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Abstract 

The current evidence supports that the genetic code architecture is optimized to minimize the 

transcriptional and translational errors and to preserve amino-acid hydrophobicity during 

mutational events. The genetic code is mathematically equivalent to a cube inserted in the 

ordinary three-dimensional (3D) space, which leads to consistent phylogenetic analyses of 

DNA protein-coding regions. Herein, the symmetric group  ,GC  of the genetic-code cubes is 

formally developed. Next, it is shown that principal component (PC) scales of amino-acid 

derived from subsets of the genetic-code cubes are highly correlated with hydrophobicity and 

other physicochemical amino-acid properties. The effect of this architecture on the evolutionary 

process was modelled by a Weibull probability distribution to fit the evolutionary mutational 

cost estimated using amino acid PC-scales optimized on a set of homologous proteins. The 

application of Weibull model permits the identification of mutational events with high and low 

probabilities of fixation in gene populations. It is illustrated how this approach conveys a 

valuable information for de novo vaccine design. 
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1 Introduction 

The genetic code is the biochemical system used to establish the rules by which the DNA 

nucleotide sequence is transcribed into mRNA codon sequences, and ultimately translated into 

amino acid protein sequences. This code is an extension of the four-letter alphabet of the DNA 

bases: adenine, guanine, cytosine and thymine (denoted A, G, C, T), with uracil (U) for thymine 

in RNA. It has been shown that the genetic code is mathematically equivalent to a cube inserted 

in the three-dimensional (3D) space 3R [1,2]. An introductory summary to the subject is 

provided in Appendix A. 

The genetic-code architecture has been studied in the framework of the genetic-code 

algebraic structures [1–5]. The standard genetic-code cube was introduced in reference [1] as a 

geometrical model of the standard genetic code presented in Table 1. The standard genetic-code 

cube is also a 3D vector space over the Galois field GF(4) defined on the set of four DNA bases 

[1]. 
 

Table 1. The standard genetic code table. 

Second base position 
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UUU 1P UCU S UAU Y UGU C U 
T
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UUC UCC UAC UGC C 

UUA L UCA UAA Stop UGA Stop A 

UUG UCG UAG UGG W G 

C 

CUU L CCU P CAU H CGU R U 

CUC CCC CAC CGC C 

CUA CCA CAA Q CGA A 

CUG CCG CAG CGG G 

A 

AUU I ACU T AAU N AGU S U 

AUC ACC AAC AGC C 

AUA ACA AAA K AGA R A 

AUG M ACG AAG AGG G 

G 

GUU V GCU A GAU D GGU G U 

GUC GCC GAC GGC C 

GUA GCA GAA E GGA A 

GUG GCG Gag GGG G 
              1The one letter symbol of amino acids. 

 

The 3D genetic-code vector space on the Galois field GF(4) was derived from the 

quantitative relationship of the Watson-Crick DNA base-pairing, initially described in [3]), and 

codon order according to the evolutionary importance of their bases: from the less (base Z in 

codons XYZ) to the most important base, the second codon position Y (Table 1) [4,6]. Though 

Table 1 was initially built ad hoc based on empirical observations [6], it has been shown that 
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the corresponding columns are mathematically determined in the standard genetic code 3D 

vector space [1,2]. Indeed, these columns are mathematically derived as quotient subspaces of 

the standard genetic-code cube, with strong associations with the amino acid physicochemical 

properties [1,2,4]. In more recent work, it was shown that the 24 possible ways to order the set 

of bases leads to 24 possible cubes of the standard genetic code [5]. 

The classification of the 24 possible cubes representations of the genetic code was based 

on IUPAC criteria [5,7], as given in Appendix B. In section 2 of the current manuscript, it will 

be shown that this classification leads to 24 algebraic representations of the extended genetic-

code cubes over the Galois field GF(5), i.e., over the set 5Z of integers module 5 [2]. However, 

since all these cubes are isomorphic to the cube 555

3

5 ZZZZ  , the genetic-code cube is 

unique up to isomorphism. Moreover, the standard genetic-code cube universality is based on 

its architecture that depends on the physicochemical properties of the DNA bases rather on a 

specific encoding system. In contrast, the genetic code is not universal as there are small 

variations for the amino acids encoded for in archaebacteria, bacteria, chloroplasts, and 

mitochondria. 

To guide the reader across the manuscript, a graphical summary is given in Fig. 1. The 

formal derivation of the symmetric group of the genetic-code cubes is given in the next section 

2. Applications of the theory are provided in section 3 and 4. A concrete example application 

of the theory to the estimation of immunoescape variants fixation probabilities is given in 

sections 4.1 with Env and Gag HIV1 proteins. The application to de novo vaccine design (Fig. 

1) is discussed in section 5. 

A graphic user interface with an interactive didactic introduction to the mathematical 

biology background is provided in a computable document format (CDF) (free available at a 

link provided in Appendix C). All the data and tools required to check the claims and results 

presented in this manuscript are provided in Appendix C. Although all the results presented in 

this manuscript were derived analytically (and can be derived by readers as well), the graphical-

user-interfaces available in Appendix C will support a fast application of the results presented 

here, as well as, a fast comprehension of the subject for readers not familiar with abstract 

algebra. 
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Figure 1. Graphical summary of the subjects covered by this work. A, the development of the 

symmetric group of the genetic-code cubes is presented. B, amino-acid PC-scales from codon 

norms are derived from subsets of the genetic-code cubes and optimized on a set of homologous 

proteins. It is shown that the amino-acid PC-scales are correlated with the physicochemical 

indexes reported by studies on protein folding and protein interactions. C, a Weibull probability 

distribution model based on the thermodynamics of the mutational process on gene populations 

is estimated on experimental datasets of aligned mutational variants of protein sequences. D, a 

feasible application of this result to de novo vaccine design is provided. 

2 The group of the genetic code cubes  ,GC  

Twenty-four algebraic representations of the extended genetic code can be defined on the 

twenty-four sets BBBB 3
, where B runs over the twenty-four ordered sets of bases {A, 

C, G, U}. i.e.,     UA,G,C,D,,...,UG,C,A,D,B  (Appendix A). Each cube is named 

according to the base ordering used to build it. Cubes are classified based on the 

physicochemical criteria used to ordering the set of codons (Appendix B): number of hydrogen 

bonds (strong-weak, SW), chemical type (purine-pyrimidine, YR), and chemical groups (amino 

versus keto, MK). 

Since the extended base D remains invariant, there are 24 representations of the extended 

genetic-code cube (Fig. 2, Table A1 from Appendix A, and Appendix C section 2). The 

algebraic operations are defined over the Galois field GF(5) as in reference [2] and not over 

GF(4) as in references [1].  
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Figure 2. The genetic-code cubes. A: cube ACGU centered at codon CCC; B, C and D denote 

cubes ACGU, ACUG, and AGUC centered at codon DDD, respectively. In A, the standard 

genetic-code cube is inserted (codons in black) in the extended genetic-code cube. In B, C and 

D, codons of the standard genetic code are in the eight corner cubes, whilst the ancient codons 

are in the coordinated planes. The codons found in every vertical plane correspond to the main 

columns in Table 1, and codons found in every vertical line encode for the same amino acid or 

for an amino acid with similar physicochemical properties. The 24 genetic-code cubes can be 

visualized using the CDF-1 (section 3) given in Appendix C. 

The sum operation is defined (as in [2]), for example, over the ordered set of bases B = 

{D, A, C, G, U} in such a way that the DNA complementary bases are also complementary 

algebraic elements (Table 2). That is, for the cube analyzed in [2] (shown in Fig. 2D) and for 

the eight SW cubes, the equalities DUA   and DGC   hold (Appendix C, CDF-1, sections 

1 and 2.3). The physicochemical criteria listed in Appendix B are the basis to define the sum 

operations in the rest of the 24 possible algebraic structures of the extended genetic-code cubes. 

The set of 24 genetic-code cubes shall be denoted GC. For each class of GC cubes, there are 

eight ways to define the sum operation over the set of bases, depending on their order. 

A B

C D
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Table 2. Operation tables of the Galois field (GF(5)) on the ordered set of the extended bases 

alphabet B={D, A, C, G, U}, and on 
5Z . 

