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Abstract

Balaban index and Sum-Balaban index were used in various quantitative structu-
re-property relationship and quantitative structure activity relationship studies. In
this paper, we characterize the graphs with the maximum Balaban index and max-
imum Sum-Balaban index of tricyclic graphs.

1 Introduction

Let G be a simple and connected graph with |V(G)| = n and |E(G)| = m. If m = n—1+c,
then G is called a c-cyclic graph. If ¢ = 0,1,2 and 3, then G is a tree, unicyclic graph,

bicyclic graph and tricyclic graph, respectively. Denote by 7, the set of all tricyclic graphs

of order n.

*Research supported by Natural Science Foundation of Anhui Province (No.1508085MC55), Nat-
ural Science Foundation of Educational Government of Anhui Province (No.KJ2013A076) and key
project of the Outstanding Young Talent Support Program of the University of Anhui Province
(No.gxyqZD2016367)

fCorresponding author. Email: gjingl@student.gsu.edu



-718-

Let Ng(u) be the neighbor vertex set of vertex w, then dg(u) = |Ng(u)| is called
the degree of u, the distance between vertices u and v in G is denoted by dg(u,v), and

Dg(u) = Z de(u,v) is the distance sum of vertex u in G. For a vertex u € V(G) by
veV(G)
G — u we denote the graph induced by V(G) — {u}.

The cyclomatic number p of G is the minimum number of edges that must be removed
from G in order to transform it to an acyclic graph. It is known that u = |E(G)|— |V (G)|+
l=m-n+1

The Balaban index of a simple connected graph G is defined as

J(G)zﬂ% 3

weE(d) Dg(u) Do (v)

It was proposed by Balaban in [1, 2], which is also called the average distance-sum con-
nectivity or J index. It appears to be a very useful molecular descriptor with attractive
properties. In 2010, Balaban et al.[3] also proposed the study of the Sum-Balaban index

SJ(G) of a connected graph G, which is defined as

m 1
SO =7 2 D) + Da(v).

weE(G)

Balaban index and Sum-Balaban index were used in various quantitative structure-property
relationship (QSPR) and quantitative structure activity relationship (QSAR) studies. It
has been shown that Balaban index has a strong correlation with the chemical prop-
erties of the chemical compound and other topological indices octanes. Mathematical
propertices of Balaban index can be found in [4-9, 11-16]. Mathematical propertices of
Sum-Balaban index can be found in [4, 9, 11, 13-15]. In this paper, we consider the
Balaban index and Sum-Balaban index of tricyclic graphs in 7,,.

Let T = {7A’7 | 1 < i< 15}, where graphs Tifori=1,2,...,15 are defined in Fig. 1.
By [10], we known that for any 7 € T,, T can be obtained from an Ti (1 <i<15) by
attaching trees to some of its vertices. We call 7 the base of 7.

We will establish the maximum Balaban index and maximum Sum-Balaban index

among all tricyclic graphs.

2 Preliminaries

In this section, we will introduce some useful lemmas and graph transformations.
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Fig. 1 The fifteen types of bases for tricyclic graphs

A X + > . o > 1
Lemma 2.1 ([8]). Let xz,y,a € RT such that z > y+a Thenmf N =yl and

the equality holds if and only if v =y + a.

Lemma 2.2 ([14]). Let x1,22,y1,y2 € RT such that 1 > y; and x5 — x1 = yo — y1 > 0.

The 1 1 1

Ve < vm Tt

2.1 Edge-lifting transformation

Let G; and G5 be two graphs with n; > 2 and ny > 2 vertices, respectively. If G is the
graph obtained from G and G, by adding an edge between a vertex ug of G7 and a vertex
vg of Gy, and G’ is the graph obtained by identifying ug of G; to vy of Gy and adding
a pendent edge to ug(vp), then G’ is called the edge-lifting transformation of G (see Fig.

2.1). wo

G el
Fig. 2.1 The edge-lifting transformation
Lemma 2.3 ([5, 6]). Let G’ be the edge-lifting transformation of G. Then J(G) < J(G')
and SJ(G) < SJ(G').
Denote T = {7, 77, T8, 7°, 72, 7', 7%} and T,”) = {75},
By Lemma 2.3, we can verify that if 7 € 7, attains the maximum Balaban index or

maximum Sum-Balaban index of all graphs in 7, then the following two conditions hold.
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(i) The base T of T is one of 'ﬁ(l) U ’?;(2).
(ii) The graph T is obtained from 7T by attaching some pendant edges.

Remark 2.4. In order to determine the tricyclic graphs which attain the mazimum Bal-
aban index or mazimum Sum-Balaban index of all graphs in T,, we just need to discuss

the tricyclic graphs in T,V U T = {TLTO, T8, 79, T2, T8, TH, T} (see Fig. 1).

2.2 Cycle transformation([9])

Let B(p, ¢, t) be a bicyclic graph as shown in Fig.2.2, where Wy, ={w | wy; € E(B(p,q,t))
and dp, . (w) = 1} and [W,,[ = k; for 1 <4 < p, and Wy, = {w | wy; € E(B(p,q,1))
and dp, . y(w) =1} and [W,, [ =1 for t +1<j <gq.

If p is even and p > 4, then B'(p, ¢, t) is the graph obtained from B(p, q, t) by deleting
the edge v,v,—1 and all pendent vertices of v,, meanwhile, adding the edge v v, and &,
pendent edges to vy.

If p is odd and p > 5, then B’ (p, g, t) is the graph obtained from B(p q,t) by deleting
the edges v,vp—1, Up—1U,—2 and all pendent edges of v,, v,_;, meanwhile, adding the edges
Vi1Up_1, V1Vp—2 and k, + k,_; pendent edges to v;.

