2 by fusing one vertex of the two graphs. Let w be the common

vertex of G1 and G2. Obviously, w is a cut vertex of G. Especially, if the vertex w of

Sn−r+1 ·Cr is the center of Sn−r and a vertex in Cr+1, we mark the graph as Sn,r for short.
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Figure 1. The all braces in tricyclic graphs Gn.

A3A1 A2 B11 B12 B22 B23

x2 x3x1

Figure 2. The graphs using in the Theorem 1.2 and Theorem 3.8.

If a graph H is gotten by removing repeatedly all pendants (If any) of G. Then we say

H is the brace of G. That is to say, H doesn’t contain any pendent vertex. Obviously,

for all connected tricyclic graphs, their braces are shown in Fig. 1. Let Gn be the set of

tricyclic graphs on order n, and C i
n be the collection whose element contains αi as its brace

for i = 1, 2, · · · , 15, respectively. Clearly, Gn = ∪15
i=1C

i
n. For convenience, let A = ∪15

i=5C
i
n.

For the sake of brevity, let P (i) denote the path with the length i, e.g., the length of P (a)

is a. Based on the lengths of the paths(they are shown in Fig.1) in some brace, we mark

α1 = α1(a, b, c, d, f, g), α2 = α2(a, b, c, d, f, g), α3 = α3(a, b, c, d, f) and α4 = α4(a, b, c, d).

2 Preliminary

From the fact that nu(e) + nv(e) + n0(e) = n for every edge e = uv ∈ E, we have

Sz∗(G) =
∑

e=uv∈E

(
nu(e) +

n0(e)

2

)(
nv(e) +

n0(e)

2

)
=

mn2

4
− 1

4

∑
e=uv∈E

(nu(e)− nv(e))
2.

Especially, set m = n+ 2, we deduce

Sz∗(G) =
n3 + 2n2

4
− 1

4

∑
e=uv∈E

(nu(e)− nv(e))
2. (1)

Moreover, n2 + 13n− 50 = n3+2n2

4
− 1

4
(n3 − 2n2 − 52n+ 200).
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For short, let δ(e) = |nu(e)− nv(e)|. Eq. (1) is rewritten as

Sz∗(G) =
n3 + 2n2

4
− 1

4

∑
e∈E

δ(e)2. (2)

We now provide some results which will be used in the next Section.

Lemma 2.1 Let e ∈ E(G). Then

δ(e) ≤ n− 2.

with equality if and only if e is a pendant edge.

We now consider the graph G ∼= G1 · G2. For every e = uv ∈ E(G1), w belongs

to one of the three sets Nu(e), Nv(e), N0(e). Since every path connecting u(v) and each

vertex in V (G2) is via w, all vertices of G2 must contained in one of the three sets

Nu(e), Nv(e), N0(e) (the same with w). Therefore, the contribution of G2 to the item∑
e∈E(G1)

(
nu(e)+

n0(e)
2

)(
nv(e)+

n0(e)
2

)
completely relies on the order of G2, that is, changing

the structure of G2 and keeping the order |G2| cannot alter the value
∑

e∈E(G1)

(
nu(e) +

n0(e)
2

)(
nv(e)+

n0(e)
2

)
. Due to the contribution of the pendant edge to (nu(e)+

n0(e)
2

)(nv(e)+

n0(e)
2

) is the smallest, we have the following lemmas.

Lemma 2.2 Let G2 be a connected graph of order n. Then

Sz∗(G1 · Sn) ≤ Sz∗(G1 ·G2),

where the common vertex of G1 · Sn is the center vertex of Sn, and equality holds if and

only if G1 · Sn
∼= G1 ·G2.

Before exhibiting the key result in the proof of the Theorem 3.8, we represent the result

in [19] as follows.

Lemma 2.3 Let H1 be a graph, and H2, H3 be the two unicyclic graphs with |H1| = n1 and

|H2| = |H3| = n2. If H3
∼= Sn2,3(orSn2,4). Then Sz∗(H1 ·H2) ≥ Sz∗(H1 ·H3). Especially,

Sz∗(H1 ·H2) ≥ Sz∗(H1 ·Sn2,3) for n = n1+n2−1 ≤ 12 and Sz∗(H1 ·H2) ≥ Sz∗(H1 ·Sn2,4)

for n = n1 + n2 − 1 ≥ 13, where the common vertex of H1 · Sn2,3(H1 · Sn2,4) is the center

vertex of Sn2,3(Sn2,4).

By means of Theorem 1.2 and the above result, the next two conclusions are gotten. Note

that the common vertex of H · Sn2,4(orSn2,3) is the center of Sn2,4(orSn2,3).
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Lemma 2.4 Let G be a tricyclic graph on order n(≥ 13) and H be a bicyclic graph on

order n1 with n1 ≤ n − 2. If G = H · Sn2,4. Then Sz∗(G) ≥ Sz∗(A1 · Sn2,4) for n ≥ 17

and equality holds if and only if H ∼= A1, Sz
∗(G) ≥ Sz∗(A2 · Sn2,4) for 15 ≥ n ≥ 13 and

equality holds if and only if H ∼= A2. Especially, Sz
∗(G) ≥ Sz∗(Ai · Sn2,4) for n = 16 with

equality if and only if G ∼= Ai for i = 1, 2.

Lemma 2.5 Let G be a tricyclic graph on order n(≤ 12) and H be a bicyclic graph on

order n1 with n1 ≤ n − 2. If G = H · Sn2,3. Then Sz∗(H · Sn2,3) ≥ Sz∗(A2 · Sn2,3) for

12 ≥ n ≥ 9, and equality holds if and only if H ∼= A2. Especially, Sz
∗(G) ≥ Sz∗(Ai ·Sn2,3)

for n = 8 with equality if and only if H ∼= Ai for i = 2, 3, Sz∗(G) ≥ Sz∗(A3 · Sn2,3) for

n ≤ 7 with equality if and only if H ∼= A3.

