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Abstract

The Wiener index and Szeged indices are structural descriptors based on dis-
tances between vertices of a graph G. The Szeged index appears as generalization
of Wiener’s formula for acyclic molecules. The concept of line graph, L(G), for
a graph G has found various applications in chemical research. Some results for
the Szeged index of line graphs are presented. In particular, we are interesting in
finding of graphs G with property Sz(G) = Sz(L(G)). The obtained results will be
compared with the similar properties of the Wiener index.

1 Introduction

Topological indices have been extensively applied for the development of quantitative

structure-property relationships in which various physico-chemical properties of molecules

are correlated with their chemical structure [1, 8, 10, 28, 36, 37, 39]. The Wiener index is

a well-known topological index introduced originally for molecular graphs of alkanes [40].

To calculate this index, the following formula was proposed by H. Wiener:

W (T ) =
∑
(u,v)

nunv ,
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where the summation goes over all edges (u, v) in a connected acyclic graph T and nu

is the number of the vertices of T which lie closer to the vertex u than to the vertex v.

Analogously, nv counts the vertices of T which lie closer to v than to u.

The extension of W for general graphs was put forward by H. Hosoya [32]. For an

arbitrary graph G with vertex set V (G), the Wiener index is now defined as the sum of

distances between all unordered pairs of its vertices:

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where d(u, v) is the number of edges in a shortest path connecting vertices u and v.

Chemical applications and mathematical properties of the Wiener index can be found in

books and reviews [12,15,17,23,24,27,33–35].

A generalization of the Wiener formula for cyclo-containing graphs was proposed by

Gutman [19]. This topological index is now referred to as the Szeged index and is defined

by the following formula:

Sz(G) =
∑
(u,v)

nunv,

where the summation goes over all edges (u, v) in of G and nu = |{w | d(w, u) < d(w, v)}|,

nv = |{w | d(w, v) < d(w, u)}|. The basic properties of the Szeged index and bibliography

on Sz are presented in [21].

Line graph, L(G), of a graph G has vertex set V (L(G)) = E(G) and two distinct

vertices of L(G) are adjacent if the corresponding edges of G share a common endver-

tex. The concept of line graph has found various applications in chemical research and

applications [2–6,18,22,29–31,38]. An example of line graph is shown in Fig. 1.

✉ ✉ ✉ ✉ ✉ ✉ ✉
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✉

L(T )

Figure 1. Tree T and its line graph L(T ).

In this paper we find graphs having property

Sz(G) = Sz(L(G)). (1)
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The obtained results are compared with the similar property of the Wiener index:

W (G) = W (L(G)). (2)

Infinite families of graphs satisfying equality (1) are also constructed.

2 Connected acyclic graphs

By definition, the Szeged index coincides with the Wiener index in the case of connected

acyclic graphs, that is, trees. There is a simple relation between the Wiener index of a

tree and of its line graph [7].

Proposition 1. [7] Let T be an arbitrary tree on n vertices. Then

W (T ) = W (L(T )) +

(
n

2

)
.

The problem of relation between Sz and W is basically resolved in [13, 20]. A block

of a graph is a subgraph which has no cut vertices and is maximal with respect to this

property. Two blocks have one cut vertex in common or have no common vertices. Let

B be the set of all connected graphs, all blocks of which are complete graphs. It is clear

that all trees belong to B.

Proposition 2. [13] For a connected graph G, Sz(G) = W(G) if and only if G ∈ B.

Since line graph L(T ) of a tree T always belongs to B, Proposition 2 implies that

Sz(L(T )) = W (L(T )). Then Proposition 1 can be reformulated for the Szeged index.

Proposition 3. Let T be an arbitrary tree on n vertices. Then

Sz(T ) = Sz(L(T )) +

(
n

2

)
.

This equality immediately implies that there no exist trees T satisfying equality

Sz(T ) = S(L(T )).

3 Unicyclic graphs

Denote by Cn the simple cycle on n vertices. Cycle Cn is the unique graph for which

L(G) ∼= G. It is known that graphs with property (2) have at least two cycles.
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Proposition 4. [20] If G is a unicyclic n–vertex graph, then W (L(G)) ≤ W (G) with

equality only if G is the simple cycle Cn.

By contrast with the Wiener index, there are many unicyclic graphs satisfying pro-

perty (1). Table 1 contains number NSz of all such unicyclic graphs with 6 ≤ n ≤ 18

vertices (graphs of order n ≤ 5 are simple cycles). Here Nu is the number of all connected

unicyclic n-vertex graphs.