Sum  Product 

+B D A C G U    D A C G U 

D D A C G U D D D D D D 

A A C G U D A D A C G U 

C C G U D A C D C U A G 

G G U D A C G D G A U C 

U U D A C G U D U G C A 

+ 0 1 2 3 4  • 0 1 2 3 4 

0 0 1 2 3 4 0 0 0 0 0 0 

1 1 2 3 4 0 1 0 1 2 3 4 

2 2 3 4 0 1 2 0 2 4 1 3 

3 3 4 0 1 2 3 0 3 1 4 2 

4 4 0 1 2 3 4 0 4 3 2 1 

 

The algebraic complementarity of the elements is preserved in all the cubes from the same 

class. For example, for all the cubes from class MK, the algebraic complementary elements for 

the sum operation according to the chemical type are: 
Amino

DCA  , 
Keto

DUG  ( Appendix C, CDF-

1, sections 1.2 and 2). As a result, we can define 24 groups  iB , , where symbol “ i ” denotes 

the subjacent sum operation defined for the group (i = 1,…, 24). 

For cubes ACGU and UGCA, the pairwise alignment 







UGCA
ACGU

of the ordered bases match 

in terms of hydrogen bonds and algebraic complementarity. Likewise, the pairwise alignment 

of the ordered bases from cubes AGUC and CUGC, 







CUGA
AGUC

, match in terms of chemical types 

and algebraic complementarity. The definition of a sum operation over the base set B = {D, A, 

C, G, U} is equivalent to define an order on the set of bases [4,8]. Thus, there is a bijection 

between the elements of the set of 24 groups  iB ,  and the elements of the symmetric group 

of degree four S4. This is the group of all bijections  , where  4,3,2,1 . The elements 

of the group S4 (or  S ) are permutations (also called substitutions). 

The definition of the symmetric group over the set of 24 permutations of the four DNA 

bases follows straightforward from the usual definition of S4. This group shall be denoted  ,BS  

where symbol “  ” stands for the product operation. If the set with base order (ACGU) is taken 

as unit element for the group operation, then we shall denote it as  ,ACGU
BS . This means that 

the base order (ACGU) (which is also the lexicographic order) corresponds to the identity 
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permutation 






ACGU
ACGU  and any other set with base order i1 i2 i3 i4 corresponds to the permutation: 









4321

UGCA
iiii

, where   UG,C,A,ki . Next, the multiplication of two permutations from group 

 ,ACGU
BS  follows the general rule for the composition of two permutations (Appendix C, CDF-

1 section 5.1). For example, the multiplication of permutations 






CGUA
ACGU and 







UGCA
ACGU  is:  
































AUGC

ACGU

CGUA

ACGU

UGCA

UGCA

ACGU

CGUA

ACGU


 

Once the unit element for the group operation is set, the base order i1i2i3i4 also specifies 

the permutation 







4321

UGCA
iiii

. That is, following the usual formal notation, it is not 

ambivalent to denote permutation 







AUGC
ACGU  by the abbreviated expression (AUGC). Thus, for 

the sake of simplicity, the expression i1i2i3i4 will represent both, permutation and base order. 

Moreover, since each base order determines a sum operation where the sum of each pair of 

algebraic complementary bases is base D, each base-order/permutation determines a cube and, 

consequently, the expression i1i2i3i4 also stands for a genetic-code cube. That is, the symmetric 

group  ,ACGU
BS  induces a group structure over the set of the 24 cubes representations of the 

genetic code. 

Since each genetic-code cube was derived from a given base order, the multiplication of 

two cubes is determined by the multiplication of the corresponding permutations. For instance, 

for the above multiplication of permutations, the product of cubes with base orders CGUA and 

UGCA is the cube with base order AUGC, which is specified by the permutation    

(Appendix C, CDF-1 section 5.1). We shall denote this group as the symmetric group of the 

genetic code cubes  ,ACGUGC . To build this group, we have chosen cube ACGU as the unit 

element. The Cayley multiplications table and graph for group  ,ACGUGC  are given in Table 3 

and in Fig. 3, respectively (Appendix C, CDF-1 sections 5.1 to 5.2). Notice that by construction, 

group  ,ACGUGC  is isomorphic to the symmetric group S4. In consequence, group  ,ACGUGC  is 

also isomorphic to the tetrahedral group T formed by the set of symmetry operations which all 

leave at least one of the four vertices of the regular tetrahedron unmoved. This isomorphism is 

clear after numbering the four vertices of a regular tetrahedron as 1, 2, 3, and 4. 
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Table 3. Cayley multiplications table for the symmetric groups of DNA base permutations 

 ,ACGU
BS  and genetic-code cubes  ,ACGUGC . 

 SW YR MK 

 ACGU AGCU UCGA UGCA CAUG CUAG GAUC GUAC ACUG AUCG GCUA GUCA CAGU CGAU UAGC UGAC AGUC AUGC CGUA CUGA GACU GCAU UACG UCAG 

ACGU ACGU AGCU UCGA UGCA CAUG CUAG GAUC GUAC ACUG AUCG GCUA GUCA CAGU CGAU UAGC UGAC AGUC AUGC CGUA CUGA GACU GCAU UACG UCAG 
AGCU AGCU ACGU UGCA UCGA GAUC GUAC CAUG CUAG AGUC AUGC CGUA CUGA GACU GCAU UACG UCAG ACUG AUCG GCUA GUCA CAGU CGAU UAGC UGAC 
UCGA UCGA UGCA ACGU AGCU CUAG CAUG GUAC GAUC UCAG UACG GCAU GACU CUGA CGUA AUGC AGUC UGAC UAGC CGAU CAGU GUCA GCUA AUCG ACUG 
UGCA UGCA UCGA AGCU ACGU GUAC GAUC CUAG CAUG UGAC UAGC CGAU CAGU GUCA GCUA AUCG ACUG UCAG UACG GCAU GACU CUGA CGUA AUGC AGUC 
CAUG CAUG CUAG GAUC GUAC ACGU AGCU UCGA UGCA CAGU CGAU UAGC UGAC ACUG AUCG GCUA GUCA CUGA CGUA AUGC AGUC UCAG UACG GCAU GACU 
CUAG CUAG CAUG GUAC GAUC UCGA UGCA ACGU AGCU CUGA CGUA AUGC AGUC UCAG UACG GCAU GACU CAGU CGAU UAGC UGAC ACUG AUCG GCUA GUCA 
GAUC GAUC GUAC CAUG CUAG AGCU ACGU UGCA UCGA GACU GCAU UACG UCAG AGUC AUGC CGUA CUGA GUCA GCUA AUCG ACUG UGAC UAGC CGAU CAGU 
GUAC GUAC GAUC CUAG CAUG UGCA UCGA AGCU ACGU GUCA GCUA AUCG ACUG UGAC UAGC CGAU CAGU GACU GCAU UACG UCAG AGUC AUGC CGUA CUGA 

ACUG ACUG AUCG GCUA GUCA CAGU CGAU UAGC UGAC ACGU AGCU UCGA UGCA CAUG CUAG GAUC GUAC AUGC AGUC CUGA CGUA UACG UCAG GACU GCAU 
AUCG AUCG ACUG GUCA GCUA UAGC UGAC CAGU CGAU AUGC AGUC CUGA CGUA UACG UCAG GACU GCAU ACGU AGCU UCGA UGCA CAUG CUAG GAUC GUAC 
GCUA GCUA GUCA ACUG AUCG CGAU CAGU UGAC UAGC GCAU GACU UCAG UACG CGUA CUGA AGUC AUGC GUAC GAUC CUAG CAUG UGCA UCGA AGCU ACGU 
GUCA GUCA GCUA AUCG ACUG UGAC UAGC CGAU CAGU GUAC GAUC CUAG CAUG UGCA UCGA AGCU ACGU GCAU GACU UCAG UACG CGUA CUGA AGUC AUGC 
CAGU CAGU CGAU UAGC UGAC ACUG AUCG GCUA GUCA CAUG CUAG GAUC GUAC ACGU AGCU UCGA UGCA CGUA CUGA AGUC AUGC GCAU GACU UCAG UACG 
CGAU CGAU CAGU UGAC UAGC GCUA GUCA ACUG AUCG CGUA CUGA AGUC AUGC GCAU GACU UCAG UACG CAUG CUAG GAUC GUAC ACGU AGCU UCGA UGCA 
UAGC UAGC UGAC CAGU CGAU AUCG ACUG GUCA GCUA UACG UCAG GACU GCAU AUGC AGUC CUGA CGUA UGCA UCGA AGCU ACGU GUAC GAUC CUAG CAUG 
UGAC UGAC UAGC CGAU CAGU GUCA GCUA AUCG ACUG UGCA UCGA AGCU ACGU GUAC GAUC CUAG CAUG UACG UCAG GACU GCAU AUGC AGUC CUGA CGUA 