Proof of Lemma 2.4: Assume firstly that n = n1 + n2 − 1 ≥ 17. Sz∗(A1) ≤ Sz∗(H)

from Theorem 1.2. The common vertex of A1 · Sn2,4 is the center of Sn2,4 and the vertex

x1 in A1, see Fig.2. we deduce, from Lemma 2.2, that

Sz∗(H · Sn2,4)

=
∑

e=uv∈E(H·Sn2,4)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
)

=
∑

e∈E(H)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
) +

∑
e∈E(Sn2,4)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
)

= Sz∗(H · Sn2)− (|n2| − 1)(n− 1) +
∑

e∈E(Sn2,4)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
)

≥ Sz∗(A1 · Sn2)− (|n2| − 1)(n− 1) +
∑

e∈E(Sn2,4)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
)

=
∑

e∈E(A1)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
) +

∑
e∈E(Sn2,4)

(nu(e) +
n0(e)

2
)(nv(e) +

n0(e)

2
)

= Sz∗(A1 · Sn2,4).

With the same way, when 15 ≥ n ≥ 13, we arrive at Sz∗(G) ≥ Sz∗(A2 · Sn2,4), when

n = 16, we get Sz∗(G) ≥ Sz∗(Ai · Sn2,4) for i = 1, 2. Therefore, the proof is complete.

We may use the same line of the proof of Lemma 2.4 to show Lemma 2.5. So the

process is omitted here.

3 Proof of Theorem 1.3

In the section, we will verify the main result of the paper. In order to show Theorem 1.3,

in view of Eq. (2), we need to choose the graph G for which
∑

e∈E(G) δ(e)
2 is as large as
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possible. We thus assume that the all vertices of G outside its brace are pendent vertices

through Lemma 2.1 and Lemma 2.2. For the sake of brevity, let ti,j =
∑

e∈Ei
δ(e)2 −∑

e∈Ej
δ(e)2 for i, j ∈ N, especially, set E0 = E. In terms of the categories of brace among

all tricyclic graphs, we divide five steps to obtain the lower bound. Before listing the

proof of these steps, some preparation are necessary.

x2

x3 x4

x5

x1
x2

x4

x3

x5

x6

x2

x4

x1

x3

x5

x1

x2

x3

x4

x5

x6

x5

x2

x3 x4

x1

x6

x1

α3(2, 1, 1, 2, 1)α2(1, 1, 1, 2, 1, 1) α3(3, 1, 1, 2, 1)α3(2, 1, 1, 2, 2) α4(1, 2, 2, 3)

Figure 3. Labeling the vertices of some braces.

C22C21 C23

Figure 4. Using for the proof of Lemma 3.1 and Theorem 3.10.

Lemma 3.1 Let G be a tricyclic graph and contain α2(1, 1, 1, 2, 1, 1) as its brace. Then

Sz∗(G) ≥ Sz∗(C21) for n ≤ 8, Sz∗(G) ≥ Sz∗(C22) for n ≥ 10 and Sz∗(G) = Sz∗(C2i)(i =

1, 2) for n = 5, 9. Particularly, Sz∗(G) > n2 + 13n− 50.

Proof. Let x1, x2, x3, x4, x5 be the five vertices of α2 as shown in Fig. 3, and `i be the

number of pendants of connecting to xi. For `1 + `3 ≥ `2 + `4 ≥ 1 and `1`2 6= 0 (or

`3`4 6= 0), let G1 denote the graph which is obtained from G by deleting the pendants of

x2 and x4 and adding to x1 and x3, respectively. Observe that, for `1 6= 0, `3 = 0 and

`2 = 0, `4 6= 0( or `1 = 0, `3 6= 0 and `2 6= 0, `4 = 0), G ∼= G1 by the symmetry of α2. We

deduce, from direct computing, that

t1,0 = (`1 + `2 − `3 − `4 − `5)
2 + (`1 + `2 + `3 + `4 − `5 + 1)2

+ (`3 + `4 − `5)
2 + (`3 + `4 + `5)

2 + (`1 + `2)
2

+ (`1 + `2 + `3 + `4 − `5 + 1)2 + (`1 + `2 − `3 − `4 − `5 + 1)2

− (`1 + `2 + `4 − `3 − `5 + 1)2 − (`1 + `2 + `3 − `4 − `5 + 1)2

− (`1 + `4 − `3 − `5)
2 − (`1 + `3 − `4 − `5)

2 − (x1 − x2)
2

− (`2 + `4 − `3 − `5)
2 − (`2 + `3 − `4 − `5)

2

= 8`1`2 + 24`3`4 > 0.

For `5 ≥ 1, let G2 be the graph obtained from G1 by deleting the all pendants of x5 and
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adding to x3. We have that

t2,1 = (`1 − `3 − `5)
2 + 2(`3 + `5)

2 + (`1 + `3 + `5)
2 + `21

+ (`1 + `3 + `5 + 1)2 + (`1 − `3 − `5 + 1)2 − (`1 + `3)
2

− (`1 − `3 − `5)
2 − (`1 + `3 − `5)

2 − (`3 − `5)
2

− `21 − (`1 + `3 − `5 + 1)2 − (`1 − `3 − `5 + 1)2

= 8`1`5 + 12`3`5 + 4`5 > 0,

For x1, x3 ≥ 1, let G3 be the graph obtained from G2 by shifting `1 pendants from x1 to

x3. Observe that G3
∼= C22. We get that

t3,2 = 4(`1 + `3)
2 + (`1 + `3 + 1)2 + (`1 + `3 − 1)2

− (`1 − `3)
2 − (`1 + `3)

2 − (`3 − `5)
2

− 2`23 − `21 − (`1 + `3 + 1)2 − (`1 − `3 + 1)2

= `21 + 12`1`3 − 4`1 > 0.

Together with Eq. (2) and the above relation, it follows that Sz∗(G) > Sz∗(G1) >

Sz∗(G2) > Sz∗(C22). Clearly, G2
∼= C21 for `3 = 0 and G2

∼= C22 for `1 = 0. By direct

comparing, we deduce that

Sz∗(C21) =
3

2
n2 +

11

2
n− 87

4
> n2 + 13n− 50,

Sz∗(C22) =
5

4
n2 + 9n− 33 > n2 + 13n− 50,

Sz∗(C21)− Sz∗(C22) =
1

4
(n− 9)(n− 5).

(1)

We hence finish the proof.

Lemma 3.2 If G includes α3(3, 1, 1, 2, 1) as its brace. Then Sz∗(G) ≥ Sz∗(C15) for

7 ≤ n ≤ 12 and Sz∗(G) ≥ Sz∗(C14) for n ≥ 13. Especially, Sz∗(G) ≥ n2 + 13n− 50.