We say that é’(p7 q,t) is obtained from B(p7 q,t) by the cycle transformation (see Fig.
2.2).

Lemma 2.5 ([9]). Let B = B(p,q,t) € B, withp > q and p > 4, and B' = B'(p, q,t) is
obtained from B(p, q,t) by the cycle transformation (see Fig. 2.2). Then J(B) < J(B’)7
and SJ(B) < SJ(B).

Let T € 7;(1), there exist a bicyclic subgraph of 7. We can obtained Gi(1 < i < 7)
from T,V by repeating cycle transformation. Fig. 2.3 shows seven types of bases for é"',
where 1 <7< 7.

By Lemma 2.5, the following lemma is clear.

Lemma 2.6. Let T € G € T\ , T' be obtained from T by the cycle transformation.
Then J(T) < J(T') and SJ(T) < SJ(T").

Remark 2.7. In order to determine the tricyclic graphs which attain the mazimum Bal-
aban index or maximum Sum-Balaban index of all graphs in T,, we just need to discuss

the tricyclic graphs in 7O U Gi(1<i<T) (see Fig. 1 and Fig. 2.3).



-721-

kp kl k‘1 + k'p
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'>. p-1 . a 1‘<’ Cycle transformation y Pl . a 1‘<‘
Uil | U Ut Vt+1 Uy Ugtq
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E(p, ¢,t) (p is odd and p > 5) E’(p, q,t)

Fig. 2.2 The cycle transformation
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g° g

Fig. 2.3 The seven types of bases for G/(1 <i < 7)
2.3 Cycle transformation on a graph in G¢(1 < i < 7)

Let 7 € G! € n , a+b<n—6. V;={vy,uvy}, where 1 <i<aand1l<j<b
W, ={w | v, € V(T),wv, € E(T) and dr(w) = 1}, | W, |= k.. T’ is the graph
obtained from 7 by deleting the edges vov14, VsV, V101341) (1 < 4 < @ — 1), vo;09(41)
(1 <j<b—1)and all pendent vertices of vy; (1 <1 < a), vg; (1 < j <b), meanwhile,
adding the edges viva, v1vs, v1v1;(2 < @ < @), v1v95(2 < j < b) and Y ¢ ki + 22:1 ko;
pendent edges to vy (see Fig. 2.4). We say that T’ is obtained from 7 by the cycle

transformation.
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Cycle transformation

Vg > vy
~~ V11 V12 Via ~~
key ki + iy R+ 5 b
T T

Fig. 2.4 The cycle transformation (when a > 0,6 > 0 and a+ b < n — 6)

Lemma 2.8. Let T € G € 7;“), Vi = {v1;, 095}, where 1 < i < aandl < j <b,
a+b<n—-6. W, ={wl|v, € V(T),wv, € E(T) and dr(w) = 1}, | W, |= ky. T’
be obtained from T by the cycle transformation (see Fig. 2.4). Then J(T) < J(T') and
SJ(T) < SJ(T).

Proof. It can be check directly that

Dy (vy) > D7i(v,), where v, € V(T)\ Vi;
Dri(vi;) — Dr(vy) < 24 kyi + ko + kg, where 1 < < q;

DTr(Ugj) — DT(Ugj) <24+ kzj + k3 + kg, where 1 < j <1
a b

Dy(vi) = Dyo(v1) 2 34 ki + Y koj + ko + ks + ku;
i=1 j=1

Dy (v1) — Dy(v1) > Dyi(vi;) — Dy (vis);

Dr(v1) = Dro(v1) > Do(vs5) — Dy (v2;);

Dy(v;) — Dy(v1) = n — 2, where v; € V4.

Then for the vertex v,,v, € V(T) \ V4, we have
! >
V/D7(v:) D7 (vy) ~ /D7(v:) Dr(vy)
1 N 1
\/DTr(Uz) + DT/(Uy) n \/DT(Ux) + DT(vy)7

We following consider the edges vyv11, V1021, UaU1a, V3Uap, V1i1(i+1) (1 < ¢ < a — 1),

, where vy, v, € V(T)\ V1. (1)

where v,, v, € V(T)\ V1. (2)

VU1 (1 < J < b — 1), v0,(1 < i < a),va5v,(1 < j < b) € E(T), where v, € W,,,,

vy € W,
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Let © = DTI(UH)7 Yy = DT!(’Ul)7 a=2+ky + ks + ks <n—2. Since DTI(UH) =
Dyi(v1) +n — 2, we have x =y +n — 2 > y + a. By Lemma 2.1, we have

1 1
VDr()Dr(n) . v/DronDr(on)’ ®

1 1
/D (v1) + Dro(v1r) - V/Dr(v)) + Dr(viy) @)

Similarly, we have

1 1 1 1
\/DT’ U] DT’ UQ] \/DT UQ] \/DT’ U DT’ LQ \/DT U]G)DT(’U )
1 1
\/DT’ ’1)1 DT’ ’b3 \/DT UZb DT(U )
! > ! , where 1 <i<a-—1;
/D7) Dy (viayn) /D7) Dr(vigsy)
1 1
> , where 1 < j <b-—1;
VD7 (01) D7 (vai1)) /D7 (v2y) Dy (i)
! , where 1 <@ <a,v, € W,,;;
\/DTr DT’ V) \/DT v1;) D7 (v)
1
, where 1 < j < b,v, € W,,,. (5)
/D7 (v1) DT/ vy) \/DT va;) D7 (vy) Y b
1 1
> ;
VDri(01) + Dro(va1) ~ /Dr(v1) + Dr(va1)
1 1 4
/Dr:(v1) + Dy (vs) \/DT (v1a) + Dr(vs)’
1 1 .
\/DT’ (v1) + D7i(v3) \/DT (vap) + Dy (v3) '
! > ! s where 1 <i<a-—1;
/Dr(v1) + Dr(vigrny)  +/Dr(vis) + Dr(vir))
1 1 .
> , where 1 < j <b-—1;
VD7) + Dro(van) — /Dr(vay) + Drlvagsn))
1 1
, where 1 <i <a,v, € W,;
/D7 (v1) + Dy (v \/DT (v1:) + Dr(vz)
1 1

where 1 < j <b,v, € W,,,. (6)