AGUC AGUC AUGC CGUA CUGA GACU GCAU UACG UCAG AGCU ACGU UGCA UCGA GAUC GUAC CAUG CUAG AUCG ACUG GUCA GCUA UAGC UGAC CAGU CGAU 
AUGC AUGC AGUC CUGA CGUA UACG UCAG GACU GCAU AUCG ACUG GUCA GCUA UAGC UGAC CAGU CGAU AGCU ACGU UGCA UCGA GAUC GUAC CAUG CUAG 
CGUA CGUA CUGA AGUC AUGC GCAU GACU UCAG UACG CGAU CAGU UGAC UAGC GCUA GUCA ACUG AUCG CUAG CAUG GUAC GAUC UCGA UGCA ACGU AGCU 
CUGA CUGA CGUA AUGC AGUC UCAG UACG GCAU GACU CUAG CAUG GUAC GAUC UCGA UGCA ACGU AGCU CGAU CAGU UGAC UAGC GCUA GUCA ACUG AUCG 
GACU GACU GCAU UACG UCAG AGUC AUGC CGUA CUGA GAUC GUAC CAUG CUAG AGCU ACGU UGCA UCGA GCUA GUCA ACUG AUCG CGAU CAGU UGAC UAGC 
GCAU GCAU GACU UCAG UACG CGUA CUGA AGUC AUGC GCUA GUCA ACUG AUCG CGAU CAGU UGAC UAGC GAUC GUAC CAUG CUAG AGCU ACGU UGCA UCGA 
UACG UACG UCAG GACU GCAU AUGC AGUC CUGA CGUA UAGC UGAC CAGU CGAU AUCG ACUG GUCA GCUA UCGA UGCA ACGU AGCU CUAG CAUG GUAC GAUC 
UCAG UCAG UACG GCAU GACU CUGA CGUA AUGC AGUC UCGA UGCA ACGU AGCU CUAG CAUG GUAC GAUC UAGC UGAC CAGU CGAU AUCG ACUG GUCA GCUA 

1This multiplication table created by using the CDF-1 supplied in the supporting information Appendix C.  Several 

isomorphic symmetric groups can be obtained by a different genetic-code cube as unit.  
 

 

 
Figure 3. Cayley graph of the symmetric group  ,ACGUGC . This diagram was generated using 

the set of cubes  CGUACAGU,G  as generator. For any cubes  ,ACGUGCx  and Gg the 

vertices corresponding to the elements x  and gx  are joined by a directed edge for CGUAg

and bidirected for CAGUg . 
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Every element of the full tetrahedral group permutes the vertices of the regular 

tetrahedron among themselves. To date there is no biological criteria to favor any cube as unit 

element. Thus, in principle, we can define 24 groups  ,4321 XXXX
GC  with unit element 

4321 XXXX  running over the 24 cubes, and elements integrated by the 24 cube representations 

of the extended genetic code. These groups are isomorphic between them and isomorphic to 

group S4. As result, there is only one symmetric group of the genetic code  ,GC  up to 

isomorphism. 

2.1 Sum and product operations between codons from different cubes of 

 ,GC  

A sum operation between codons from different cubes is induces by  ,ACGUGC  and can be 

defined based on the isomorphism between the groups  ,5Z and  ,B . For example, for 

cube ACGU the DNA base complementarity and the mentioned isomorphism ensure the 

bijection 4U,3G,2C,1A,0D:ACGU  . Next, cube ACGU can be seen as a function 

running over the set of codons, i.e., ACGU(x) with 
3
ACGU321 Bxxxx  , where   UG, C, A,ACGU B  

        3ACGU2ACGU1ACGU ,, xxxxACGU  , and     333
5 RZZ  xACGU  (

5Z  elements are 

included in the set of positive integers Z ). The inverse function is given by:

        3
-1
ACGU2

-1
ACGU1

-1
ACGU

1 ,, vvvvACGU  , where   33
5321 ,,  ZZvvvv , and   31 BvACGU 

Likewise, we can define the bijection 4G,3U,2C,1A,0D:ACUG   and 

        3ACUG2ACUG1ACUG ,, xxxxACUG  ,     333
5 RZZ  xACUG  and   31 BvACUG  . 

The composition of functions  ...4321 XXXX  is defined the same rule as the multiplication 

of permutation from  ,BS  or cubes from  ,GC . Next, if cubes ACGU and ACUG are 

elements of group  ,ACGUGC , then the sum “ ” operation between codons 

ACGU321  xxxx and ACUG321  yyyy can be defined as: 

      yACUGxACGUACUGACGUyx 
1  

Or     yACUGxACGUAGUCyx  1
 

Where AGUCACUGACGU   is the composition of functions  ...ACGU  and  ...ACUG  

equivalent to the composition of cubes in  ,ACGUGC ,  ...1ACUG  is the inverse of  ...ACUG , 

and    yACUGxACGU   is the sum on  35Z (per coordinate as given in Table 2). In 
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analogous way, we can define a product operation between codons ACGU321  xxxx and 

ACUG321  yyyx as:     yACUGxACGUAGUCyx  1
, where symbol “ ” stands 

for the product operation in  ,3
5Z , which is the multiplicative group of GF(5)3 [2]. 

2.2 The dihedral subgroups of  ,GC  

Since groups  ,ACGUGC  and S4 are isomorphic, each subgroup of group S4 has an equivalent 

subgroup in  ,ACGUGC . The subgroups of the symmetric group S4 are well known. The subset 

of strong-weak cubes forms a subgroup  ,ACGUSW  of  ,ACGUGC , which is isomorphic to the 

well-known dihedral group D4. The Cayley multiplications table on the set of cubes ACGUSW  is 

given in Table 4 (Appendix C, CDF-1 sections 5.1 and 6). Then, the partition of the 24 algebraic 

representations of the genetic code into the strong-weak, purine-pyrimidine and amino-keto 

classes is derived from the set of left cosets from the quotient group     ,/, ACGUACGU SWGC  (or 

simply, ACGU/SWGC ), which is defined as:  ACGUACGUACGU/ GCxSWxSWGC   . That is, 

the mentioned classes are the elements of the set of left cosets ACGU/SWGC  (Appendix C, 

CDF-1 section 6). For example, for any cube ACGUYRx , we have ACGUACGU SWxYR  . 

Group  ,ACGUSW  has two other conjugate subgroups that correspond to dihedral 

subgroups  ,AGUCMK  and  ,ACUGYR  integrated by MK and YR cubes, respectively (see 

below). In principle, we can define 24 dihedral subgroups able to split the set GC into the classes 

SW, MK, and YR. That is, the quotient groups  ACGUACGUACGU/ GCxMKxMKGC    and 

 ACGUACGUACGU/ GCxYRxYRGC    are well defined and split the set GC into the classes 

SW, MK, and YR. 

Table 4. The Cayley multiplications table on set of cubes SW1. 

 ACGU AGCU UCGA UGCA CAUG CUAG GAUC GUAC 

ACGU ACGU AGCU UCGA UGCA CAUG CUAG GAUC GUAC 

AGCU AGCU ACGU UGCA UCGA GAUC GUAC CAUG CUAG 

UCGA UCGA UGCA ACGU AGCU CUAG CAUG GUAC GAUC 

UGCA UGCA UCGA AGCU ACGU GUAC GAUC CUAG CAUG 

CAUG CAUG CUAG GAUC GUAC ACGU AGCU UCGA UGCA 

CUAG CUAG CAUG GUAC GAUC UCGA UGCA ACGU AGCU 

GAUC GAUC GUAC CAUG CUAG AGCU ACGU UGCA UCGA 

GUAC GUAC GAUC CUAG CAUG UGCA UCGA AGCU ACGU 

1This multiplication table can be created by using the CDF-1 supplied in the supporting information Appendix C.  