Proof. Label the six vertices α3 as x1, x2, . . . , x6 shown in Fig. 4. Let `i is the number

of pendants connecting to xi. We first claim that `5 = `6 = 1. If not, it is easy to

construct a new graph G′ from G by switching all pendants from x5 and x6 to x1 and x2,

respectively, and satisfying Sz∗(G′) < Sz∗(G) through direct calculation. For `3 ≥ 1, let

G1 denote the graph formed from G by deleting all pendants of x2 and x4 and adding to

x3, otherwise, denote G2 the graph obtained from G by shifting `4 pendants from x4 to

x2. For `1, `2 ≥ 1, by G3 denote the graph obtained from G2 by shifting `1 pendants from
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x1 to x2, where G3
∼= C14. We have the following relation:

t1,0 = 2(`1 + `2 + `3 + `4 + 2)2 + 2(`1 + `2 + `3 + `4 + 1)2 + (`1 + 1)2

+ (`2 + `3 + `4 − `1 − 3)2 + (`2 + `3 + `4 − 2)2 + (`2 + `3 + `4)
2

− 2(`1 + `2 + `3 + `4 + 2)2 − 2(`1 + `3 − `2 + 1)2 − (`1 − `4 + 1)2

− (`3 − `1 − `2 − 3)2 − (`3 − `2 − `4 − 2)2 − (`2 − `3 − `4)
2

= 4`1`2 + 4`1`4 + 20`2`3 + 10`2`4 + 10`3`2 + 4`1`4 + 2`24 − 12`2 − 8`4

≥ `2(20`3 − 12) + `4(10`3 − 8) + 2`24 > 0,

C12 C13 C14 C16C11 C15C10

Figure 5. Using for the proof of Lemmas 3.2, 3.3, 3.4 and Theorem 3.11.

t2,0 = 2(`1 + `2 + `4 + 2)2 + 2(`1 − `2 − `4 + 1)2 + (`1 + 1)2

+ (`1 + `2 + `4 + 3)2 + (`2 + `4 + 2)2 + (`2 + `4)
2

− 2(`1 + `2 + `4 + 2)2 − 2(`1 − `2 + 1)2 − (`1 − `4 + 1)2

− (`1 + `2 + 3)2 − (`2 + `4 + 2)2 − (`2 − `4)
2

= 10`2`4 + 2`24 + 4`4 > 0,

t3,2 = 3(`1 + `2 + 2)2 + 2(`1 + `2 − 1)2 + (`1 + `2 + 3)2 + 1

+ (`1 + `2)
2 − 2(`1 + `2 + 2)2 − 2(`1 − `2 + 1)2 − (`2)

2

− (`1 + `2 + 3)2 − (`2 + 2)2 − (`1 + 1)2

= `21 + 12`1`2 − 6`1 > 0.

Together with Eq. (2) and the above relation, we have that Sz∗(G) > Sz∗(G1) and

Sz∗(G) > Sz∗(G2) > Sz∗(C14). Notice that, if `1, `3 ≥ 1, it is easy to show that∑
e∈E(G1)

δ(e)2 ≤ 3(n − 4)2 + 2(n − 5)2 + 2(n − 7)2 + 1 <
∑

e∈E(C14)
δ(e)2, otherwise,

G1
∼= C15 for `3 = 0 and G1

∼= C16 for `1 = 0. Moreover, we arrive at

Sz∗(C14) =
1

4
(5n2 + 42n− 168) > n2 + 13n− 50,

Sz∗(C15) =
1

2
((3n2 + 12n− 48) > n2 + 13n− 50,

Sz∗(C16) =
1

4
(5n2 + 54n− 240) > n2 + 13n− 50,

Sz∗(C15)− Sz∗(C14) =
1

4
(n− 12)(n− 6),

Sz∗(C16)− Sz∗(C14) = 12(n− 6).

(2)
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Therefore, Sz∗(G) ≥ Sz∗(C15) for n ≤ 12 and Sz∗(G) ≥ Sz∗(C14) for n ≥ 13.

Lemma 3.3 If G has the brace α3(2, 1, 1, 2, 2). Then Sz∗(G) ≥ Sz∗(C13) with equality if

and only if G ∼= C13.

Proof. The six vertices of α3(2, 1, 1, 2, 2) are labeling as x1, . . . , x6, see Fig. 4. Let `i denote

the number of pendants connecting to xi. For `6 > 0 we obtain a new graph G1 by adding

`6 attaching to x1 of G from x6.

t1,0 = (`1 + `3 + `5 + `6 − `2 + 2)2 + (`2 − `4 − 1)2 + 2(`1 + `3 + `5 + `6 − `4 + 1)2

+ (`1 + `2 + `4 + `6 − `3 + 2)2 + (`3 − `5 − 1)2 + 2(`1 + `2 + `4 − `5 − `6 + 1)2

− (`1 + `3 + `5 − `2 + 2)2 − (`2 − `4 − `6 − 1)2 − 2(`1 + `3 + `5 − `4 − `6 + 1)2

− (`1 + `2 + `4 − `3 + 2)2 − (`3 − `5 − `6 − 1)2 − 2(`1 + `2 + `4 − `5 − `6 + 1)2

= 20`1`6 + 10`2`6 + 10`3`6 + 20`6 > 0.

G2 denote the graph from G1 by deleting `3 and `5 of x3 and x5 and adding to x2 and x4,

respectively.

t2,1 = (`1 + `2 + `3 + `4 + `5 + 2)2 + 2(`1 + `2 + `3 + `4 + `5 + 1)2 + 1

+ (`1 − `2 − `3 + 3− 1)2 + (`2 + `3 − `4 − `5 − 1)2 + 2(`1 − `4 − `5 + 1)2

− (`1 + `3 + `5 − `2 + 2)2 − (`1 + `2 + `4 − `3 + 2)2 − (`2 − `4 − 1)2

− (`3 − `5 − 1)2 − 2(`4 − `1 − `3 − `5 − 1)2 − 2(`5 − `1 − `2 − `4 − 1)2

= 14`2`3 + 10(`2`5 + `3`4) + 20`4`5 ≥ 10(`3 + `5)
2 > 0.

Without lost of generality, assume that `2+`4 ≥ `3+`5(≥ 1). Let G3 be the graph obtained

from G2 by deleting all pendants of x2 and x4 and adding these to x1. Obviously, G3
∼= C13.