\/DTr ”Ul + DTr Uy \/DT Ug] + DT(vy))
By (1) (3) (5) and the definition of Balaban index, we have J(77) > J(T). By (2) (4)

(6) and the definition of Sum-Balaban index, we have SJ(T") > SJ(T). |
Fig. 2.5 shows cycle transformation on 7 € G2. Fig. 2.6 shows cycle transformation

on 7 € G3. Fig. 2.7 shows cycle transformation on 7 € G*.

Using the same method as Lemma 2.8, the following lemma is clear.
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Lemma 2.9. Let T € G' € T,V (i = 2,3,4), T' be obtained from T by the cycle

transformation (see Fig. 2.5, 2.6, 2.7). Then J(T) < J(T') and SJ(T) < SJ(T").
ky ke + 1+ 3 ki

VU1 \./ \./ V11 o Vo
U11 V12 X
Vg Cycle transformation
U3 v3
T T
Fig. 2.5 The cycle transformation on 7 € G2
l
k1 Fi4+1+> ok
\a/ \! \! Vi+1 Vi1
U1 Uy Vs Uy U1

Cycle transformation
- T

7"/
Fig. 2.6 The cycle transformation on 7 € G3

ki+a+>i  k

Cycle transformation
i A b —

Fig. 2.7 The cycle transformation on 7 € G*

We can obtained G} (1 < i < 6) from 7 by repeating cycle transformation. Fig. 2.8
shows six types of bases for Gi, where 1 <i < 6.

AAA..@.IXD

5 X

g2 gZ g2
Fig. 2.8 The six types of bases for G (1 <i < 6)

t\Jl\')
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2.4 Cycle transformation on a graph in 7;(2)

Let T € 7}(2), P, € T, where 1 <14 < 6. P; is the path from v; to vy and {vs,vs} ¢ V(P));
P is the path from v, to vy and {vg,v3} ¢ V(P,); P is the path from v; to vz and
{v2,v4} ¢ V(P3); Py is the path from vy to vy and {vi,v3} ¢ V(Fy); Ps is the path from
vz to vy and {vy, v} & V(Ps); Ps is the path from v, to vg and {vy,v4} € V(Fs) (see Fig.
2.9).

Fig. 2.9 Graph T € 7%(2)

Case 1. |V(P;)| > 3, where 1 <1 < 3.

Let W,, = {w | v, € V(T),wv, € E(T) and dr(w) = 1}, | W,, |= k,. T is the graph
obtained from 7 by deleting the edges v11v12, Vo192, U31032 (When |V(P))| = 3, via = v
when |V (P)| = 3,v92 = wy; when |V(P3)] = 3,v3s = v3) and all pendent vertices of
V11, Va1, V31, meanwhile, adding the edges vivi9, v1v9g, V1032 and ky; + koy + k31 pendent

edges to v (see Fig. 2.10).

We say that 7 is obtained from T by the cycle transformation.

k1 ki + ki 4 koy + kg
=~ =~
.. 11 ..
V21 U1

V31
Cycle transformation

V12§

)

- -

U3

Fig. 2.10 The cycle transformation (when |V (F;)| > 3, where 1 <1 < 3)

Lemma 2.10. Let T € 771(2), [V(P)| >3, where1 <i<3.W,, ={w|v, € V(T),wv, €
E(T) and dr(w) = 1}, | Wy, |= ky. T is obtained from T by the cycle transformation
(see Fig. 2.10). Then J(T) < J(T") and SJ(T) < SJ(T").
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Proof. It can be check directly that

Dr(vy) = Dy (v,), where v, € V(T)\ {vi1, va1, va1 },
D7 (vi) = Dy (v1) > Dro(vn) — Dr(vn),
D7 (vi) = Dy(v1) > Dro(va1) = Dy (van),
Dr(v1) = Dy(v1) > Dro(vs1) — Dr(vaa),
i) — )=

Dri(vy — 2, where v; € {v11, Va1, v31}.

Then for the vertex v,, v, € V(T) \ {v11, 21,031}, we have

1
\/DTI ’U D7'/ Uy \/DT ’UT DT(Uy)
1 1
\/DT’ (vz) + D ( UU \/DT vg) + DT(’l}y)’

For the edges V111, V11012, V1V21, U21V22, V1V31, U31V32, V11 Vs, U21Vy, U31V; € E(T% where

, where vy, v, € V(T) \ {vi1, 021,031} (7)

where vz, v, € V(T) \ {v11, va1, v31 }.