Several isomorphic symmetric groups can be obtained on different cosets from the symmetric group of the genetic 

code cubes  ,ACGUGC . 
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The list of the main sets of dihedral groups for our interest are: 

1) Strong-week dihedral group of cubes: 

 GUACGAUC,CUAG,CAUG,UGCA,UCGA,AGCU,ACGU,ACGU SW  

2) Purine-pyrimidine dihedral group of cubes: 

 CGAUUGAC,UAGC,CAGU,GUCA,GCUA,AUCG,ACUG,ACUG YR  

3) Amino-keto dihedral group of cubes: 

 UCAGUACG,GACU,GCAU,CGUA,CUGA,AUGC,AGUC,AGUC MK  

2.3 Klein four groups of  ,ACGUGC  

Cubes ACGU, AGCU, UCGA and UGCA forms a Klein four subgroup of  ,ACGUGC , which 

will be denoted as  ,ACGU
KSW  (Table 5). The quotient group ACGUW/ KSWS  split the strong-weak 

set of cubes into two subsets (left cosets). While, the quotient group ACGUC/ KSWG  split the 24 

algebraic representations of the genetic code into six classes (left cosets), each one with four 

cubes (Appendix C, CDF-1 section 7). As before, we can build 24 different Klein four 

subgroups of  ,GC  by choosing a different cube as unit element at each time, which will 

originate the same partitions. For example, by taking cubes ACUG and AUCG as the units 

element, the Klein four groups  ,ACUG
KYR  and  ,AUCG

KYR  can be defined on the sets 

}GCUA GUCA, AUCG, ACUG,{ACUG KYR  and }GCUA GUCA,ACUG, AUCG, {AUCG KYR

, respectively, which are isomorphic to  ,ACGU
KSW . In other words, Klein four groups can be 

defined on each one of the six left cosets from the quotient group ACGUC/ KSWG . 

Table 5. Klein four group  ,ACGU
KSW 1. 

 ACGU AGCU UCGA UGCA 

ACGU ACGU AGCU UCGA UGCA 

AGCU AGCU ACGU UGCA UCGA 

UCGA UCGA UGCA ACGU AGCU 

UGCA UGCA UCGA AGCU ACGU 
1The rest of Klein four groups found in the symmetric groups  ,GC  can be visualized by using the CDF-1 supplied 

in the supporting information Appendix C. 

The six Klein four groups and their corresponding subjacent sets of cubes are listed 

below: 

I) Strong-week Klein four groups of cubes: 

1)  ,ACUG
KSW : subjacent set  UGCAUCGA,AGCU, ,ACGUACGU KSW  
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2)  ,CAUG
KSW : subjacent set  GUACGAUC,CUAG,CAUG, CAUG KSW  

II) Purine-pyrimidine Klein four groups of cubes: 

3)  ,ACUG
KYR : subjacent set  GCUAGUCA,,AUCG ,ACUG ACUG KYR  

4)  ,CAGU
KYR : subjacent set  CGAUUGAC,UAGC,CAGU,CAGU KYR  

III) Amino-keto Klein four groups of cubes: 

5)  ,AGUC
KMK : subjacent set  CUGACGUA,AUGC,AGUC,AGUC KMK   

6)  ,CACU
KMK : subjacent set  UCAGUACG,GCAU,GACU, GACU KMK  

 

The left cosets of any quotient group of  ,ACGUGC  and a Klein four-group of cubes (for 

example AGUC/ KMKGC ) will be integrated by the above subsets. In addition, 24 normal Klein 

four group can be defined on subsets of cubes. The quotient group of a normal Klein four group 

with the corresponding dihedral group splits the subjacent dihedral set into two cosets. For 

example, the quotient group 
ACGU/ NKSWSW split set SW into two subsets, {ACGU, CAUG, 

GUAC, UGCA} and {AGCU, CUAG, GAUC, UCGA}. The quotient group 
ACGU/ NKSWCG split 

set GC into six subsets (see Appendix C, CDF-1, section 7). Hence, only six normal Klein four 

group are defined on six different subsets of cubes: 

IV) Strong-week normal Klein four groups of cubes: 

3)  ,ACUG
NKSW : subjacent set  UGCAGUAC,CAUG,ACGU,ACGU NKSW  

4)  ,AGCU
NKSW : subjacent set  UCGAGAUC,CUAG,AGCU, AGCU NKSW  

V) Purine-pyrimidine normal Klein four groups of cubes: 

7)  ,ACUG
NKYR : subjacent set  UGACGUCA,CAGU,ACUG,ACUG NKYR   

8)  ,AUCG
NKYR : subjacent set  UAGCGCUA,CGAU,AUCG,AUCG NKYR  

VI) Amino-keto normal Klein four groups of cubes: 

9)  ,AGUC
NKMK : subjacent set  UCAGGACU,CUGA,AGUC,AGUC NKMK  

10)  ,AUGC
NKMK : subjacent set  UACGGCAU,CGUA,AUGC, AUGC NKMK  

The above sets are also cosets from the quotient group ACGUC/ NKSWG . That is, 

 GCxSWxSWGC NKNK  ACGUACGU/  . 
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2.4 Group of duals cubes 

Two cubes with complementary base orders shall be called dual subsets of cubes, which is a 

classification originally given in reference [3] for cubes ACGU and UGCA. That is, the concept 

of dual cubes is taken borrow from the dual genetic code Boolean lattice of defined in [3]. 

Following the results presented in [3], twelve pairs of dual Boolean lattices can be defined on 

the set of 24 genetic-code cubes. For any Boolean lattice (BL(B), , ) there exists the “dual 

Boolean lattice” (BL’(B), , ), where the order relation is reversed, the symbols  and  are 

interchanged and the maximum and minimum (1 and 0) are inverted (see [3]). It turns out that 

these twelve pairs of dual Boolean lattices are in one-to-one correspondence with twelve groups 

of duals cubes. 

Indeed, the group of dual cubes corresponding to the dual Boolean lattices reported in 

reference [3] is built after setting CAUG cube as unit element of the operation “  ”: 
























GUAC
CAUG

GUAC
CAUG

CAUG
CAUG   and 























CAUG
CAUG

GUAC
CAUG

GUAC
CAUG  . The 64 codons 

ordered according to cube CAUG integrates the elements of the primal lattice defined in 

reference [3], while codons ordered according to cube GUAC integrate the elements of the dual 

lattice. 

Likewise, group  ,ACGUGC  can be split into subsets of dual cubes. This follows directly 

from the fact that a group structure can be defined on the set of dual cubes ACGU and UGCA: 
























UGCA
ACGU

UGCA
ACGU

ACGU
ACGU   and 























ACGU
ACGU

UGCA
ACGU

UGCA
ACGU  . This group will be 

denoted as  ,ACGU
DSW . The quotient group 

ACGU/ DSWGC  split the 24 algebraic representations 

of the genetic-code cube into twelve classes (cosets), each one with two cubes. The elements 

of the quotient group
ACGU/ DSWGC  are pairs of dual cubes as well. For example, the twelve 

groups of dual cubes are listed below: 

I) Strong-week groups of dual cubes: 

1)  UGCA,ACGUACGU DSW  

2)  UCGA,AGCUAGCU DSW  

3)  GUAC,CAUGCAUG DSW  

4)  GAUC,CUAGCUAG DSW  

 

-539-



II) Purine-pyrimidine groups of dual cubes: 

5)  GUCA,ACUGACUG DYR  

6)  GCUA,AUCGAUCG DYR  

7)  UGAC,CAGUCAGU DYR  

8)  CGAU,UAGCUAGC DYR  

III) Amino-keto groups of dual cubes: 

9)  CGUA,AGUCAGUC DMK  

10)  CUGA,AUGCAUGC DMK  

11)  UACG,GCAUGCAU DMK  

12)  UCAG,GACUGACU DMK  

This result leads to a generalization of the results reported in reference [3] and to the clear 

definition of the symmetric group of genetic-code Boolean lattices, or in terms of the results 

reported in reference [9], the symmetric group of genetic-code Boolean algebras. The 

symmetric group  ,BS  induces a group structure over the set of the 24 Boolean lattices, which 

can be defined following the procedure presented in reference [3]. However, a further 

development of the symmetric group of genetic-code Boolean lattices goes beyond the limits 

and purposes of the current manuscript. 

2.5 Alternating Group 

The subgroups of  ,GC  mentioned so far were defined in subsets of cubes that belong to the 

same class. Alternating group A4 is the group of even permutations of S4 and, in accordance 

with theory exposed above, the alternating group  ,ACGUA  of  ,ACGUGC  is well defined. 