We have

t3,2 = 2(`1 + `2 + `4 + 2)2 + 4(`1 + `2 + `4 + 1)2 + 2

− (`1 − `2 + 2)2 − (`1 + `2 + `4 + 2)2 − 2(2−`4 − 1)2

− 2(`1 − `4 + 1)2 − 2(`1 + `2 + `4 + 1)2 − 1

= (`2)
2 + 8`1`2 + 10`1`4 + 8`2`4 + 14`2 + 10`4

≥ 10(`2 + `4) > 0.

Combining with Eq. (2) and the above three relation, we have Sz∗(G) ≥ Sz∗(C13) =

1
2
(3n2 + 14n− 55) > n2 + 13n− 50.
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Lemma 3.4 Let G be a tricyclic graph and not be C11, C12. If G includes α3(2, 1, 1, 2, 1)

as its brace. Then Sz∗(G) > Sz∗(C12) for n ≥ 12, Sz∗(G) > Sz∗(C11) for n ≤ 10 and

Sz∗(G) > Sz∗(C1i) with i = 1, 2 for n = 11.

Note that G ∼= α3(2, 1, 1, 2, 1). Label the six vertices of α3 as shown in Fig. Let `i denote

the number of pendants connecting to xi. For `2+`4 ≥ `3+`5, graph G1 is formed from G

by deleting all pendants of x3 and x5 and adding to x2 and x4, respectively. For `4, `1 ≥ 1,

The graph G2 is formed from G1 by deleting `1 pendent vertices of x1 and adding to x4.

G3 denote the graph obtained from G2 by switching `2 pendants from x2 to x4. Clearly,

G3
∼= C12. We have

t1,0 = (`1 − `2 − `3 + 2)2 + (`1 + `2 + `3 + `4 + `5 + 2)2 + (`2 + `3 − `4 − `5 − 1)2

+ (`4 + `5 + 1)2 + (`1 − `4 − `5 + 1)2 + (`1 + `2 + `3 + 1)2 + (`2 + `3 + `4 + `5)
2

− (`1 + `3 + `5 − `2 + 2)2 − (`1 + `2 + `4 − `3 + 2)2 − (`2 + `4 − `3 − `5)
2

− (`2 − `4 − `5 − 1)2 − (`3 − `4 − `5 − 1)2 − (`1 + `3 − `4 + 1)2 − (`1 + `2 − `5 + 1)2

= 16`2(`3 + `5) + 10`3`4 + 8`4`5 ≥ 8(`3 + `5)
2 > 0

t2,1 = (`2 − 2)2 + (`2 − `1 − `4 − 1)2 + (`1 + `4 − 1)2 + (`2 + 1)2

+ (`1 + `2 + `4 + 2)2 + (`1 + `4 + 1)2 + (`1 + `2 + `4)
2

− (`1 − `2 + 2)2 − (`2 − `4 − 1)2 − (`1 + `2 + 1)2 − (`4 + 1)2

− (`1 − `4 + 1)2 − (`2 + `4)
2 − (`1 + `2 + `4 + 2)2

= (`1)
2 + 10`1`4 − 6`1 ≥ (`1)

2 + 6`1`4 > 0.

t3,2 = (2)2 + (`2 + `4 + 2)2 + (1 + `2 + `4)
2 + (`2 + `4 + 1)2

+ (1− `2 − `4)
2 + 1 + (`2 + `4)

2 − (`2 − 2)2

− (`2 + `4)
2 − (`2 − `4 − 1)2 − 2(`4 + 1)2

− (1− `4)
2 − (`2 + 1)2 − (`2 + `4)

2

= 8`2`4 + 6`2 > 0.

Combining with Eq. (2), Sz∗(G) ≥ Sz∗(G1) > Sz∗(G2) > Sz∗(G3) = Sz∗(C12).

Note that `1, `4 ≥ 1 is required from G1 to G2. Hence, the condition with `1 = 0 or

`4 = 0 will be discussed. For `1 = 0, G1
∼= G2. Hence Sz

∗(G1) = Sz∗(G2) > Sz∗(C12). For

`4 = 0, G1
∼= C11 with `2 = 0. For `4 = 0 and and `2 6= 0, let G4 be the graph obtained

from G1 by shifting `1 pendants of x1 to x2 with `2 ≥ 2, and G5 be the graph obtain from

G1 by shifting all pendants of x2 to x1 with `2 = 1. Using the same way, it is easy to
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deduce that
t41 = `21 + 4`1(2`2 − 4`1) ≥ `21 > 0

t51 = 6`1`2 + 12`2 − `22 ≥ 11 > 0.

Together with Eq. (2), Sz∗(G1) ≥ Sz∗(C11) or Sz
∗(G1) ≥ Sz∗(C10). In addition,

Sz∗(C10) =
3

2
n2 +

13

2
n− 117

4
> n2 + 13n− 50, forn ≥ 8,

Sz∗(C11) =
7

4
n2 + n− 8 > n2 + 13n− 50, forn ≥ 11,

Sz∗(C12) =
3

2
n2 + 5n− 87

4
> n2 + 13n− 50, for alln,

Sz∗(C10)− Sz∗(C12) =
1

4
(6n− 30) > 0, forn ≥ 6,

Sz∗(C11)− Sz∗(C12) =
1

4
[(n− 8)2 − 9] > 0, forn ≥ 12.

(3)

Therefore, we complete the proof.

Lemma 3.5 If G contains α4(2, 2, 2, 2) as its brace. Then Sz∗(G) ≥ n2 + 13n− 50 and

equality holds if and only if G ∼= C1.

Proof. The six vertices of α4(2, 2, 2, 2) are labeled as x1, x2, . . . , x6 with d(x1) = d(x2) = 4

and d(xi) = 2 for i ≥ 6. Let `i(≥ 0) be the number of pendants connecting to xi.

