Some Inequalities for General Sum-Connectivity Index

I. Ž. Milovanović, E. I. Milovanović, M. Matejić

Faculty of Electronic Engineering, Beogradska 14, P.O.Box 73, 18000 Niš, Serbia
\{igor, ema\}@elfak.ni.ac.rs
(Received February 17, 2017)

Abstract

Let G be a simple connected graph with n vertices and m edges. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$ and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq \cdots \geq d\left(e_{m}\right)>0$ sequences of vertex and edge degrees, respectively. Adjacency of the vertices i and j is denoted by $i \sim j$. A vertex-degree topological index, referred to as general sum-connectivity index, is defined as $\chi_{\alpha}=\chi_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}$, where α is an arbitrary real number. Lower and upper bounds for χ_{α} are obtained. We also prove one generalization of discrete Kantorovich inequality.

1 Introduction

Let $G=(V, E), V=\{1,2, \ldots, n\}, E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a simple connected graph with n vertices and m edges. Denote by $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$ and $d\left(e_{1}\right) \geq d\left(e_{2}\right) \geq$ $\cdots \geq d\left(e_{m}\right)>0$ sequences of vertex and edge degrees, respectively. If vertices i and j are adjacent, we denote it as $i \sim j$. In addition, we use the following notation: $\Delta=d_{1}$, $\delta=d_{n}, \Delta_{e}=d\left(e_{1}\right)+2, \delta_{e}=d\left(e_{m}\right)+2$. As usual, $L(G)$ denotes a line graph of G.

Gutman and Trinajstić [1] introduced two vertex degree topological indices, named as the first and the second Zagreb index. These are defined as

$$
M_{1}=M_{1}(G)=\sum_{i=1}^{n} d_{i}^{2} \quad \text { and } \quad M_{2}=M_{2}(G)=\sum_{i \sim j} d_{i} d_{j} .
$$

The first Zagreb index can be also expressed as (see [23])

$$
\begin{equation*}
M_{1}=M_{1}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right) . \tag{1}
\end{equation*}
$$

Details on the mathematical theory of Zagreb indices can be found in [2-6, 21, 24].
Recently [7], a graph invariant similar to M_{1} came into the focus of attention, defined as

$$
F=F(G)=\sum_{i=1}^{n} d_{i}^{3},
$$

which for historical reasons [3] was named forgotten topological index. It satisfies the identities

$$
\begin{equation*}
F=\sum_{i \sim j}\left(d_{i}^{2}+d_{j}^{2}\right)=\sum_{i=1}^{m}\left[d\left(e_{i}\right)+2\right]^{2}-2 M_{2} . \tag{2}
\end{equation*}
$$

Another degree-based graph invariant was introduced in [8], and named general sumconnectivity index, χ_{α}. It is defined as

$$
\begin{equation*}
\chi_{\alpha}=\chi_{\alpha}(G)=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}, \tag{3}
\end{equation*}
$$

where α is an arbitrary real number. More on mathematical properties of this index can be found in [9-14].

In this paper we are concerned with upper and lower bounds for χ_{α}. Also, we present one generalization of discrete Kantorovich inequality, and show how it can be used to obtain upper bounds for M_{1}. The derived inequality is best possible in its class.

2 Preliminaries

In this section we recall some results for χ_{α}, and state a few analytical inequalities needed for our work.

In [10] (see also [9]) the following was proved:
Lemma 1. [10]. Let G be a nontrivial connected graph with maximum degree Δ and minimum degree δ, and $\alpha \in \mathbb{R}$. Then

$$
\begin{array}{ll}
2^{\alpha-1} \Delta^{\alpha-1} M_{1} \leq \chi_{\alpha} \leq 2^{\alpha-1} \delta^{\alpha-1} M_{1}, & \text { if } \alpha<1 \\
2^{\alpha-1} \delta^{\alpha-1} M_{1} \leq \chi_{\alpha} \leq 2^{\alpha-1} \Delta^{\alpha-1} M_{1}, & \text { if } \alpha \geq 1 \tag{5}
\end{array}
$$

The equality holds in each inequality for some $\alpha \neq 1$ if and only if G is regular.

In [8] upper and lower bounds for $\chi_{\alpha}(G)$ in terms of invariant M_{1} and graph parameter m were obtained.