Table 1. Number of unicyclic n-vertex graphs G with Sz(G) = Sz(L(G)).

n 6 7 8 9 10 11 12 13 14 15 16 17 18

Nu 13 33 89 240 657 1806 5026 13999 39260 110381 311465 880840 2497405

NSz 2 3 5 14 29 74 173 419 984 2386 5677 13831 33604
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Figure 2. Smallest unicyclic graphs G with Sz(G) = Sz(L(G)).

Diagrams of the corresponding graphs of order n ≤ 9 are shown in Fig. 2 (except simple

cycles). The number of every graph and its Szeged index are presented near diagrams.
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There are infinite families of unicyclic graphs G having property (1). We construct

such a family starting with graphs 1, 2, 4, and 20 of Fig. 2.

Proposition 5. For every n ≥ 6, there exists an unicyclic graph G of order n such that

Sz(G) = Sz(L(G)).

Proof. Consider graph Gk with n = k + 5 vertices and q = k + 5 edges, k ≥ 1, shown in

Fig. 3. In order to obtain the Szeged index, we compute the quantity nunv for every edge

(u, v) and add them together. First consider edges of path P1 = {v1, v2, . . . , vk}. Every

edge (vi, vi+1), i = 1, 2, ..., k − 1, makes the contribution (3 + i)(k − i + 2) to Sz. Let

(u, v) ∈ E(Gk) \ P1 and vertex u lies closer to path P1. Then nunv = 1 · (k + 3) for edges

e1 and e2; nunv = 1 · (k + 4) for edges e3, e4 and e5; nunv = 1 · 1 for edge e6. Summing

contributions for all edges of Gk, we arrive at

Sz(Gk) = 1 + 2(k + 3) + 3(k + 4) +
k−1∑
i=1

(3 + i)(k − i+ 2)

=
1

6

(
k3 + 15k2 + 50k + 78

)
.

Line graph L(Gk) has n = k + 5 vertices and q = k + 9 edges (see Fig. 3). Denote

the path {u1, u2, . . . , uk−1} by P2. Every edge (ui, ui+1), i = 1, 2, ..., k − 2, provides the

contribution (4+ i)(k− i+1) to Sz. Suppose that vertex u lies closer to P2 for every edge

(u, v) ∈ E(L(Gk))\P2. Then nunv = 1 ·(k+3) for edges e1, e2, e3 and e4; nunv = 2 ·(k+1)

for edges e5 and e6; nunv = 1·(k+1) for edge e7; nunv = 1·2 for edges e8 and e9; nunv = 1·1

for edges e10 and e11. Therefore

Sz(L(Gk)) = 6 + 5(k + 1) + 4(k + 3) +
k−2∑
i=1

(4 + i)(k − i+ 1)

=
1

6

(
k3 + 15k2 + 50k + 78

)
.

The obtained equalities of Sz(Gk) and Sz(L(Gk)) complete the proof.
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Figure 3. Unicyclic graph Gk having property Sz(Gk) = Sz(L(Gk)).
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Unicyclic graphs give examples of structures for which properties of indices W and Sz

are distinct.

4 Bicyclic graphs

Graphs G with property W (G) = W (L(G)) have been found for the first time among

bicyclic graphs (see [14, 25, 26]). The basic properties of the Wiener index for bicyclic

graphs are collected in the following statement.

Proposition 6. [14, 17] 1) There are no graphs of order n ≤ 8 satisfying property (2).

2) There exist exactly 26 graphs from G9 satisfying property (2). All graphs are bicyclic.

3) There exist exactly 166 graphs from G10 satisfying property (2). All graphs are bicyclic.

4) There exist exactly 503, 1082, and 2282 † bicyclic graphs from G11, G12, and G13, res-

pectively, satisfying property (2).

Here we present new data for the Szeged index as well as for the Wiener index. Table 2

contains numbers NSz and NW of bicyclic graphs with up to 18 vertices having properties

(1) and (2), respectively. The number of all connected n-vertex bicyclic graphs is denoted

by Nb. The smallest graphs with property (1) have 7 vertices while the smallest graphs

with property (2) have 9 vertices.

Table 2. Number of bicyclic graphs G with Sz(G) = Sz(L(G)).

n 7 8 9 10 11 12 13 14 15 16 17 18

Nb 67 236 797 2678 8833 28908 93569 300748 959374 3042808 9597679 30134509

NSz 1 2 1 15 45 111 387 1307 3061 9738 32897 93608

NW 0 0 26 166 503 1082 2282 7825 17705 33514 69760 194352

Diagrams of all graphs with n ≤ 10 vertices are depicted in Fig. 4. Values of the Szeged

index are shown near diagrams. Several examples of graphs with large diameter are shown

in Fig. 5. An example of joint degeneracy of the invariants is bicyclic graph 19 of Fig. 4 for

which properties (1) and (2) are valid simultaneously. Namely, Sz(G) = Sz(L(G)) = 218

and W (G) = W (L(G)) = 122.