Let G1 be the graph formed from G by deleting the `i pendants of xi(i ≥ 4) and

adding to x3. By direct calculation, we have

t1,0 = (`1 − `2 − `3 − `4 − `5 − `6 + 2)2 + (`2 − `1 − `3 − `4 − `5 − `6 + 2)2

+ 3(`2 − `1 − `3 − `4 − `5 − `6 − 2)2 + 3(`1 − `2 − `3 − `4 − `5 − `6 − 2)2

− (`1 + `4 + `5 + `6 − `2 − `3 + 2)2 − (`2 + `4 + `5 + `6 − `1 − `3 + 2)2

− (`1 + `3 + `5 + `6 − `2 − `4 + 2)2 − (`2 + `3 + `5 + `6 − `1 − `4 + 2)2

− (`1 + `3 + `4 + `6 − `2 − `5 + 2)2 − (`2 + `3 + `4 + `6 − `1 − `5 + 2)2

− (`1 + `3 + `4 + `5 − `2 − `6 + 2)2 − (`2 + `3 + `4 + `5 − `1 − `6 + 2)2

= 16(`3`4 + `3`5 + `4`5 + `4`6 + `5`6) > 0

Let G2 be the graph which is obtained from G1 by shifting all pendants of x1 and x2

to x3. clearly, G2
∼= C1. For `1 + `2 ≥ 1 we have

t2,1 = 2(`1 + `2 + `3 − 2)2 + 6(`1 + `2 + `3 + 2)2 − (`1 − `2 − `3 + 2)2

− (`2 − `1 − `3 + 2)2 − 3(`2 − `1 − `3 − 2)2 − 3(`1 − `2 − `3 − 2)2

= 32`1`2 + 16`1`3 + 16`2`3 + 16`1 + 16`2 > 0.

Combining with Eq. (2), we hence get Sz∗(G) > Sz∗(G1) > Sz∗(G2) = Sz∗(C1) = n2 +

13n− 50.
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C3C2C1 C4 C5

Figure 6. Using for the proof of Lemmas 3.5, 3.6, 3.7 and Theorem 3.12.

Lemma 3.6 If G contains α4(1, 2, 2, 3) as its brace. Then Sz∗(G) ≥ Sz∗(C5) with equal-

ity if and only if G ∼= C5.

Proof. Mark the six vertices of α4(1, 2, 2, 3) as x1, x2, . . . , x6, see Fig. 4. Let `i be the

number of pendants connected to xi. Let G1 be the graph formed from G by deleting the

`4 pendants of x4 and adding to x3. We have

t1,0 = (`1 + `5 − `3 − `4 + 2)2 + (`2 + `6 − `3 − `4 + 2)2

+ (`1 + `3 + `4 + `5 + 2)2 + (`2 + `3 + `4 + `6 + 2)2

+ 2(`1 + `5 − `2 − `6)
2 + 2(`1 + `2 + `3 + `4 − `5 − `6 + 2)2

− (`1 + `4 + `5 − `3 + 2)2 − (`2 + `4 + `6 − `3 + 2)2

− (`1 + `3 + `5 − `4 + 2)2 − (`2 + `3 + `6 − `4 + 2)2

− 2(`1 + `5 − `2 − `6)
2 − 2(`1 + `2 + `3 + `4 − `5 − `6 + 2)2

= 16`3`4 > 0.

If `2+`6 ≥ `1+`5 ≥ 1. G2 denote the graph obtained from G1 by deleting the all pendants

of x1 and x5 and adding to x2 and x6, respectively. We get

t2,1 = 2(`1 + `2 + `5 + `6)
2 + 2(`1 + `2 + `3 − `5 − `6 + 2)2

+ (`3 + 2)2 + (`1 + `2 + `3 + `5 + `6 + 2)2 + (2− `3)
2

+ (`1 + `2 + `5 + `6 − `3 + 2)2 − (`1 + `3 + `5 + 2)2

− (`2 + `3 + `6 + 2)2 − (`1 + `5 − `3 + 2)2 − (`2 + `6 − `3 + 2)2

− 2(`1 + `5 − `2 − `6)
2 − 2(`1 + `2 + `3 − `5 − `6 + 2)2

= 12(`1`2 + `1`6 + `2`5 + `5`6) ≥ 12(`1 + `5)
2 > 0.

Let G3 be the graph formed from G2 by deleting the all pendants of x3 and x6 and adding

to x1. Observe that G3
∼= C5. We arrive at

t3,2 = 2(3− 1)2 + 4(`2 + `3 + `6 + 2)2 + 2(`2 + `3 + `6)
2

− (2− `3)
2 − (`2 + `6 − `3 + 2)2 − (`2 + `3 + `6 + 2)2

− (`3 + 2)2 − 2(`2 + `6)
2 − 2(`2 + `3 − `6 + 2)2

= 8`2`3 + 8`2`6 + 16`3`6 + 8`3 + 16`6

≥ 8(`2 + 1)(`3 + `6) > 0.
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Combining with Eq.(1), we have Sz∗(G) > Sz∗(G1) > Sz∗(G2) > Sz∗(C5), and

Sz∗(C5) =
3

2
n2 + 7n− 28 > n2 + 13n− 50. (4)

Therefore, the assertion is gotten, as required.

Lemma 3.7 If G contains α4(1, 2, 2, 2) as its brace with n ≥ 8. Then Sz∗(G) ≥ Sz∗(C4)

for n ≥ 8. Especially, Sz∗(C4) ≥ Sz∗(C1) for n ≥ 20, otherwise, Sz∗(C1) ≥ Sz∗(C4).

Proof. Label the five vertices of α4(1, 2, 2, 2) as x1, x2, . . . , x5 with d(x1) = d(x2) = 4 and

d(xi) = 2 for i ≥ 3. Let `i(≥ 0) be the number of pendants connecting to xi.

The graph G1 is formed from G by deleting the `i pendants of xi(i ≥ 4) and adding

to x3. The graph G2 is obtained from G1 by deleting the `2 pendants of x2 and adding to

x1. For `1, `3 ≥ 1, let G3 be the graph formed from G2 by shifting `1 pendants form x1 to

x3. Obviously, G3
∼= C4. We have that

t2,1 = (`1 + `2 − `3 + 2)2 + 2(`1 + `2 + `3 + 2)2 + (`1 − `2)
2

+ (`3 − 2)2 + 2(`3 + 2)2 − (`1 − `2)
2 − (`1 − `3 + 2)2

− (`2 − `3 + 2)2 − 2(`1 + `3 + 2)2 − 2(`2 + `3 + 2)2

= 10`1`2 > 0,

t3,2 = 2(`1 + `3 − 2)2 + 4(`1 + `3 + 2)2 − (`1 − `3 + 2)2

− (`3 − 2)2 − (`1)
2 − 2(`1 + `3 + 2)2 − 2(`3 + 2)2

= 2`21 + 10`1`3 − 4`1 > 0,

t1,0 = (`1 − `3 − `4 − `5 + 2)2 + (`2 − `3 − `4 − `5 + 2)2 + (`1 − `2)
2

+ 2(`1 + `3 + `4 + `5 + 2)2 + 2(`2 + `3 + `4 + `5 + 2)2 − (`1 − `2)
2

− (`1 + `4 + `5 − `3 + 2)2 − (`2 + `4 + `5 − `3 + 2)2

− (`1 + `3 + `5 − `4 + 2)2 − (`2 + `3 + `5 − `4 + 2)2

− (`1 + `3 + `4 − `5 + 2)2 − (`2 + `3 + `4 − `5 + 2)2

= 16(`3`4 + `3`5 + `4`5) > 0.