Lemma 2. [8]. Let G be a graph with $m \geq 1$ edges. If $0<\alpha<1$, then

$$
\begin{equation*}
\chi_{\alpha}(G) \leq M_{1}^{\alpha} m^{1-\alpha} \tag{6}
\end{equation*}
$$

and if $\alpha<0$ or $\alpha>1$, then

$$
\begin{equation*}
\chi_{\alpha}(G) \geq M_{1}^{\alpha} m^{1-\alpha} \tag{7}
\end{equation*}
$$

Equality holds if and only if $d_{i}+d_{j}$ is constant, for any edge $\{i, j\} \in E$.
For the real number sequences the following result was proved in [15] (see also [16]):
Lemma 3. [15]. Let $p=\left(p_{i}\right)$, and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be two positive real number sequences with the properties

$$
\sum_{i=1}^{m} p_{i}=1 \quad \text { and } \quad 0<r \leq a_{i} \leq R<+\infty
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i}+r R \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq r+R \tag{8}
\end{equation*}
$$

with equality if and only if for some $k, 1 \leq k \leq m$, holds $R=a_{1}=\cdots=a_{k} \geq a_{k+1}=$ $\cdots=a_{m}=r$.

In [19] the following was proved:
Lemma 4. [19]. Let $q=\left(q_{i}\right)$ be a sequence of positive real numbers, and $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$ sequences of real numbers with the properties

$$
0<r_{1} \leq a_{i} \leq R_{1}<+\infty \quad \text { and } \quad 0<r_{2} \leq b_{i} \leq R_{2}<+\infty
$$

$i=1,2, \ldots, m$. Denote with S a subset of $I_{m}=\{1,2, \ldots, m\}$ which minimizes the expression

$$
\left|\sum_{i \in S} q_{i}-\frac{1}{2} \sum_{i=1}^{m} q_{i}\right|
$$

Then

$$
\begin{equation*}
\left|\sum_{i=1}^{m} q_{i} \sum_{i=1}^{m} q_{i} a_{i} b_{i}-\sum_{i=1}^{m} q_{i} a_{i} \sum_{i=1}^{m} q_{i} b_{i}\right| \leq\left(R_{1}-r_{1}\right)\left(R_{2}-r_{2}\right) \sum_{i \in S} q_{i}\left(\sum_{i=1}^{m} q_{i}-\sum_{i \in S} q_{i}\right) . \tag{9}
\end{equation*}
$$

In the following lemma we recall well-known Chebyshev inequality (see for example [16]) which will be used later.

Lemma 5. Let $q=\left(q_{i}\right)$ be a sequence of positive real numbers, and $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$, $i=1,2, \ldots, m$, sequences of non-negative real numbers of similar monotonicity. Then

$$
\begin{equation*}
\sum_{i=1}^{m} q_{i} \sum_{i=1}^{m} q_{i} a_{i} b_{i} \geq \sum_{i=1}^{m} q_{i} a_{i} \sum_{i=1}^{m} q_{i} b_{i} \tag{10}
\end{equation*}
$$

If sequences $a=\left(a_{i}\right)$ and $b=\left(b_{i}\right)$ has opposite monotonicity, then the sense of (10) reverses.

3 Main result

3.1 A new inequality for real number sequences

In this section we prove a new inequality for real number sequences.
Theorem 1. Let $p=\left(p_{i}\right)$ and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be real number sequences, with $a=\left(a_{i}\right)$ being monotonic and $0<r \leq a_{i} \leq R<+\infty$. Let S be a subset of $I_{m}=\{1,2, \ldots, m\}$ which minimizes the expression

$$
\left|\sum_{i \in S} p_{i}-\frac{1}{2} \sum_{i=1}^{m} p_{i}\right|
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq\left(1+\gamma(S) \frac{(R-r)^{2}}{r R}\right)\left(\sum_{i=1}^{m} p_{i}\right)^{2} \tag{11}
\end{equation*}
$$

where

$$
\gamma(S)=\frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\left(1-\frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\right) .
$$

Equality is attained if $R=a_{1}=\cdots=a_{m}=r$.
Proof. For $q_{i}=\frac{p_{i}}{\sum_{i=1}^{m} p_{i}}, a_{i}=a_{i}, b_{i}=\frac{1}{a_{i}}, R_{1}=R, r_{1}=r, R_{2}=\frac{1}{r}$ and $r_{2}=\frac{1}{R}$, $i=1,2, \ldots, m$, the inequality (9) becomes

$$
\begin{equation*}
\left|1-\frac{\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}}}{\left(\sum_{i=1}^{m} p_{i}\right)^{2}}\right| \leq(R-r)\left(\frac{1}{r}-\frac{1}{R}\right) \frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\left(1-\frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\right) . \tag{12}
\end{equation*}
$$