Cayley graph for alternating group  ,ACGUA  is shown in Fig. 4. 
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Figure 4. Cayley graph of the symmetric group  ,ACGUAx . This diagram was generated by 

using the generator set of cubes  CGAUAGUC,G . For any cubes  ,ACGUAx  and Gg

the vertices corresponding to the elements x  and gx  are joined by a directed edge for 

AGUCg and bidirected for CGAUg  

2.6 The norm of codon is preserved in the set of left cosets of KSWSW /  

Since the genetic code cubes are inserted in
3R , giving specific bijections, the norm of codons 

can be defined for the cubes inserted in
3R . For example, cube ACGU is inserted (with center 

in codon CCC) in 
3R by the function     333

5 RZZ  xACGU . Next, the inner product of 

two codons 
3Bx  and 

3By  can be defined in
3R  as: 

    332211, yxyxyxyACGUxACGU 
    (1) 

Then, the norm 
ACGU

x  of a codon 
3Bx  with coordinates   3

321 ,, Rxxx  is given by: 

    2
3

2
2

2
1ACGU

, xxxxACGUxACGUx 
   (2) 

To analyze cube symmetries in 
3R the cubes must be centered on the origin of 

coordinates. The insertion of GC cubes with center in the origin of coordinates is performed by 

means of the bijection between the sets  4 3, ,2 1, 0,  and  2 1, 1, 2, 0,  , given by 

24 ,13,12,21,00:1234  . In consequence, the composition of bijections 

ACGU and 1234  yields the bijection that maps the set of bases into the set 2 1, 1, 2, 0,  , i.e., 

  2U,1G,1C,2A,0D:ACGUACGU1234  . Next, we can define function

        3ACGU2ACGU1ACGU ,, xxxxacgu  , where   33 RZ xacgu Analogous bijections 
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can be derived for every genetic-code cube. The inner product of two codons 
3BX   and 

3BY   

can be defined in
3R by means of the bijection ACGU as: 

    332211, yxyxyxyacguxacgu 
   (3) 

Then, for cube ACGU, the norm 
ACGU

x  of a codon 
3Bx  with coordinates   3

321 ,, Rxxx  

is given by: 

    2
3

2
2

2
1ACGU

, xxxxacguxacgux 
   (4) 

After last definition, we can propose the following: 

Theorem 1. Let 
3BX   be a codon of the set of left cosets 

0
4

0
3

0
2

0
1C/

XXXX
KG  with cube 

0
4

0
3

0
2

0
1 XXXX  as unit element of the (non-normal) Klein four group 

0
4

0
3

0
2

0
1

XXXX
K . For any cube 

3321 XXXX  from a coset of the quotient group 
0
4

0
3

0
2

0
1C/

XXXX
KG  and 

3BX  , the norm 

3321 XXXX
x  given by Eq. 4 is preserved. 

Proof. The coordinates  321 ,, xxx  of any codon 
3BX   in 

3R  will change depending on which 

cube representation 
0
4

0
3

0
2

0
1

3321 /
XXXX

KGCXXXX   is used. However, the possible changes of 

codon coordinates between the cube representations from the same coset from the quotient 

group 
0
4

0
3

0
2

0
1C/

XXXX
KG  only involve coordinate changes of one or more bases by its (their) 

algebraic inverse(s). For example, the coordinates of codon ACG in the cubes ACGU, AGCU, 

UCGA, and UGCA from coset ACGU
KSW  are  1,1,2  ,  1,1,2  ,  1,1,2   and  1,1,2  , 

respectively. It is not difficult to see that all these codon coordinates yield the same norm value, 

as given by Eq. 4 (Appendix C, CDF-1, section 4.2). Therefore, the norm 
3321 XXXX

x (Eq. 4) is 

preserved in any cube 3321 XXXX  representations from coset 
0
4

0
3

0
2

0
1C/

XXXX
KG  

Readers can explore Theorem 1 in the CDF-1 from Appendix C (section 4.2) and verify 

that the norm given by Eq. 2 is not preserved in the set of left cosets 
0
4

0
3

0
2

0
1C/

XXXX

KSWG . As was 

pointed out before, in practice, we can define 24 different but isomorphic groups  ,GC , where 

a different cube is taken as the unit element in each one of these groups and a corresponding 

Klein four subgroup can be defined. For example, for the Klein four subgroups  ,ACUG

KYR  and 
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 ,AUCG

KYR  (Appendix C, CDF-1, sections 2.2 and 7), according to Theorem 1, for any codon 

3BX  , 
ACGUAUCGACUG

xxx  . In general, the Klein four subgroups  ,ACUG
KYR , 

 ,AGUC
KMK , and  ,ACGU

KSW  determine the subsets of cubes from GC where the norm of 

codons is preserved. 

In addition to the codon norm definition given by Eqs. 2 and 4, a weighted codon norm can be 

defined on a cube 4321 XXXX  as: 

2
33

2
22

2
11

4321
xwxwxwx

XXXX


    (5) 

Where 10  iw . Each set of weights iw will produce a different norm. 

3 Principal component analysis of the genetic–code cube scales 

Each amino acid can be represented by a statistic of its synonymous codon norms. We can 

consider the minimum, the maximum, the median and the mean of codon norm. Hence, each 

single amino acid can be represented as single number or a vector with four coordinates, 

corresponding to the mentioned statistics of its synonymous codon norms calculated for a given 

cube. If the 24 cubes are used simultaneously, then each amino acid can be represented as a 

vector with 24x4 coordinates. In this way, several coordinates can be correlated and the amino 

representation can be carrying redundant information. This is precisely the scenario to apply 

principal component analysis (PCA). The application PCA will permit us to reduce dimension 

and to represent the set of amino acids by new orthogonal (uncorrelated) variables, the principal 

components (PCs) [10]. Results indicate that for all the cubes and codon subsets mentioned 

above, the three first PCs carry more than the 80% of sample variance (Fig. 5 and CDF-2, 

Appendix C). 

Consequently, for any subset of genetic code cubes, each amino acid can be represented 

by the sum of its three PCs coordinate values. In other words, an amino acid scale can be derived 

from any subset of genetic code cubes by applying the above-mentioned procedure. Then, it 

will be natural to verify whether a genetic-code cube-scale is correlated with some reported 

amino acid physicochemical property. Studies on protein folding by the end of the 20th century 

resulted in the development of numerous physicochemical and biochemical indexes to 

empirically describe the interaction of amino acids in protein 3D structures [11–13]. It turned 

out that codon norm and the weighted codon norm defined in Eqs. 2, 4, and 5 can be used to 

defined amino-acid scales correlated with the physicochemical indexes reported by many 

authors, which are currently available in the AAindex database [12]. 
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Figure 5.  Principal component analysis of amino acid scales derived from GC cubes from the 

Klein four subgroup  ,ACGU
KSW  and from cube ACGU. In the case of cubes from the set 

ACGU
KSW , each amino acid is represented as vector of 4 (cubes)x4(statistics)x2(weights vectors) 

= 32 coordinates; while eight coordinates were used in the case of cube ACGU. In both analysis 

the first three principal components carry most of the 80% of the sample variance. 

This and additional analyses can be repeated/accomplished by using the CDF-2 available in 

Appendix C. An example of this analysis is presented in Fig. 5. 

4 Evolutionary encoded mutational cost (EMC) 

Since we have reasons to believe that the genetic code architecture is optimized to minimize 

the transcription and translation errors [14–16], we would expect that at least one of the 

numerous possible amino-acid PC-scales would model the molecular evolutionary cost of new 

mutational variants fixed in the organismal population.  Let 0x and tx be the amino-acid PC-

scale values for a given position in a gene at the evolutionary times 0 and t, respectively.  Then, 

the encoded cost of the mutational event that involves the change from 0x to tx can be expressed 

by the difference 0xxx t   (6). A Weibull model for the cost x  was deduced on 

thermodynamic/biophysical basis with cumulative probability distribution 

   













 



l

x

exF 1, 0x  (7) (Appendix D). 

1st base 2nd base 3rd base

Weights 1 1 1 0.8

Weights 2 0.56 0.98 0.48

ACGU
KSW

1st base 2nd base 3rd base

Weights 1 0.9 1 0.29

Weights 2 0.5 1 0.81

Cube ACGU

83.9%

7.33%

4.24%

95.2%

3.27%

1.09%
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For a set of aligned protein sequences, a set of weights iw to estimate the cost x based 

on Eq. 5 can be approached by the application of an optimization algorithm. The application of 

the above ideas to concrete datasets of mutational variants reported in three proteins is presented 

in Fig. 6 (data analyses available in CDF-2, Appendix C). For each protein, two codon norms 

were derived from Eq. 5 by using two sets of weights. For the sake of simplification (to reduce 

computational time), the cost x was estimated for each amino acid position in respect to a 

reference protein sequence (the first protein found in the sequence alignment). A genetic 

algorithm from the R package GA [17] was used to approach the weights that maximize the 

goodness of fit (gof) of Eq. 7 (minimization of Kolmogorov–Smirnov statistic, Fig. 6). We shall 

call the cost x estimated according to this approach as evolutionary encoded mutational cost 

or simply evolutionary mutational cost (EMC).  