Combining with Eq. (2) and the above three relation, Sz∗(G) ≥ Sz∗(G1) ≥ Sz∗(G2) >

Sz∗(C4) is gotten. Especially, G2
∼= C3 for `3 = 0. Furthermore, we deduce that

Sz∗(C3) =
1

4
(7n2 + 4n− 44) > n2 + 13n− 50 for n ≥ 12,

Sz∗(C4) =
1

4
(5n2 + 28n− 114) > n2 + 13n− 50 for n ≥ 20,

Sz∗(C3)− Sz∗(C4) =
1

2
(n− 5)(n− 7).

(5)
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We thus confirm the conclusion.

Theorem 3.8 Let G ∈ A with n vertices. Then Sz∗(G) ≥ Sz∗(B11) for n ≥ 17,

Sz∗(G) ≥ Sz∗(B12) for 15 ≥ n ≥ 13, Sz∗(G) ≥ Sz∗(B22) for 12 ≥ n ≥ 9, Sz∗(G) ≥

Sz∗(B23) for n ≤ 7. Especially, Sz∗(G) ≥ Sz∗(B1i) for n = 16 and i = 1, 2, Sz∗(G) ≥

Sz∗(B2i) for n = 8 and i = 2, 3.

Proof. Since G belongs to A . it contains one of αi(i = 5, 6, · · · , 15) as its brace. It

is easy to find a vertex x ∈ V (G) such that G = H1 · H2 with V (H1) ∩ V (H2) = {x}

and |H1| + |H2| = n + 1, where, H1 is the bicyclic subgraph of G and H2 is an unicyclic

subgraph of G. By means of Lemma 2.3, we have that

Sz∗(G) ≥ Sz∗(H1 · S|H2|,4) for n ≥ 13, and, Sz∗(G) ≥ Sz∗(H1 · S|H2|,3) for n ≤ 12.

When n ≥ 13, from Lemma 2.4, we deduce that

Sz∗(H1 · S|H2|,4) ≥ Sz∗(A1 · S|H2|,4) = Sz∗(B11) forn ≥ 17,

Sz∗(H1 · S|H2|,4) ≥ Sz∗(A2 · S|H2|,4) = Sz∗(B12) for 15 ≥ n ≥ 13,

Sz∗(H1 · S|H2|,4) ≥ Sz∗(Ai · S|H2|,4) = Sz∗(B1i) forn = 16 and i = 1, 2.

When n ≤ 12, similarly, Lemma 2.5 results in

Sz∗(H1 · S|H2|,3) ≥ Sz∗(A2 · S|H2|,3) = Sz∗(B22) for 12 ≥ n ≥ 9,

Sz∗(H1 · S|H2|,3) ≥ Sz∗(A3 · S|H2|,3) = Sz∗(B23) forn ≤ 7,

Sz∗(H1 · S|H2|,3) ≥ Sz∗(Ai · S|H2|,3) = Sz∗(B2i) forn = 8and i = 2, 3.

Thus, the proof is finished.
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α1(a, b, c, d, f, g) α2(a, b, c, d, f, g) α3(a, b, c, d, f) α4(a, b, c, d)

Figure 7. Labeling the edges of the four braces αi(i = 1, 2, 3, 4).

Theorem 3.9 Let G ∈ G 1
n with n vertices. Then Sz∗(G) > n2 + 13n − 50 for n ≥ 11,

otherwise, Sz∗(G) > 7
4
n2 + n− 8.

Proof. Since G belongs to G 1
n , G has a α1 as its brace. We now choose 8 edges

e11, e
1
a, e

2
1, e

3
c , e

4
1, e

4
d, e

5
1 and e61, see Fig.7, and consider δ(e) of these edges, e.g., δ(e51) ≤ n−6.

It is easy to show that
∑

e∈E δ(e)2 ≤ 4(n− 6)2 +4(n− 4)2 + (n− 6)(n− 2)2 < n3 − 2n2 −

52n+ 200. Combining with Eq. (2), Sz∗(G) > n2 + 13n− 50, as required.
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Theorem 3.10 Let G ∈ G 2
n with n vertices. Then Sz∗(G) > n2 + 13n− 50.

Proof. If G ∈ G 2
n , Then G has the subgraph α2(a, b, c, d, f, g) as its brace.

Case 1. There are at least three paths are more than 2.

Subcase 1.1 The three paths enclose a cycle.

Suppose the three paths are P (g), P (a), P (b) by the symmetry of α2. We now choose

the 9 edges e11, e
1
a, e

2
1, e

2
b , e

3
c , e

4
d, e

5
f , e

6
1 and e6g (see Fig.7) and count the δ(e) of the nine edges,

for instance, δ(e11) ≤ n− 6. Consequently, it will result in
∑

e∈E δ(e)2 ≤ 6(n− 6)2 +3(n−

4)2 + (n− 7)(n− 2)2 < n3 − 2n2 − 52n+ 200.

Subcase 1.2 The three paths share a common vertex.

Assume that the three paths are P (a), P (b), P (c) by the symmetry of α2. We now

choose the 9 edges e11, e
1
a, e

2
1, e

2
b , e

3
1, e

3
c , e

4
1, e

5
f and e61 (see Fig.7) and count δ(e) of these

edges, such as, δ(e11) ≤ n− 5. It brings about
∑

e∈E δ(e)2 ≤ 9(n− 5)2 + (n− 7)(n− 2)2 <

n3 − 2n2 − 52n+ 200.

Subcase 1.3 The three paths consist of a new path.