Infinite families of bicyclic graphs with property (2) have been constructed for the first

time in [26].

†Review [17] reports a wrong number of such graphs in G13 (2243).
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Proposition 7. [26] There exist infinitely many bicyclic graphs for which condition (2)

is satisfied.
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Figure 4. Smallest bicyclic graphs with equality Sz(G) = Sz(L(G)).
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Figure 5. Bicyclic graphs of large order with Sz(G) = Sz(L(G)).
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Figure 6. Bicyclic graphs Gk for which Sz(Gk) = Sz(L(Gk)).

It seems that a method developed in [26] is suitable for constructing n-vertex bicyclic

graphs for every n ≥ 9 (each family of graphs covers only a subset of all possible n). For

the Szeged index, it is sufficient to consider a unique family. The first members of this

family are graphs 1 and 3 of Fig. 4.

Proposition 8. For every n ≥ 7, there is a bicyclic graph G with n vertices such that

Sz(G) = Sz(L(G)).

Proof. First consider graphs having odd number of vertices. Let graph Gk be obtained

by identifying a single vertex of two copies of cycle Ck (see Fig. 6a). Graph Gk has

n = 2k − 1 vertices and q = 2k edges. It easy to see that every edge (u, v) of Gk has

the same product nunv. Namely, if vertex v lies closer to the central vertex of Gk then

nunv = k/2 · (k/2 + n(Ck)− 1) = k(k/2 + k − 1)/2. This implies

Sz(Gk) =
1

2
k2(3k − 2).

Line graph L(Gk) consists of a complete graph K4 and two cycles Ck attached to K4

by one edge (see Fig. 6a). For this graph, n = 2k and q = 2k + 4. The edge set of L(Gk)

can be divided into two disjoint subsets. For edges e1 and e2 of K4, nunv = k/2 · k/2.

Contributions of the other 2(k− 2) edges are the same, nunv = k/2 · (k/2+n(Ck)). Then

Sz(L(Gk)) = 8
k2

4
+ 2(k − 2)

k

2

(
k

2
+ k

)
=

1

2
k2 (3k − 2) .

Consider now graphs of even order. Let graph Gk be obtained by joining a single

vertex of two cycles Ck as depicted in Fig. 6b. By construction, n = 2k and q = 2k + 1.
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For the central edge of Gk, nunv = k · k. The other edges have the same value of nunv. If

u is closer to the central edge, then nunv = k/2 · (k/2 + k). Hence

Sz(Gk) = k2 + 2k
k

2

(
k

2
+ k

)
=

1

2
k2 (3k + 2) .

Line graph L(Gk) has n = 2k+1 and q = 2k+4 (see Fig. 6b). Because of symmetry, it is

sufficient to examine the left part of L(Gk). For edges e1 and e2, nunv = k/2·k/2. Suppose

that (u, v) ∈ E(L(Gk)) \ {e1, e2} and vertex u is closer to the central vertex of L(Gk).

Then nunv = k/2 · (k+ 1) for edge e3; nunv = k/2 · (k/2 + n(Ck) + 1) = k(k/2 + k+ 1)/2

for the other k − 2 edges. Summing contributions for all edges, we have

Sz(L(Gk)) = k2 + 4
k

2
(k + 1) + 2(k − 2)

k

2

(
3k

2
+ 1

)
=

1

2
k2 (3k + 2) .

The obtained expressions of Sz(Gk) and Sz(L(Gk)) coincide.

Denote by δ(G) the minimal vertex degree in G. It was shown that if a graph G has

no pendant vertices then W (L(G)) is not equal to W (G).

Proposition 9. [9, 41] Let G be a connected graph with δ(G) ≥ 2 and G 6∼= Cn. Then

W (L(G)) > W (G).

Graphs of Proposition 8 with δ(G) = 2 demonstrate that Proposition 9 does not valid

for the Szeged index (see Fig. 6). This is another difference between the considered indices.

5 Tricyclic graphs

To make sure that there exist graphs with the cyclomatic number λ ≥ 3 having property

(2), the computer searching has been applied for tricyclic graphs (λ = 3).

Proposition 10. [17] 1) There are no tricyclic graphs of order n ≤ 11 with property (2).

2) There exist exactly 71 and 733 tricyclic graphs from G12 and G13, respectively, satisfying

property (2).