vy € Wy, vy € Wy, v, € W, . By Lemma 2.1, we have

1
, where i = 1,2,3;
\/DT/ ) D7 (vi1) \/DT (v1) D (vir)
1 1
, where i = 1,2, 3;
\/DT’ U DT’ UzZ \/DT Vi1 DT(UZZ)
1 1
, where v, € W,,,;
\/DT’ 1) DT’ UI \/DT 1}11 DT( )
1 1
, where vy, € W, ;
\/DTI ’U] DT’ Uy \/DT ’Ug] DT(Uy)
1 1
, where v, € W,,,. 9)
/D7/(v1) Dy (vs) \/DT (vs1) D7 (vs)
1 1
, where i = 1,2, 3;
V/Dr:(v1) + Drr(vy) \/DT (v1) 4+ Dy (va)
1 1
, where i = 1,2, 3;
/D7 (v1) + Dy (via) \/DT (vi1) + Dr(via
1 1
, where v, € W,,,;
\/DT’ 2)1 +Dfr/ Vg \/DT ’U 1)+DT(
1 1
, where v, € W,,,;
v/ Dr:(v1) + Dri(v, \/DT (v21) + D7 (v,
1 1
, where v, € W,,,. (10)
v/ Dr:(v1) + Drr(v2) \/DT (vs1) + D7 (v,
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By (7) (9) and the definition of Balaban index, we have J(7’) > J(T). By (8) (10)
and the definition of Sum-Balaban index, we have SJ(T") > SJ(T). |
By Lemma 2.10, we can obtained F? (1 <4 < 6) from 7,2 by repeating cycle trans-

formation. Fig. 2.11 shows six types of bases for F*, where 1 < i < 6.

Ceesn

Fig. 2.11 The six types of bases for (1 < i < 6)

Case 2. [V(P))| > 3, [V(P)| = 2, where 2 < i < 6 (see Fig. 2.11: F1).

Let T=Fland 5<s<n W, ={w| v, € V(T),wv, € E(T) and dr(w) = 1},
| W, |= ks. T is the graph obtained from 7 by deleting the edges v;v;41 (5 < i < s—1),
v9vs and all pendent vertices of v; (5 < ¢ < s), meanwhile, adding the edges vyv2, v1v;
(6 <i<s)and >.; . k; pendent edges to vy (see Fig. 2.12).

We say that 7 is obtained from T by the cycle transformation.

ky

Cycle transformation

-

- -

Fig. 2.12 The cycle transformation (when |V (Py)| > 3, |V(P)| = 2,

where 5 < s <n, 2 <i<6)

Case 3. |V(P)| > 3, |[V(P;)| =2, where i = 1,5 and j = 2,3,4,6, a+b < n—4 (see
Fig. 2.11: F2).

Let T =F2, W, = {w | v, € V(T),wv, € E(T) and dr(w) = 1}, | W, |= k,.
T’ is the graph obtained from 7 by deleting the edges vav14, Va¥2s, viiV141)(1 < @ <

a — 1), v2;05(j41)(1 < j < b—1) and all pendent vertices of v1;(1 <4 < a),vy;(1 < j <b),
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meanwhile, adding the edges v1va, v3v4, v1v1; (2 < i < a),v3v9; (2 < j < b) and >, ki
pendent edges to vy, 22:1 ko; pendent edges to vs(see Fig. 2.13).
We say that 7 is obtained from 7 by the cycle transformation.
kl kl + Z?:l kli
<
.. V11 ..

i U1
Vla

Cycle transformation

- s

V21 U2p

V2

ks
T T

ks + 35 b

Fig. 2.13 The cycle transformation (when |V (P;)| > 3, |V (P;)| = 2,

where i =1,5and j =2,3,4,6,a+b<n—4)

Case 4. |V(P)| > 3, |V(P;)| =2, where i = 1,2 and 3 < j <6, a+b < n—4 (see
Fig. 2.11: 7).

Let T = F W, = {w | v, € V(T),wv, € E(T) and dr(w) = 1}, | W,, |= k.
T' is the graph obtained from T by deleting the edges vov1q, Va¥2, V1;V16+1) (1 < 7 <
a—1), vg;v5(j41) (1 < j < b—1) and all pendent vertices of vy; (1 <@ < a), vy; (1 < j < D),
meanwhile, adding the edges vive, vivg, vivy; (2 < @ < a), vivy; (2 < j < b) and
Skt 23:1 ko; pendent edges to vy (see Fig. 2.14).

We say that 7 is obtained from T by the cycle transformation.

k1 ki + Za 1 ki + Zb ko
i= v g=1"2]
> T et

Cycle transformation V2p
e e T

U2

T T
Fig. 2.14 The cycle transformation ( |V (F;)| > 3, |[V(FP;)| =2,

where a+b<n—4,i=1,2and 3<j <6)
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Case 5. If |V(P;)| > 3, |V(P;)| = 2, where i = 1,2,4and j = 3,5,6, a+b+c<n—4
(see Fig. 2.11: F4).
Let T =F4 W,, = {w | v, € V(T),wv, € E(T) and dr(w) = 1}, | W, |= k. T

is the graph obtained from 7 by deleting the edges v2v14, V42, VaVse, V1iV13i41) (1 <0 <

N

a—1),v2509(j41) (1 < j < b—1),vgv3041) (1 <1 < c—1) and all pendent vertices of vy; (1 <
i < a),vy (1 <j <b)vy (1 <1< c), meanwhile, adding the edges v1v2, v104, Va4,
vivy (2 < i < a),vvy (2 <5 <b), vy (2<1<c)and Y ¢ k;+ Zgzl ks; pendent
edges to v1, Y_,_; ky pendent edges to vo(see Fig. 2.15).

We say that 7" is obtained from 7T by the cycle transformation.
D DN TR SN

V11 V21

V1a

Cycle transformation
%

V31
Vse o7 N
~~ —
ko kg + 1 k3
T T

Fig. 2.15 The cycle transformation (when |V (F;)| > 3, |[V(P;)| =2,
where i =1,2,4 and j =3,5,6, a+b+c<n—4)

Case 6. [V(P)| > 3, |V(P;)| =2, where i = 1,2,5 and j = 3,4,6,a+b+c<n—4
(see Fig. 2.11: ]?5)

Case 6.1. |[V(Py)| >4 or |V(P5)| > 4.