By symmetry, let the three paths be P (a), P (b), P (d). choosing the 9 edges e11, e
1
a, e

2
1,

e2b , e
3
c , e

4
1, e

4
d, e

5
f and e61 (see Fig.7), by the same way, we deduce that

∑
e∈E δ(e)2 ≤ 8(n −

5)2 + (n− 4)2 + (n− 7)(n− 2)2 < n3 − 2n2 − 52n+ 200.

Case 2. there are just two paths are no less than 2 in α2.

Subcase 2.1 The two paths belong to the same cycle in α2.

By the symmetry, let the two paths be P (a) and P (b). Select the eight edges e11, e
1
a, e

2
1,

e2b , e
3
1, e

4
1, e

5
1 and e61 (see Fig.7), and count the δ(e) of these edges, such as, δ(e11) ≤ n− 6,

it is easy to find that
∑

e∈E δ(e)2 ≤ 2(n− 6)2 + 4(n− 5)2 + 2(n− 4)2 + (n− 6)(n− 2)2 <

n3 − 2n2 − 52n+ 200.

Subcase 2.2 The two paths belong to two distinct cycles in α2.

Using the similar way of Subcase 2.1, we get
∑

e∈E δ(e)2 ≤ 4(n − 6)2 + 4(n − 4)2 +

(n− 6)(n− 2)2 < n3 − 2n2 − 52n+ 200.

Case 3. There is only one path no less than 2 in α2.

By the symmetry, assume that the path is P (d) with d ≥ 2. We claim that d = 2.(If

not, d ≥ 3, we obtain
∑

e∈E δ(e)2 ≤ 3(n− 6)2 + 2(n− 5)2 + 3(n− 4)2 + (n− 6)(n− 2)2 <

n3 − 2n2 − 52n + 200.) It follows from Lemma 3.1 that Sz∗(G) ≥ Sz∗(C21)(orC22) >

n2 + 13n− 50.

Case 4. The six paths are isomorphic to P (1).

-772-



Notice that α2
∼= K4, let x1, x2, x3, x4 be its four vertices and `i be the pendants of

xi. Let G1 be the graph which is obtained from G by shifting all pendants of other three

vertices to x1. If only one of `1, `2, `3, `4 is more than zero. Then G ∼= G1. Hence, assume

that at least two of the four numbers are no less than one, e.g., `2, `3 ≥ 1. We deduce that

t1,0 = 3(`1 + `2 + `3 + `4)
2 − (`1 − `2)

2 − (`1 − `3)
2

−(`1 − `4)
2 − (`2 − `3)

2 − (`2 − `4)
2 − (`3 − `4)

2

= 8(`1`2 + `1`3 + `1`4 + `2`3 + `2`4 + `3`4) > 0,

combining with Eq. (2), it follows that Sz∗(G) > Sz∗(G1) = Sz∗(C23) =
7
4
n2+n−8 >

n2 + 13n− 50 for n ≥ 11. Therefore, the proof is finished.

Theorem 3.11 Let G ∈ G 3
n with n vertices. Then Sz∗(G) ≥ Sz∗(C14) for n ≥ 18.

Especially, Sz∗(G) ≥ Sz∗(C12) for 17 ≥ n ≥ 12, Sz∗(G) ≥ Sz∗(C11) for n ≤ 10 and

Sz∗(G) = Sz∗(C11)(orC12) for n = 11.

Proof. Let G belongs to G 3
n , then G includes a brace α3. For the symmetry, suppose that

a, d ≥ 2. We will take part in the following cases to verify the conclusion.

Case 1. a, d ≥ 3.

Subcase 1.1. b = c = f = 1.

select the 9 edges e11, e
1
2, e

1
a, e

2
1, e

3
1, e

4
1, e

4
2, e

4
d and e51 (see Fig.7), and reckon δ(e) of these

edges, e.g., δ(e51). it will cause
∑

e∈E δ(e)2 ≤ (n−7)2+4(n−6)2+4(n−4)2+(n−7)(n−2)2 <

n3 − 2n2 − 52n+ 200.

Subcase 1.2. At least one of the three numbers b, c, f more than 1.

Take the 9 edges e11, e
1
2, e

1
a, e

2
1, e

3
1, e

4
1, e

4
2, e

4
d, e

5
1(see Fig.7), and count δ(e), by the same

way, it will lead to
∑

e∈E δ(e)2 ≤ (n−7)2+3(n−6)2+4(n−5)2+(n−4)2+(n−7)(n−2)2 <

n3 − 2n2 − 52n+ 200.

Since a and d with respect to α3 have symmetry, showing the case d ≥ 3 and a = 2 is

same as the a ≥ 3 and d = 2. So we now just discuss the following case.

Case 2. a ≥ 3 and d = 2.

Subcase 2.1. a ≥ 4 and d = 2.

We pick the 9 edges e11, e
1
2, e

1
3, e

1
a, e

2
1, e

3
1, e

4
1, e

4
2,e

5
1(see Fig.7), and count δ(e) of these

edges, such as, δ42 ≤ n− 4, it will bring about
∑

e∈E δ(e)2 ≤ 2(n− 6)2 + 5(n− 5)2 + (n−

4)2 + (n− 3)2 + (n− 7)(n− 2)2 < n3 − 2n2 − 52n+ 200.
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Subcase 2.2. a = 3, d = 2 and b = c = f = 1.

The Subcase is confirmed by Lemma 3.2.

Subcase 2.3. a = 3, d = 2 and at least one of `, r, t is more than 1.

The proof of Subcase 2.3 is similar with Subcase 2.1, Hence, the proceeding is omitted

here.

Case 3. a = d = 2.

Subcase 3.1. b, c, f ≥ 2.

If b, c, f ≥ 2. One can obtain that
∑

e∈E δ(e)2 ≤ 4(n− 8)2 + 4(n− 6)2 + (n− 6)(n−

2)2 < n3 − 2n2 − 52n+ 200 by picking the 8 edges e11, e
1
2, e

2
1, e

2
b , e

3
1, e

3
r, e

4
1, e

4
2(see Fig.7) and

calculating δ(e) of these edges.

Subcase 3.2. Two of the three numbers b, c, f more than 1.