A wider analysis was performed on 105 alignment of different protein sequences from 

distinct species. The kernel density plots for the estimated   and   parameters from Eq. 7 are 

given in Fig. 7.  It is worthy to observe the small variation between the estimated values of 

parameter  . Since these estimations were made in datasets of unrelated protein sequences 

(except for HIV Env and Gag) with completely different evolutionary history, different amino 

acid PC-scales estimated in different subsets of genetic code-cubes, we should expect larger 

variations between these estimations. To verify whether this behavior is a general regularity of 

the molecular evolutionary process goes beyond the limits of current study. 

An evolutionary implication on the conservation of parameter  value derives from Eq. 

A6 (Appendix D):    1



 lxNq . After applying the logarithm in both side of this equation 

we have: 
 

  
1




 lxlog

Nqlog

i

i  (8), where iNq  is the expected number of times that an 

evolutionary cost ix  can be observed in N mutational events, while  lxi   is the normalized 

cost (non-dimensional cost) estimated for a given set of aligned protein sequences. In other 

words, the ratio of the logarithm of the expected number of times that an evolutionary cost ix  

can be observed in N mutational events to the logarithm of the normalized cost  lxi   is 

constant and independent of the protein sequence. Notice that both parameters,  l  and the 

cost ix , depend on the set of homologous protein sequences under scrutiny. Moreover, given 

the parameter ,  l  depends on the complete set of ix values. 
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Figure 6. Fitting of the Weibull distribution model for the fixation probability of amino acid 

mutational variants based on the evolutionary mutational cost (EMC) x . Panels A to C, 

provide following: 1) weights used to compute codon norms according to Eq. 5, 2) subset of 

genetic-code cubes where the estimation was performed, 3) histogram, exponential decay and 

Weibull distribution for the corresponding EMC x , 4) probability plots, and 5) results of 

Monte Carlo (MC) Kolmogorov–Smirnov (KS) test. There is not enough reason to reject the 

null hypothesis: Weibull distribution (p-value >> 0.05). These analyses (and others, e.g., 

different options for MC-KS or MC-Kuiper goodness-of-fit) can be verified in CDF-2 given in 

Appendix C.  
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Assuming 











N
i i

i
i

x

x
q

1

1





 and after replacing iq in Eq. A6, we have 

  


 N
i ix

N
l 11 1 

 (9), which is the maximum likelihood estimator of the parameter  l  

from the Weibull probability distribution given in Eq. A12. Notice that 

     ii qlogNlogNqlog 222 1  , i.e.,  iNqlog2  is the difference between two entropies 

corresponding to a mutational event with probability distribution N1 :  NlogSU 12  and 

that one with probability iq : iQ qlogS 2 . In other words,   QUi SSNqlog 2 expresses the 

uncertainty reduction or the information gain for a mutational event with cost ix and success 

probability iq  in respect to the event with uniform chance over N trials. Hence, according with 

Eq. 8 the observation of 1  in a gene population indicates a gain of information. Results 

presented in Fig. 7 suggests that the fixation of new mutational variants in natural gene 

populations is governed by a stochastic process that leads to gain of information. 

 

 
Figure 7. Kernel density plots for the   and   parameters from Eq. 7 estimated on 105 

alignments of different sets of homologous proteins from distinct species. For each protein 

sequence alignment two codon norms were derived from Eq. 5 by using two sets of weights. 

A genetic algorithm from the R package GA [17] was used to approach the weights that 

maximize the gof of Eq. 7 (minimization of Kolmogorov–Smirnov statistic). The areas under 

the curve in blue cover the regions between the 5% and 95% percentiles, i.e., 90% of the 

estimated   parameters have values between 1.14 and 1.54, while 90% of the   parameters 

have values between 4.83 and 10.71. 

4.1 Application to immunoescape variants prediction 

The analytical procedure described in the last section has a straightforward application to 

predict immunoescape mutational variants originated in populations of pathogenic 

microorganisms and viruses and to improve de novo vaccine design. As suggested in Fig. 1, the 

immune epitopes of interest are found in the subset of mutational variants with high probability 
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of fixation, provided that the Weibull model is built on a set of protein multiple sequence 

alignment of mutational variants fixed in a given organismal population. 

A more complex analysis involves the examination of functional or structural 

dependences between proteins.  We should check if the immunoescape epitopes from the 

protein under scrutiny are independents or not with respect to some mutational variants of 

another essential protein required for the adaptation and propagation of the pathogen in the host 

(recall that lack of correlation does not necessarily implies independence). Herein, an example 

with HIV proteins Env and Gag is given.  Currently is not possible to track the pairwise 

association of simultaneous mutations in situ of Env and Gag proteins in patients. However, it 

is possible to track the sum of EMC values from protein sequences isolated from the same 

patient (i.e., to match the sum of EMC pairwise values from Env and Gag proteins isolated from 

the same patient). Results indicate that the sum of EMC values in both proteins, Env and Gag, 

has bimodal probability density (Fig. 8A to D).  In addition, the sum of EMCs from Env is 

statistically significant correlated with the sum of EMCs from Gag with a Kendal’s tau value 

of 0.52.  This correlation is emphasized by the joint probability density of these variables, which 

implies that the total evolutionary mutational cost estimated for these proteins are not 

independent (Fig. 8E to F). This result is consistent with a published report that HIV-1 evolution 

in Gag and Env are highly correlated [18]. 

In addition, the joint probability density of these variables indicates the grouping of the 

1051 HIV mutational variants under analysis into two classes: i) those with simultaneous high 

values of total EMC in Env and Gag, and ii) those with simultaneous low EMC cost.  The 

unsupervised classification into these two classes is easily detected by applying K-means 

algorithm implemented in R [19], which was used to derive the mixture of probability densities 

of McKay's bivariate gamma distribution model presented in Fig. 8F. It turned out that 661 

(63%) of the 1051 HIV mutational variants under analysis are classified in the group with 

simultaneous highest values of total EMC. 
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Figure 8. Density plots for sum of evolutionary mutational cost (EMC) estimated for HIV Env 

and Gag proteins. A and C, based on kernel density estimations. B and D, based on mixture of 

gamma distributions estimated in R [19]. E, based on 2D kernel density estimation performed 

with the R package KernSmooth [20]. F, based on mixtures of McKay's bivariate gamma 

distributions estimated by maximum likelihood estimation using the R package VGAM [21,22]. 

The 3D graphics were built with the R package plot3D [23]. The analyses are based on multiple 

aligned sequences of Env and Gag proteins taken from 1052 HIV mutational variants. That is, 

in panels E and F, each experimental pair of coordinate in the plane xy corresponds to the 

estimations of the sums of EMCs for the Env and Gag proteins found in a HIV mutational 

variant isolated from one patient. 

5 Discussion 

The symmetric group of the genetic-code cubes  ,GC  integrates the studies of genetic code 

architectures based on a single genetic code cube. Each subgroup of  ,GC  and left cosets of 

its dihedral and Klein groups are associated to fundamental physicochemical properties of the 

DNA bases. That is, the ad hoc and intuitive classification based on IUPAC codes for 
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nucleotides [7] that was introduced in reference [5] is now mathematically derived. Results 

indicate that the multiple facets linking the genetic code architectures to the molecular 

evolutionary process [2,8] are not merely a set of simple observations derived from human 

curiosity, but an objective set of quantitative relationships physicochemically determined, 

which can be mathematically described and integrated in the symmetric group of the genetic-

code cubes  ,GC . 

Results also indicate that for group  ,GC , and most of its subgroups and cosets, the PCA 

performed as described in section 3 leads to a strong classification of the amino acids into four 

groups. Furthermore, there is a one-to-one correspondence between amino acid classification 

based on PCA and the four vertical planes of the genetic-code cubes (Fig. 3 and CDF-1, 

Appendix C). This result implies that the current genetic-code architecture is not the result of a 

random assignment of codons to amino acids, which is consistent with current beliefs that the 

genetic code architecture is optimized to minimize the transcriptional and translational errors 

[14–16]. 

Amino-acid PC-scales derived from the PCA of codon norms on cubes from different 

subgroup or cosets from  ,GC  are correlated with physicochemical indexes reported by 

studies on protein folding and protein interactions. Amino-acid PC-scales derived for the 

dihedral group SW and its Klein four group  ,ACGU
KSW  are strongly correlated with the amino 

acid hydrophobic scales (Fig. 3). Amino acid hydrophobicity has been considered one of the 

most important physicochemical characteristics of amino acids and the major driving force of 

protein folding [13,24]. This result suggests the existence of a link between the genetic code 

architecture and a major driving force in protein folding, the hydrophobic effects. The results 

presented in Fig. 3 (and in the CDF-2, Appendix C) indicate that the information carried by 

these physicochemical properties are already encoded in the genetic-code architecture and 

quantitatively unveiled in the symmetric group of the genetic-code cubes. These correlations, 

however, are only unveiled in cubes inserted in 3R  throughout bijections    321ACGU ,, xxxX  . 