For $q_{i}=\frac{p_{i}}{\sum_{i=1}^{m} p_{i}}, a_{i}=a_{i}, b_{i}=\frac{1}{a_{i}}, i=1,2, \ldots, m$, the inequality (10) transforms into

$$
\begin{equation*}
1 \leq \frac{\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}}}{\left(\sum_{i=1}^{m} p_{i}\right)^{2}} \tag{13}
\end{equation*}
$$

Combining (12) and (13), gives

$$
\frac{\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}}}{\left(\sum_{i=1}^{m} p_{i}\right)^{2}} \leq 1+\frac{(R-r)^{2}}{r R} \cdot \frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\left(1-\frac{\sum_{i \in S} p_{i}}{\sum_{i=1}^{m} p_{i}}\right)
$$

wherefrom we arrive at (11).
Remark 1. The inequality (11) is a revision of the inequality

$$
\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq \frac{\left(\left\lfloor\frac{m}{2}\right\rfloor R+\left\lfloor\frac{m+1}{2}\right\rfloor r\right)\left(\left\lfloor\frac{m+1}{2}\right\rfloor R+\left\lfloor\frac{m}{2}\right\rfloor r\right)}{r R m^{2}}
$$

given in [17]. The above inequality is not always correct. It is correct when $p_{i}=\frac{1}{m}$, $i=1,2 \ldots, m$. However, if $p_{i} \neq \frac{1}{m}$ and $p_{1}+p_{2}+\cdots+p_{m}=1$, the above inequality might be incorrect. Thus, for example for $m=5, p_{1}=p_{2}=\frac{1}{4}, p_{3}=p_{4}=p_{5}=\frac{1}{6}, a_{1}=a_{2}=3$, $a_{3}=a_{4}=a_{5}=2, r=2$ and $R=3$, one obtains that $625 \leq 624$, which is obviously wrong.

Since $\gamma(S) \leq \frac{1}{4}$ for each $S \subset I_{m}$, the following corollary of Theorem 1 is valid.
Corollary 1. Let $p=\left(p_{i}\right)$, be a sequence of positive real numbers and $a=\left(a_{i}\right), i=$ $1,2, \ldots, m$, a monotone sequence of positive real numbers, with the properties

$$
p_{1}+\cdots+p_{m}=1, \quad 0<r \leq a_{i} \leq R<+\infty .
$$

Then

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i} \sum_{i=1}^{m} \frac{p_{i}}{a_{i}} \leq \frac{(R+r)^{2}}{4 r R} \tag{14}
\end{equation*}
$$

Remark 2. The inequality (14) (proved in [20]) is a generalization of Kantorovich inequality (see for example [16]).

For $p_{i}=1, i=1,2, \ldots, m$, the following corollary of Theorem 1 holds:

Corollary 2. Let $a=\left(a_{i}\right), i=1,2, \ldots, m$, be a real number sequence with the property $0<r \leq a_{i} \leq R<+\infty$. Then

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} \sum_{i=1}^{m} \frac{1}{a_{i}} \leq m^{2}\left(1+\alpha(m) \frac{(R-r)^{2}}{r R}\right) \tag{15}
\end{equation*}
$$

where

$$
\alpha(m)=\frac{1}{4}\left(1-\frac{(-1)^{m+1}+1}{2 m^{2}}\right) .
$$

Remark 3. The inequality (15) was proved in [17]. Since $\alpha(m) \leq \frac{1}{4}$, it is a generalization of the inequality

$$
\sum_{i=1}^{m} a_{i} \sum_{i=1}^{m} \frac{1}{a_{i}} \leq \frac{m^{2}}{4} \cdot \frac{(R+r)^{2}}{r R}
$$

proved in [22].

3.2 Some inequalities for general sum-connectivity index

In what follows we derive lower and upper bounds for the degree-based topological index χ_{α} in terms of topological indices M_{1}, M_{2} and F and graph parameters m, Δ_{e} and δ_{e}.