If b, f ≥ 2( or c, f ≥ 2). We select 8 edges e11, e
1
2, e

2
1, e

2
b , e

3
1, e

4
1, e

4
2, e

5
1(see Fig.7), by the

same way, and get that
∑

e∈E δ(e)2 ≤ 2(n− 7)2 + 2(n− 6)2 + 3(n− 5)2 + (n− 4)2 + (n−

6)(n− 2)2 < n3 − 2n2 − 52n+ 200.

If b, c ≥ 2. Taking edges e11, e
1
2, e

2
1, e

2
b , e

3
1, e

3
c , e

4
1, e

4
2(see Fig.7) and computing δ(e) of the

8 edges we have
∑

e∈E δ(e)2 ≤ 4(n− 6)2 + 4(n− 5)2 + (n− 6)(n− 2)2.

Subcase 3.3. One of the three numbers b, c, f is more than 1.

If b ≥ 2(or c ≥ 2). Then, we deduce
∑

e∈E δ(e)2 ≤ 3(n− 6)2 + 3(n− 5)2 + 2(n− 4)2 +

(n− 6)(n− 2)2 through choosing e11, e
1
2, e

2
1, e

2
b , e

3
1, e

4
1, e

4
2, e

5
1(see Fig.7) and counting δ(e) of

the 8 eight edges.

If f ≥ 3. Picking 8 edges as e11, e
1
2, e

2
1, e

3
1, e

4
1, e

4
2, e

5
1, e

5
f (see Fig.7) and figuring out δ(e) of

these edges, one can check that
∑

e∈E δ(e)2 ≤ 2(n−6)2+4(n−5)2+2(n−4)2+(n−6)(n−2)2.

If f = 2. Lemma 3.3 brings to Sz∗(G) ≥ Sz∗(C13) > n2 + 13n− 50.

Subcase 3.4. b = c = f = 1.

Applying Lemma 3.4, we have that Sz∗(G) ≥ Sz∗(C12) for n ≥ 12 and Sz∗(G) ≥

Sz∗(C11) for n ≥ 10.

Note that Sz∗(C12)−Sz∗(C14) =
1
4
(n−10)2−10 for n ≥ 18 and Sz∗(C15)−Sz∗(C12) =

n − 9
4
for n ≥ 3. Hence, together with Eqs. (2) and (3), the assertion is obtained, as

required.

Theorem 3.12 Let G ∈ G 4
n with n(≥ 8) vertices. Then Sz∗(G) ≥ n2 + 13n − 50 for

n ≥ 20 and Sz∗(G) ≥ 5n2 + 28n− 114 for n ≤ 19, the two equalities holds if and only if

G ∼= C1 and G ∼= C4, respectively.
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Proof. Since G ∈ G 4
n . Then there is some α4(a, b, c, d) as its brace. Without loss of

generality, suppose 1 ≤ a ≤ b ≤ c ≤ d. We now divide three cases to show the result.

Case 1. 3 ≤ a ≤ b ≤ c ≤ d.

Choose the eight edges e11, e
1
a, e

2
1, e

2
b , e

3
1, e

3
c , e

4
1, e

4
d as shown in Fig. 7. We deduce that∑

e∈E(G) δ(e)
2 ≤ 8(n− 6)2 + (n− 6)(n− 2)2 < n3 − 2n2 − 52n+ 200.

Case 2. a = 2.

Subcase 2.1. At least one of b, c, d is more than 3.

Here, we just show the special case only one of b, c, d is more than 3. Other cases are

verified by the same way of the special case. With loss of generality, assume that d ≥ 3.

Picking the eight edges e11, e
1
a, e

2
1, e

2
b , e

3
1, e

3
c , e

4
1, e

4
d in α4 as shown in Fig.7 and computing

their δ(e), it will bring about Di(G) ≤ 8(n−5)2+(n−6)(n−2)2 < n3−2n2−52n+200.

Subcase 2.2. b = c = d = 2.

The subcase can be verified by Lemma 3.5.

Case 3. a = 1.

Subcase 3.1. 3 ≤ b ≤ c ≤ d.

We deduce that Di(G) ≤ 3(n−8)2+6(n−4)2+(n−7)(n−2)2 < n3−2n2−52n+200

through selecting the nine edges e11, e
2
1, e

2
2, e

2
b , e

3
1, e

3
2, e

3
c , e

4
1, e

4
2, e

4
d in α4 (see Fig. 7) and

figuring out their δ(e).

Subcase 3.2. b = 2, 3 ≤ c ≤ d.

The proof of Subcase 3.2 is similar with that of Subcase 3.1, so the process is omitted

here.

Subcase 3.3. b = c = 2, 3 ≤ d.

We claim that d = 3. If not, d ≥ 4, we pick the 9 edges e11, e
2
1, e

2
2, e

3
1, e

3
2, e

4
1, e

4
2, e

4
3, e

4
d

in α4, as shown in Fig. 7 and count δ(e) of these edges. It is not difficult to deduce∑
e∈E(G) δ(e)

2 ≤ (n− 7)2+4(n− 5)2+4(n− 4)2+(n− 7)(n− 2)2 < n3− 2n2− 52n+200.

So α4
∼= α4(1, 2, 2, 3). Applying Lemma 3.6, we obtain that Sz∗(G) ≥ Sz∗(C5) > Sz∗(C1).

Subcase 3.4. b = c = d = 2.

The Subcase is verified through Lemma 3.7.

Therefore, the proof is complete.

In order to approve Theorem 1.3, applying Theorem3.8, Theorem 3.9, Theorem 3.10,

Theorem 3.11 and Theorem 3.12, it just to compare the value of revised Szeged index of

the extremal graphs are deduced in these Theorems.
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Note that Sz∗(B11) = n2 + 13n− 42 > Sz∗(C1), Sz
∗(B12) =

5
4
n2 + 8n− 26 > Sz∗(C1)

for n ≥ 13, Sz∗(B22) =
3
2
n2+4n− 31

2
> Sz∗(C1) for n ≥ 13 and Sz∗(B23) =

7
4
n2+3n− 29

2
>

Sz∗(C1). In addition, Sz∗(C11) = Sz∗(C23) =
7
4
n2+n−8 > Sz∗(C4), Sz

∗(B12) > Sz∗(C4),

Sz∗(B22) > Sz∗(C4) and Sz∗(B14) > Sz∗(C4). Bearing in mind the above relation,

together with Eqs. (1), (2), (3) and (5), Theorem 1.3 is totally verified.
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