Results support the hypothesis that amino-acid PC-scales are linked to the evolutionary 

cost of the new mutational variants fixed in the organismal populations. For each gene set or 

subset, it is possible to fit a Weibull distribution model that predicts the amino acid mutation 

probability based on the variation the EMC x . The molecular evolutionary process is an 

optimization process that ultimately leads to species adaptation and survival. In mathematical 

terms, this optimization process can be quantitatively expressed by the set of weights iw from 

Eq. 5 that maximize the gof of the empirical cumulative distribution values of the cost x . In 
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consequence, under the hypothesis expressed by Eq. 7, amino-acid PC-scales derived through 

an optimization algorithm carry information on the molecular evolutionary process, which is 

specific for each gene population. Therefore, theses scales simultaneously carry the 

physicochemical information inherited from the encoded genetic code-cube architectures and 

the evolutionary one derived from the phylogenetic development of the gene population under 

study. So, the physicochemical information encoded in the genetic code-cube architectures just 

provides a general deterministic framework modulated/enriched by the action of the 

evolutionary pressure. On this scenario, the stochastic nature of the mutational process leads to 

consider the evolutionary process as a stochastic deterministic process [25,26]. 

As suggested in Fig 6 (and the CDF-2, Appendix C), the mutational process at different 

sets of homologous genes will be described by different amino-acid PC-scales and, 

consequently, will fit different Weibull distribution models given by Eqs. 7 (A12).  This 

observation would suggest that the evolutionary pressure on each gene induces specific adaptive 

evolutionary paths, conserving molecular biophysical and biochemical features specific for the 

biological function of each encoded protein.  The adaptive evolutionary paths lead to a gain of 

information in the population of 102 sets of homologous proteins analyzed (Fig. 7), which is 

quantitatively expressed by the parameter   of Weibull distribution with values 1 and 

small variation around 1.35. In consequence, the ratio of the information gained to the 

normalized evolutionary cost  lxi   tend to be nearly constants (with small variation) and 

independent of the protein sequence (within the limits of the experimental and numerical errors, 

see Eq. 8, section 4). It is worthy to notice that the results presented in Fig. 7 can be improved, 

since these estimations depend on optimization of the sets of weights and on the selection of 

the best subset of genetic-code cubes that better describe the evolutionary process in each set 

of homologous protein under study. Such a study in hundreds or thousands alignments sets of 

homologous proteins is not impossible but computationally expensive. 

The estimated Weibull model will expose the mutational events with high and low 

probabilities of fixation in the given gene population. This is a valuable information to predict 

immunoescape epitope variants originated in populations of pathogenic microorganisms and 

viruses and to improve de novo vaccine design. For example, attenuated vaccines against 

pathogenic microorganisms can be designed based on the immunogenicity of exposed 

immunoescape epitopes to the host.  To facilitate this design, we could simply estimate the 

probability of fixation of such exposed immune-epitopes. 
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An immunoescape epitope carried by an external protein could have a relativity high 

probability of fixation, but if the mutational events are not independent from mutational variants 

found, for example, in an inner essential pathogen protein, then the overall fixation success will 

be determined by the joint probabilities for the mutational variants found in the immune epitope 

and in the essential pathogen proteins.  This is the case for HIV Gag and Env proteins presented 

in Fig 8, which are consistent with published report [18]. Hence, if the mutational variants in 

the proteins under scrutiny are not independent, then a low joint probability of fixation will 

indicate that the vaccine candidate might not be needed, since a natural strain carrying the 

immunoescape epitope has low probability of adaptation in the host. Such a joint probability 

can be estimated by applying the state of the art in density estimation (as illustrated in Fig. 8) 

and copula distribution [27].  The in-silico prediction of immunoescape mutational variants as 

suggested here is feasible, can save time, and it would considerably reduce the cost of vaccine 

clinical trials. 

6 Concluding remarks 

The derivation of the algebraic structure of the symmetric group of the genetic-code cubes 

 ,GC  is given in the manuscript. A deep complexity of the quantitative relationships between 

codons and their encoded amino acids is unveiled by group  ,GC . These quantitative 

relationships expressed by group  ,GC , its subgroups and cosets were quantitatively 

manifested in the amino-acid PC-scales derived from codon norms. These scales are strongly 

correlated with the physicochemical indexes reported by studies on protein folding and protein 

interactions. 

The effect of the genetic code architecture on the evolutionary process was exposed by a 

Weibull distribution model inferred for the mutational process. For a set of homologous protein 

different amino PC-scales can be estimated in different subsets of genetic code-cubes through 

the application of an optimization algorithm. The size of the set of all possible amino-acid PC-

scales is large enough to reflect the huge diversity of evolutionary strategies found in natural 

encoded proteins. A small variation of the estimated values of  parameter from Weibull 

distribution would suggest that, in the gene populations under scrutiny, the ratio of the 

information gained to the normalized evolutionary cost  lxi   tend to be nearly constants 

(with small variation) and independent of the protein sequence. 

The result presented here would be particularly relevant to predict immunoescape epitope 

variants originated in populations of pathogenic microorganisms and viruses. This knowledge 
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would improve the lifespan of de novo vaccines as well as the neutralization of potential 

superbugs. Current results indicate that, on thermodynamic basis, a stochastic deterministic 

mutational process [25,26] is constrained by the genetic code architecture. 

Appendix A. The extended genetic–code cube 

Analysis of the primordial chemistry led to the development of an algebraic structure for a 

plausible ancestral genetic code [2]. This code is founded on the plausible existence of one or 

more nucleotide bases in the primeval DNA protein-coding regions with nonspecific (non-

Watson-Crick) base-pairings. The existence of these ancestral nucleotide bases is likely the 

simplest explanation to overcome the difficulties for the origin of life discussed in references 

[2,28]. Prebiotic chemistry studies suggest that the current DNA bases could have populated 

the early terrestrial environment together with other nucleotide bases [29–35]. Thus, it is 

feasible that the standard genetic code could have been derived from an ancestral code 

architecture with five or more bases [2]. A larger DNA alphabet with geologically stable bases 

would ensure thermal stability of the DNA molecule in the inhospitable prebiotic landscape 

[2,28]. Consistently with last hypothesis, the current DNA methylation could be considered a 

relic footprint left by ancient DNA molecules. It was recently shown that most methylation 

changes occurring within cells are likely induced by thermal fluctuations to ensure thermal 

stability of the DNA molecules, seemingly explainable by statistical mechanics laws [36]. 

Perhaps the more significant role of the fifth base in the current DNA molecules is played by 

the epigenetics role of cytosine DNA methylation (CDM). CDM patterning represents one 

feature of the epigenome that is highly responsive to environmental stress and associates with 

transgenerational adaptation in plants and in animals [36]. 

The natural extension of the DNA alphabet permitted the definition of a genetic code 

algebraic structure over an extended triplet set (see Table 2). In particular, a Galois field (GF(5)) 

was defined over the set of an extended RNA alphabet B = {D, A, C, G, U}, where the letter D 

symbolizes one (or more) alternative hypothetical base(s) or a dummy variable with non-

specific pairings in primeval RNA and DNA molecules (Table A1) [2]. Based on the Watson-

Crick DNA base-pairing and the codon order according to the evolutionary importance of their 

bases, it was shown that the extended genetic code is mathematically equivalent to a cube 

inserted in 
3R (see Figure 1) [2].  
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Table A1. Extended base-triplet set for the genetic code cube ACGU 
  No D No A aa1  No C  aa No G aa  No U aa    