Let T = F5, Vi = {vg;,v3}, where 1 < j < b1 <1 < ¢ W, ={w|uv €
V(T).wv, € E(T) and dr(w) = 1}, | Wy, |= ko My = 20 koj + Yo ks T is
the graph obtained from 7 by deleting the edges vav14, U1V2h, V3Vse, V1iV1i41) (1 < @ <

a — 1), vg5v941) (1 < 7 < b—1),v3v3041) (I <1 < ¢—1) and all pendent vertices
of v; (1 < i < a),vyy (1 < j <b)vy (I <1 < ¢), meanwhile, adding the edges
V109, V104, U304, V101; (2 <0 < @), vav95 (2 < 5 < D), vavy (2 <1< c)and > i ki; pendent
edges to vy, 22:1 kaj 4+ 37, ks pendent edges to vs(see Fig. 2.16).

We say that 7 is obtained from 7 by the cycle transformation.
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Cycle transformation

Fig. 2.16 The cycle transformation (|V(P1)| > 4, |[V(F;)| > 3, [V(P))| = 2,
where i = 2,5 and j =3,4,6,a+b+c<n-—4)

Case 6.2. |V (P)| > 4.

Let T=F5W,, ={w|v, € V(T),wv, € E(T) and dr(w) = 1}, | Wy, |= ky. T is
the graph obtained from 7 by deleting the edges v2v14, VaVap, VaUse, V1301 (41) (1 < 7 < a—1),
VajVa¢j41) (1 < J < b—1),v3v3041) (1 <1< ce—1) and all pendent vertices of vy; (1 <
i < a),vey (1 <j <b)vy (1 <1< c), meanwhile, adding the edges v1v2, v104, V304,
v(2 < i < a), vy (2 < j < b)uguy (2 <1 <¢)and > i ki + 22:1 ko; pendent
edges to vi, Y ;_, ky pendent edges to vs(see Fig. 2.17).

We say that 7 is obtained from 7 by the cycle transformation.

ky

- ki + >0

b
iy ki + Zj:l ks
D

V21

V11 ; o V2p

Cycle transformation Vla
e e T

Via i V31 Use

U3

Vg Vs

g.,'/ P

ks —~

ks 430 ks
T T

Fig. 2.17 The cycle transformation (|V(P)| > 4, |[V(F;)| > 3, |[V(P;j)| = 2,

where i =1,5and j =3,4,6, a+b+c<n-—4)
Case 6.3. |V(P,)| = 3, |V(F;)| = 2, where ¢ = 1,2,4 and j = 3,5,6 (see Fig. 2.11:
Fo).
Case 6.3.1. k; > 0 or k5 > 0.
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Let T=F5W,, ={w|v, € V(T),wv, € E(T) and dr(w) = 1}, | Wy, |= ky. T is
the graph obtained from 7 by deleting the edges vovs, v3v7, V406, and all pendent vertices
of vs, vg, v7, meanwhile, adding the edges vivs, v1vy, V304 and ks + kg pendent edges to vy,
k7 pendent edges to vy(see Fig. 2.18).

We say that 7 is obtained from 7 by the cycle transformation.

k] k‘l +k5+l€6

Vs

Cycle transformation

T
Fig. 2.18 The cycle transformation (when |V (F;)| = 3, [V(P))| = 2,
k1 >0 or ks > 0, where i = 1,2,5 and j = 3,4,6)

Case 6.3.2. ky > 0 or k7 > 0.

Let 7 = F°, T' is the graph obtained from 7 by deleting the edges v vg, vovs, V37,
and all pendent vertices of v, vg, v7, meanwhile, adding the edges vivy, v1v4, V304 and ks
pendent edges to v; and kg + k7 pendent edges to vy (see Fig. 2.19).

We say that 7 is obtained from 7 by the cycle transformation.

k1 ki + ks

Cycle transformation

V3

Fig. 2.19 The cycle transformation (when |V (P;)| = 3, [V(P;)| =2,
ks >0 or k7 > 0, where i = 1,2,5 and j = 3,4,6)

Case 6.3.3. kg > 0.

Let 7 = F®, T is the graph obtained from 7 by deleting the edges v1vs, v1vs, V307
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and all pendent vertices of vs, vg, v7, meanwhile, adding the edges v1vs, V104, V304 and ks
pendent edges to v and kg + k7 pendent edges to vs(see Fig. 2.20).
We say that 7 is obtained from 7 by the cycle transformation.

Cycle transformation

2 ko + ks
T T

Fig. 2.20 The cycle transformation (when |V (FP;)| = 3, [V(P;)| =2,
k¢ > 0, where i = 1,2,5 and j = 3,4, 6)
Case 6.3.4. k; =0, kg > k3 > 0, where i = 1,4,5,6,7.
Let 7 = F°, T is the graph obtained from 7 by deleting the edges v,vs, v1vg, V4V, V307
and v4v7, meanwhile, adding the edges vve, V104, V2vg, Vav7 and vvy(see Fig. 2.21).

We say that 7 is obtained from T by the cycle transformation.

U1 U1

Cycle transformation

—>

Us
U7
A " A
U2 Us Us Us
ks ks ks

ko
T T
Fig. 2.21 The cycle transformation (when |V (F;)| =3, |V(P;)| = 2,
ki =0, ko > ks >0, where i = 1,2,5, j = 3,4,6,1 = 1,4,5,6,7)
Case 6.3.5. k; =0, k3 > ko > 0, where i = 1,4,5,6,7.
Let 7 = F°, T is the graph obtained from 7 by deleting the edges v,vs, vov5, V106, V4vg
and v4v7, meanwhile, adding the edges vv2, V104, V304, V305 and vsvg(see Fig. 2.22).

We say that 7 is obtained from 7 by the cycle transformation.