New data of this kind for the Szeged and Wiener indices are presented in Table 3.

Here NSz and NW are the numbers of tricyclic graphs with up to 16 vertices having

properties (1) and (2), respectively (Nt is the number of all connected n-vertex tricyclic

graphs). Diagrams of all smallest tricyclic graphs on 10 vertices and their Szeged indices

are depicted in Fig. 7.
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Table 3. Number of tricyclic graphs G with Sz(G) = Sz(L(G)).

n 10 11 12 13 14 15 16

Nt 8548 33851 130365 489387 1799700 6499706 23118465

NSz 12 40 146 488 2071 6895 23734

NW 0 0 71 733 3933 30758 143683

1: 192 2: 192 4: 2163: 203

5: 218 6: 219 7: 220 8: 221

9: 222 10: 223 11: 227 12: 230

Figure 7. Smallest tricyclic graphs with Sz(G) = Sz(L(G)).

Recall that the last bicyclic graph G of Fig. 4 with 10 vertices satisfies the following

equations: Sz(G) = Sz(L(G)), W (G) = W (L(G)) and Sz(G) 6= W (G). Table 4 presents

data concerning such joint degeneracy of Sz and W for n-vertex bicyclic and tricyclic

graphs. Here Nbi and Ntri denote the numbers of graphs having this property.

Table 4. Number of bicyclic and tricyclic graphs G with
W (G) = W (L(G)) and Sz(G) = Sz(L(G)).

n 10 11 12 13 14 15 16 17 18

Nbi 1 4 10 3 30 82 77 145 566

Ntri 0 0 0 3 3 75 274 - -

Diagrams of the smallest tricyclic graphs and values of the indices are shown in Fig. 8.
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W=      , Sz=160 268 W=      , Sz=196 346 W=      , Sz=196 346

Figure 8. Tricyclic graphs with Sz(G) = Sz(L(G)) and W (G) = W (L(G)).

6 Graphs with many cycles

Graphs 1 of Fig. 4 and 7 of Fig. 7 give some information about a possible structure of

graphs with many cycles satisfying equality (1). The following result shows that there

are similar graphs having an arbitrary number of cycles of even length. The girth g of a

graph is the length of its shortest cycle.
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Figure 9. Polycyclic graphs having with Sz(G) = Sz(L(G)).

Proposition 11. For every λ ≥ 2 and even g ≥ 4, there is a graph G with cyclomatic

number λ and girth g such that Sz(G) = Sz(L(G)).

Proof. Let graph Gg,λ be obtained by identifying a single vertex of λ copies of cycle Cg

as depicted in Fig. 9. Graph Gg,λ has n = gλ− λ+1 vertices and q = gλ edges. We have

nunv = g/2 · (g/2 + n(Gg,λ−1)− 1) for every edge (u, v) of Gg,λ (vertex u is closer to the

central vertex). Then

Sz(Gg,λ) = gλ
1

2
g(gλ− λ− g/2 + 1) =

1

4
g2λ (2λ(g − 1)− g + 2) .

Line graph L(Gg,λ) consists of a complete graph K2λ and λ cycles Cg attached to K2λ

(see Fig. 9). Then n = gλ and q = λ(2λ+ g − 3). Consider edges of cycle Cg attached to

K2λ. For edges e1 and e2, we have nunv = g/2 · g/2. For the other λ(g − 2) edges of Cg,
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we can write nunv = g/2 · (g/2 + p(L(Gg,λ)) − g) (vertex v is closer to K2λ). For every

edge of 2λ(λ− 1) remaining edges of K2λ, we have nunv = g/2 · g/2. Then

Sz(L(Gg,λ)) = 2λ
g2

4
+ λ (g − 2)

g

2

(g
2
+ gλ− g

)
+ 2λ(λ− 1)

g2

4

=
1

4
g2λ (2λ(g − 1)− g + 2) .

The equality Sz(Gg,λ) = Sz(L(Gg,λ)) is obtained.

For the Wiener index, we mention the following results: bicyclic graphs with growing

girth g ≥ 5 satisfying property (2) were presented in [11]; bipartite graphs with growing

cyclomatic number λ ≥ 2 and girth g = 4 satisfying property (2) were constructed in [16].

Acknowledgement : The author would like to thank the referee for helpful suggestions.
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[26] I. Gutman, L. Pavlović, More on distance of line graphs, Graph Theory Notes New

York 33 (1997) 14–18.

[27] I. Gutman, J. H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem.

Soc. 62 (1997) 185–192.

-755-



[28] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry , Springer,

Berlin, 1986.
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