D 

0 DDD 25 DAD  50 DCD  75 DGD  100 DUD   D 

1 DDA 26 DAA  51 DCA  76 DGA  101 DUA   A 

2 DDC 27 DAC  52 DCC  77 DGC  102 DUC   C 

3 DDG 28 DAG  53 DCG  78 DGG  103 DUG   G 

4 DDU 29 DAU  54 DCU  79 DGU  104 DUU   U 

A 

5 ADD 30 AAD  55 ACD  80 AGD  105 AUD   D 

6 ADA 31 AAA K 56 ACA T 81 AGA R 106 AUA I A 

7 ADC 32 AAC N 57 ACC T 82 AGC S 107 AUC I C 

8 ADG 33 AAG K 58 ACG T 83 AGG R 108 AUG M G 

9 ADU 34 AAU N 59 ACU T 84 AGU S 109 AUU I U 

C 

10 CDD 35 CAD  60 CCD  85 CGD  110 CUD   D 

11 CDA 36 CAA Q 61 CCA P 86 CGA R 111 CUA L A 

12 CDC 37 CAC H 62 CCC P 87 CGC R 112 CUC L C 

13 CDG 38 CAG Q 63 CCG P 88 CGG R 113 CUG L G 

14 CDU 39 CAU H 64 CCU P 89 CGU R 114 CUU L U 

G 

15 GDD 40 GAD  65 GCD  90 GGD  115 GUD   D 

16 GDA 41 GAA E 66 GCA A 91 GGA G 116 GUA V A 

17 GDC 42 GAC D 67 GCC A 92 GGC G 117 GUC V C 

18 GDG 43 Gag E 68 GCG A 93 GGG G 118 GUG V G 

19 GDU 44 GAU D 69 GCU A 94 GGU G 119 GUU V U 

U 

20 UDD 45 UAD  70 UCD  95 UGD  120 UUD   D 

21 UDA 46 UAA Stop 71 UCA S 96 UGA Stop 121 UUA L A 

22 UDC 47 UAC Y 72 UCC S 97 UGC C 122 UUC F C 

23 UDG 48 UAG Stop 73 UCG S 98 UGG W 123 UUG L G 

24 UDU 49 UAU Y 74 UCU S 99 UGU C 124 UUU F U 

 

Consistently with, but independently from, the organic chemistry experiments that 

support the necessity of five or more DNA bases in the primordial genetic system [28], the 

formal development of the algebraic theory necessarily leads to an extension of the DNA base 

alphabet. The introduction of an alternative hypothetical base D, as a variable in the 

mathematical model, leds to consistent phylogenetic results based on a weighted Manhattan 

distance [8]. It was demonstrated that the distance between codons is mathematically equivalent 

to the codon order according to the evolutionary importance of their DNA nucleotide bases [8]. 

The relationship between the genetic code architecture (expressed in the genetic-code cube) and 

the evolutionary mutational event have been reported [2]. Consistent phylogenetic analysis of 

DNA protein-coding regions can be obtained based on the genetic-code cube inserted in the 3D 

space 
3R . 
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Appendix B. Classification of the 24 algebraic representations of 

the genetic code 

Each DNA/RNA base can be classified into three main classes according to three criteria: 

number of hydrogen bonds (strong-weak), chemical type (purine-pyrimidine), and chemical 

groups (amino versus keto) [7]. Each criterion produces a partition of the set of bases [37]: 

1) According to the number of hydrogen bonds (on DNA/RNA double helix): strong 

S={C,G} (three hydrogen bonds) and weak W={A,U} (two hydrogen bonds). 

2) According to the chemical type: purines R={A, G} and pyrimidines Y={C,U}. 

3) According to the presence of amino or keto groups on the base rings: amino M={C,A} 

and keto K={G,U}. 

The ordered sets for each partition criterion are: 

1) strong-weak (SW): {A,C,G,U}, {A,G,C,U}, {U,C,GA}, {U,G,C,A}, {C,A,U,G}, 

{C,U,A,G}, {G,A,U,C}, and {G,U,A,C}. 

2) purine-pyrimidine (YR): {A,C,U,G}, {A,U,C,G}, {G,U,C,A}, {G,C,U,A}, {C,A,G,U}, 

{U,A,G,C}, {U,G,A,C}, and {C,G,A,U}. 

3) amino-keto (MK): {A,G,U,C}, {A,U,G,C}, {C,U,G,A}, {C,G,U,A}, {G,C,A,U}, 

{G,A,C,U}, {U,A,C,G}, and {U,C,A,G}. 

The 24 ordered base sets can be used to derive 24 ordered codon sets (GC), and 24 possible 

cubes for the standard genetic code [5]. For brevity, the set of 24 genetic-code cubes is denoted 

as  MKYRSWGC ,, . Codon ordering in these sets is not arbitrary, but sorted out according 

to the evolutionary importance of base positions. Herein, we aim to show that a group structure 

 ,GC  isomorphic to the well-known symmetric group S4 can be defined on biophysical basis 

on the set GC.  

Appendix C. Supporting material. Computational document 

format files 

Computational document format (CDF) with graphic user interfaces to facilitate the 

comprehension of the theory exposed in the main text, as well as, its applications are provided 

as supplemental materials. A CDF is a standalone computable document created by using the 

software Wolfram Mathematica. The interaction with the CDF requires the installation of the 

software CDF player, which is freely available at http://www.wolfram.com/cdf/. A 
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compressed zip file containing CDFs is provided at: https://drive.google.com/open?id=0B-

4gzFH012dqc3NGOWl3R2s3a3c.  

 

Inside the zip file, readers will find the files: 

1) CDF-1: IntroductionToZ5GeneticCodeVectorSpace.cdf 

This CDF contains an interactive didactic introduction to the 5Z vector space B3 over 

the field  •,,5Z  and to the general mathematical biology background used in this 

manuscript, as well as, tools to verify all the algebraic claims presented in the main text. 

Since the genetic-code algebras are found in the intersection of molecular biology and 

abstract algebras, I encourage the readers not familiar with this subject to see this CDF to 

get a fast and didactic introduction to the subject. 

2) CDF-2: Genetic-Code-Scales_of_Amino-Acids.cdf 

This is a CDF containing an interactive graphical user interface tool to generate genetic 

code based PC-scales. The subjacent sets from the subgroups of the symmetric group of 

genetic-code cubes are given to explore different options to generate PC scales of amino 

acids correlated with physicochemical properties found in AAindex database [12]. The 

analysis for six protein sequence alignments is provided as well: 1) Repeat domain of breast 

cancer type 2 susceptibility protein, 2) Oxaloacetate decarboxylase, gamma chain, 3) p53 

DNA binding domain, 4) Photosynthesis system II assembly factor YCF48 (PSII BNR 

repeat protein), 5) Influenza HA protein, 6) ENV and 7) GAG proteins from HIV1. 

3) GeneticCodeScales.wl. File required to run “Genetic-Code-Scales_of_Amino-Acids.cdf”. 

4) GeneticCodePC-scales&Weibull-fit_snapshots.pdf 

 

Appendix D. Deduction of the Weibull distribution for EMC 

In a parsimony model framework, we would expect that mutational events with high x values 

should be less frequent than those with low values. In particular, if x is linked to the 

thermodynamics of organismal populations, then a natural statistical mechanical assumption 

considers the probability density function (PDF)  xf   of x  proportional to the Boltzmann 

factor 
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(A2), where     Tkll B   is a scaling parameter that 

depends on the Boltzmann constant Bk , the absolute temperature T and a proportionally 
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constant  l  that depends on the population size. The Boltzmann factor, 
  





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

 


l

x

e


 reveals the 

relative probability of an arrangement for a given evolutionary cost.  That is, on average, after 

a considerable number N of mutational events, the proportion of mutations with at least certain 

mutational cost x  is constant and equal to the Boltzmann factor given by the formula:
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

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
l

x

e
N

n 
, where n is the number of particles with mutational cost above x . 

Since each mutational event is independent of the previous event and in a very small 

interval of time the chance of two or more mutations is negligible, mutational events usually 

are modelled by a Poisson process [38]. That is, given a Poisson process, the probability that 

an evolutionary cost x  can be observed exactly n times in N mutational events is given by the 

binomial distribution:  
 

  nNn qq
nNn

N
qNnB
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
 1

!!
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, (A3), where q is the probability of 

mutation success. Since it is expected that, under normal conditions, high values of x  have 

low success probability q ( 10  q ), it can be estimated subject to the constraint 
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1  (A5); then    Nlnlc  . Thus, it can be assumed that    1



 lxNq

(A6). 

After large enough number of mutational events, the probability that an evolutionary cost 

x  can be observed exactly n times in N mutational events approaches Poisson distribution

  
  e

n
nP

n

!
(A7), where   is the expected number of times that an evolutionary cost x  

can be observed in N mutational events, i.e.,    1



 lx (A8). Next, the probability that a 

cost x would be observed at least one time in N mutational events will be     eP 1 (A9). 

It should then be expected that mutational events with high probabilities  1P  will be 

-557-



observed more frequently, i.e.,     exf (A10). As a result, we can write 
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