-7133-

(%1 V1

Cycle transformation

kA hi i ——

Us
v A
U2 7 U3 Vo (3
~—
ko

U7
VU6
ks ks ks

T T

Fig. 2.22 The cycle transformation (when |V (F;)| =3, |V(P;)| = 2,
k; =0, ks > ko >0, where i = 1,2,5, j = 3,4,6,1=1,4,5,6,7)

Case 7. |[V(P;)| > 3 and |V(P;)| = 2, where i = 1,2,5,6 and j = 3,4 (see Fig. 2.11:
F9).

Let 7 = F9, T is the graph obtained from 7 by deleting the edges vy1v19, V21022, V31 V32,
Va1Vs2 (might v1s = Vg, Vo = V4, V3 = V4, Vg2 = v2) and all pendent vertices of vy, va1, V31,
vy1, meanwhile, adding the edges v1v12, v1V92, UsU32, V3040 and ki1 + ko pendent edges to
vy and kg1 + k41 pendent edges to vz(see Fig. 2.23).

We say that 77 is obtained from 7 by the cycle transformation.

ky ki + ki + ko

V11
V21

Cycle transformation

V12§
V31 V41

U3 Vg U3
V42 Va1 T 4 Vg2 70
~— ~—~
ks k3 + ka1 + kg
T T

Fig. 2.23 The cycle transformation (when |V (FP;)| > 3, [V(P;)| = 2,

where ¢ =1,2,5,6 and j = 3,4)
Using the same method as Lemma 2.10, the following lemma is clear.

Lemma 2.11. Let T = Fi € TP, 1 < i < 6. T’ is obtained from T by the cycle
transformation (see Fig. 2.12-2.23). Then J(T) < J(T") and SJ(T) < SJ(T").
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By Lemmas 2.10 and 2.11, we can obtained G from ’7;(2) by repeating cycle transfor-

mation. Fig. 2.24 shows the base for Gj.

AN

Fig. 2.24 The graph @27

Remark 2.12. By Remark 2.11 and Lemmas 2.10, 2.11, we now only need to consider
the Balaban indices and Sum-Balaban indices of graphs gé, where 1 <1 <7 (see Fig. 2.8
and Fig. 2.24).

2.5 Cycle-lifting transformation

Let G1,G2 and G5 be three graphs with n; > 2, ny > 2 and ng > 1 vertices, respectively.
If G is the graph obtained from G7, G5 and G3 by adding an edge between vy and v, vy
and v3, vy and vs, G’ is the graph obtained by deleting the edges vow € G5 and adding
the edges viw(see Fig. 2.25).

We say that G’ is obtained from G by the cycle-lifting transformation.

é G2 7 {UZ}
A Cyecle-lifting transformation A

G C

Fig. 2.25 The cycle-lifting transformation

Lemma 2.13. Let C| be the cycle-lifting transformation of C; (see Fig.2.25). Then
J(C1) < J(C}) and SJ(Cy) < SJ(Cy).

Proof. Let V(Cy) = {v1,v2,v3, -+ ,v,}. It can be check directly that

De, (vz) > De; (v for v, € V(Ci) \ {va},
Dci (Ug) — DCl (’UQ) = Dcl (’Ul) — Dci (Ul) > 0,

Dci (’UZ) > rIlaX{l)c1 (U1)7 l)c1 (UQ)} > DCi (’Ul).
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For the vertices v,,v, € V(C1) \ {v2}, it is easy to see that
1
>
\/DC/ Vg DC’ UU \/DC1 Vg DCl(vy)

1 1
\/DC' V) +Dcf vy \/Dcl (v2) + De, (vy )

For vyvy € E(Cy), letting = D¢y (va), y = Dey(v1), a = Dey (v2) — De, (v2) = De, (v1) —

(11)

(12)

De;(v1) > 0, then x > y + a. By Lemma 2.1, we have
1 1
\/Dcl [ Dc/ 1' \/Dcl 1)1 Dcl(vl)

(13)

1 1
J/Det(en) + Deglan) /Pl T Do)

For vyuz, viv3 € E(Cy), letting xp = D¢y (v2), 21 = De, (v2), Y2 = De, (v1), y1 = Dey(v1),

(14)

then z; > y; and x9 — 21 = y» — y; > 0. By Lemma 2.2, we have

1 1

1 1
\/Dc/l (v2) : \/Dc’. (v1) - V/De, (v2) " VDe, (vr)

Meanwhile, De, (v3) = De;(v3), then

1 1 1 1
\/Dc/ () Dcr U; \/Dcf 1)1 Dcf U; \/Dcl ’Ug DCl U3 \/Dcl Ul DC1(273)'

(15)

Let x2 = De;(v2) + Dey(vs), 31 = De, (v2) + De, (v3), y2 = De,(v1) + Dey(vs), y1 =
Dc/(l)l) + Dc/(u ). Then z; > y; and 29 — 21 = yo — y; > 0. By Lemma 2.2, we have

1 1 1 1

\/DC, v2) + Dey (v3) \/DC/ v1) + Dey (v \/Da (v2) + De, (vs) \/Dcl (v1) + De, (vs)
(16)
For each edge vov, € E(Gy), we have De,(va) > Der(v1), and De, (v2) > Der(vg),
where v, € V(G) \ {v2}, then
1 1
\/Dcz v1) Dey (ve) \/Dcl (v2) De, (Uz)

(17)

1 1
\/Dcf bl +Dcf UI \/Dcl UQ +D51(UI)

By (11),(13),(15),(17) and the definition of Balaban index, we have J(C;) > J(Cy).

(18)
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By (12),(14),(16),(18) and the definition of Sum-Balaban index, we have SJ(C;) >
SJ(Cy). n
We can obtained G (1 < i < 4) from G} (1 < i < 6) by repeating cycle-lifting

transformation (see Fig. 2.26).

Gi G3 g3
Fig. 2.26 Graphs G (1 <i<4)

Remark 2.14. By Lemma 2.13, we now only need to consider the Balaban indices and

Sum-Balaban indices of graphs Gi and G}, where 1 <i < 4 (see Fig. 2.24 and Fig. 2.26).

2.6 Pendent edges transformation on Gi and GJ (i = 1,2,4)

2.6.1 Pendent edges transformation on g;

Let C; = vjvav3, Co = 01090y, C3 = vyvsve, W, = {w | wv; € E(G}) and dgi(w) = 1},
and |W,,| = k; for 1 < i < 2. The graph Gi" is obtained from G} by deleting the pendent
edges of vy, and adding ko pendent edges to v;. We say that g;’ is obtained from G} by
pendent edges transformation (see Fig. 2.27).

Vg Vg

. 2
4 Pendent edges transformation U4

1 1/
3 3
Fig. 2.27 The pendent edges transformation on gé
Lemma 2.15. Let G' = 5/ be the pendent edges transformation of G = Gi and ky > 0
(see Fig. 2.27). Then J(G) < J(G') and SJ(G) < SJ(G").
Proof. It can be check directly that
D¢(vy) > Der(vy), where v, € V(G) \ {02},
Dgf(’l)2) — DG(UQ) = Dg(vl) — Dgf(’l)l) = kg > 0,

D(;(vg) > D (’Ul).
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Case 1. vy, v, € V(G) \ {va2}.
For the vertex v,, v, € V(G) \ {v2}, we have
1
\/DG/ V) D (vy) \/DG v3) D (vy )7
1 1

\/Dg/ Vg + DG/ UT/ \/DG ’Uz + Dg(vy)
Case 2. viv2 € E(G).
Let @ = Dg/(v2), y = Dg/(v1), a = Dgr(v2) — Dg(v2) = kg > 0. Then = > y + a. By

where v, v, € V(G) \ {v2}. (19)

, where vy, v, € V(G) \ {va}. (20)

Lemma 2.1, we have
1 1
v/Der(v1) D (v2) \/Dn (v1)Da(va)’
1 B 1
VDa (1) + Dar(vs)  /Da(vr) + Da(va)
Case 3. v1v3, 103 € E(G).

Let 2 = Dg/(vs), 21 = Dg(v2), y2 = Dg(v1), 1 = De(v1). Then z; > y; and
Ty — 21 =ys — y1 > 0. By Lemma 2.2, we have
1 1 1 1
VDot VDo) /Dat) | /Dato)

Meanwhile, Dg(v3) = Dgr(v3), then

1 1 1 1
\/Der(v2) Der (vs) \/DC/ (v1)Dgr (v3) \/DG (v2)Dg(vs) \/D@ (v1)De(vs)

Let ©3 = Dgr(v2) + Dar(vs), 1 = Da(v2) + Da(vs), y2 = Da(v1) + Da(vs), y1 =

(23)

Dgi(v1) + Der(v3). Then 2y >y and 9 — 2y = yo — y; > 0. By Lemma 2.2, we have

1 1 1 1

\/DGr (v2) + Dgr(v3) \/DG/ (v1) + Dgr(vs) \/DC (v2) + Dg(vs) \/DG (v1) + Dg(Ug)
(24)

Case 4. v1v4, v2vy € E(G). Since Dg(vy) = Dgr(vs) = Dg(v3) = Der(v3), we have

1 1 1 1
\/D(v/ (v2)Dgr(vs) \/DG/ (v1)Der (v4g) \/DC (v2)Dg(vy \/DG (v D(;(U4)
1 1 1 1

\/Dgr (v2) + Dgr(vy) \/D(v (v1) + Dgr(vs) \/DG (v2) + Dg(v4) \/DG (v1) + DG(U4)
(26)

Case 5. vyw € E(G), where w € W,,.

(25)
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Since D¢ (v2) > Der(v1), De(w) > Der(w), where v, € W,,, we have
1 1

VDaDalw)  /Dalea)Datw)

1 1
\/Dc/(@l) + D¢ (v;) ” \/D(;(UQ) + Dg(w)
By (19) (21) (23) (25) (27) and the definition of Balaban index, we have J(G') > J(G).
By (20) (22) (24) (26) (28) and the definition of Sum-Balaban index, we have SJ(G') >
SJ(G). ]

where w € W,,, (27)

, where w € W,,,. (28)

2.6.2 Pendent edges transformation on g§

Let C) = vivpvs, Cy = vivguy, Cy = vivsvs, Wy, = {w | wu; € E(G2) and dgz(w) = 1}
and [W,,| = k; for 1 <4 < 3. Choose any i € {2,3}. The graph G2’ is obtained from G2
by deleting the pendent edges of v;, and adding k; pendent edges to v;. We say that gg’

is obtained from G2 by pendent edges transformation (see Fig. 2.28).

2y R

Pendent edges transformation

k1 ki + ko
g3 3

Fig. 2.28 The pendent edges transformation on G3(choose i=2)
2.6.3 Pendent edges transformation on g;.

Let C) = vivauz, Co = v1v9vy, C3 = vivgvs, W, = {w | wv; € E(G3) and dgg(w) =1},
|W,,| = k; for 1 < i < 2. The graph Q;U is obtained from Gj by deleting the pendent
edges of vy, and adding ko pendent edges to vy (see Fig. 2.29).

We say that g§’ is obtained from g§ by pendent edges transformation.
2.6.4 Pendent edges transformation on G7

Let C) = v1vavs, Cy = v1v304, O3 = vovzvy, W, = {w | wv; € E(G3) and dgz (w) = 1},
|W,,| = k; for 1 =1,2. The graph G} "is obtained from GJ by deleting the pendent edges
of vy, and adding k, pendent edges to v;. We say that GJ' is obtained from GJ by pendent

edges transformation (see Fig. 2.30).
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Using the same method as Lemma 2.15, the following lemma is clear.

Lemma 2.16. Let g;;’ be the pendent edges transformation of Gi and i € {2,4} (see Fig.
2.28, 2.29). Then J(GL) < J(GY) and SJ(GL) < SJT(G).

Lemma 2.17. Let 927/ be the pendent edges transformation of G3 (see Fig. 2.30). Then
J(G5) < J(GT) and S.J(GF) < SI(GT).
k

<> o
U1
Us Pendent edges transformation V3 Vs
)
4 4/
3 3

Fig. 2.29 The pendent edges transformation on g§

k1 ki + ko

Pendent edges transformation

ko
g 7
Fig. 2.30 The pendent edges transformation on GJ (choose i=2)
We can obtained Gy, G, G3, G4, G5 from Gi(1 < i < 4) and G} by repeating cycle-

lifting transformation and pendent edges transformation (see Fig. 2.31).

n—5 nd
ey
G, (n>5) Gy (n>4) G3 (n>7) Gy (n > 6) G5 (n >5)

Fig. 2.31 Graphs G;(1 < <5)
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3 Maximum Balaban index and sum—Balaban index
of tricyclic graphs

Remark 3.1. From the discussions of Section 2, for any tricyclic graph T € T,, we finally
get the graph G; (i = 1,2,3,4,5) from T by edge-lifting transformation, cycle transfor-
mation, cycle-lifting transformation, pendent edges transformation, or any combination
of these, where graphs G; (i = 1,2,3,4,5) are defined in Fig. 2.51.
From the discussions of Section 2, we have
J(T) < max{J(G;)} and SJ(T) < max{SJ(G;)}, where 1 <i <5

We will prove
J(Go), if n=4;
(T) < max{J(G)} {J(Gl), if n>5.
and
SJ(Gq), if n = 4;
SJ(T) < max{SJ(G,)} =
(T) < max{SJ(G)} {SJ(G1)7 itn > 5.

That is to say, G; and G5 attain the maximum Balaban index and Sum-Balaban index

of all graphs in 7,.

Theorem 3.2. Let G; (1 <i<5) be defined in Fig. 2.31, n > 4. Then
(i) max{ (G}

_ _ 3n+6 3n+6 n?—2n—8 ; _ A
J(Gs) = Wanrmnis 820 T 1V2n2—bn+3’ ) ifn=4
n+2 3n+4-6 3n+6 n*—3n—10 - >

N J(Gh) = 4y/2n?—8n+6 +3 2n%—6n+4 3 25076 | Wan?—nt3’ ifn =5
(ii)

__ _3n+6 3n+6 n?—2n—8 ; — A

max{S.J(G;)} = J(Gs) = o T a0 T 4van-1> ifn=4

? J(G ) _ _nt2 + 3n+6 + 3n+6 + n2—3n— 10 Zf n>5

1 43— | 4/3n—5 | 4/dn—10 1/3n—14 r=

Proof. Obviously, when n = 4,
max{J(G;)} = max{J(G2)}, max{SJ(G;)} = max{SJ(G2)}.

We following consider n > 4.
(i) It can be check directly that

_ n+42 1 3 3 5
J(Gl) - nT[ (n—1)(2n— (‘) + (n—1)(2n— 4) + (2n—6)(2n—4) + (n nl)(?n 3) ]
J(Gg) —_nt2r 3 _3 + —4 ]
) v (n— 1% (2n—5) 2'13 5 vV (n— 1)(277 3)
— nt n—
J(G:S) - 42[\/ (n— 1% (2n—4) 2"—4 _Z vV (n— 1)(211 5)] 9 p
__ n+! 5 n—
'](G4) - 42[ (n— 1%( )7L (71712)(2n 4) + 2n 1t (ané)(anfx) + (n— 1)(2n 3)]
_ nt
J(G5) = T[ (n—1)(2n—5) + (n—1)(2n—4) +3 —5 + (2n—5)(2n—4) + (n— 1)(271 3)4
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Then max{.J(G;)}

— 3n+6 3n+6 n?—2n-8 H —4-

= {J(GQ) = Wan? s T 820 T ivan? mnra’ , ifn=4;
— n+2 3n+6 3n+6 n<—3n—10 5 >

J(Gl) 4v/2n?2—8n+6 + 4v/2n2?—6n+4 + 8vn?2—5n+6 + 4v/2n?2—5n+3" if n =

(ii) It can be check directly that

_ n+2 1 3 3 -5
SJ(Gh) = nT;Z(\/sg,f? + «/3%75 + Vin=1o + zn74)7
— n— .
SJ(GQ) - 12(@ + \/@ + \/37«%7—4)’
— n n— .
5J(Gs) = E( 3p=5 + «/42:,78 + \/3?74)’ ) .
—n n— .
S‘](G4) - T(\/Snfﬁ + V3n—5 + VAn—8 + VAn—9 + \/37%4)7
SJ(Gs) = (2= + 2= + = Z_ o5
4 3n—6 3n—5 4n—10 4An—9 V3n—4
Then
__ _3n+6 3n+6 n2—2n—8 5 — A
max{S.J(G;)} = J(Gy) = 1/3n—6 + Van-10 T 4van=1> if n =4
v J(Gy) = nt2 | 3n+6 4 346 n?—3n—10 itn>5
1 4/3n—7 " 4/3n—5 ' 4/dn—10 4/3n—4 ° =
The theorem holds. ]
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