Theorem 2. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then, for any $\alpha \geq 2$,

$$
\begin{equation*}
\left(F+2 M_{2}\right) \delta_{e}^{\alpha-2} \leq \chi_{\alpha} \leq\left(F+2 M_{2}\right) \Delta_{e}^{\alpha-2} . \tag{16}
\end{equation*}
$$

If $\alpha \geq 1$, then

$$
\begin{equation*}
M_{1} \delta_{e}^{\alpha-1} \leq \chi_{\alpha} \leq M_{1} \Delta_{e}^{\alpha-1} \tag{17}
\end{equation*}
$$

If $\alpha \geq 0$, then

$$
m \delta_{e}^{\alpha} \leq \chi_{\alpha} \leq m \Delta_{e}^{\alpha}
$$

Equalities in the above inequalities are attained, respectively, for $\alpha=2, \alpha=1, \alpha=0$, or if $L(G)$ is regular.

When $\alpha \leq 2, \alpha \leq 1$ and $\alpha \leq 0$, respectively, the opposite inequalities are valid.
Proof. Let $e=\{i, j\}$ be an arbitrary edge of graph G. Then $d(e)=d_{i}+d_{j}-2$. According to (3), topological index χ_{α} can be computed from the following expression

$$
\begin{equation*}
\chi_{\alpha}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}, \quad \chi_{0}=m . \tag{18}
\end{equation*}
$$

From (3) follows

$$
F+2 M_{2}=\chi_{2}=\sum_{i \sim j}\left(d_{i}+d_{j}\right)^{2}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2} .
$$

Since

$$
\chi_{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2}\left(d\left(e_{i}\right)+2\right)^{\alpha-2},
$$

for $\alpha \geq 2$ holds

$$
\delta_{e}^{\alpha-2} \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2} \leq \chi_{\alpha} \leq \Delta_{e}^{\alpha-2} \sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2}
$$

i.e.

$$
\left(F+2 M_{2}\right) \delta_{e}^{\alpha-2} \leq \chi_{\alpha} \leq\left(F+2 M_{2}\right) \Delta_{e}^{\alpha-2} .
$$

By a similar procedure, the remaining inequalities in Theorem 2 can be proved.
Remark 4. Let α and β be arbitrary real numbers such that $\alpha-\beta \geq 0$. Then, according to

$$
\chi_{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}=\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\beta}\left(d\left(e_{i}\right)+2\right)^{\alpha-\beta}
$$

follows that

$$
\begin{equation*}
\delta_{e}^{\alpha-\beta} \chi_{\beta} \leq \chi_{\alpha} \leq \Delta_{e}^{\alpha-\beta} \chi_{\beta}, \tag{19}
\end{equation*}
$$

with equality if and only if $\alpha=\beta$, or $L(G)$ is regular.
If $\alpha-\beta \leq 0$, the opposite inequality is valid.
The question is for which values of parameter β the inequality (19) has practical importance. For $\beta=0, \beta=1$ and $\beta=2$ it was considered in Theorem 2. Since

$$
\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{3}=E F+6 F+12 M_{2}-12 M_{1}+8 m
$$

for $\alpha \geq 3$ holds

$$
\delta_{e}^{\alpha-3}\left(E F+6 F+12 M_{2}-12 M_{1}+8 m\right) \leq \chi_{\alpha} \leq \Delta_{e}^{\alpha-3}\left(E F+6 F+12 M_{2}-12 M_{1}+8 m\right),
$$

where EF is the reformulated forgotten topological index. When $\alpha \leq 3$, the opposite inequality is valid. Obviously, these inequalities depend on a large number of graph invariants.

Another question is how would (19) look like if $\beta \geq 4$ and its practical usability. For $\alpha=-\frac{1}{2}$ and $\beta=-1$, the inequality (19) gives a connection between harmonic and sum-connectivity indices.

Remark 5. Since

$$
2 \delta \leq \delta_{e} \leq \Delta_{e} \leq 2 \Delta,
$$

then for $\alpha \geq 1$ and $\alpha \leq 1$, from (17) the inequalities (4) and (5) are obtained. Hence, the inequality (17) is stronger than these inequalities.

Corollary 3. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then, for any $\alpha \geq 2$

$$
4 M_{2} \delta_{e}^{\alpha-2} \leq \chi_{\alpha} \leq 2 F \Delta_{e}^{\alpha-2}
$$

Equality is attained if G is regular.

Proof. The required inequality is obtained based on (16) and

$$
4 M_{2} \leq F+2 M_{2} \leq 2 F
$$

Corollary 4. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then, for any $\alpha \leq 1$,

$$
m \delta_{e} \Delta_{e}^{\alpha-1} \leq \chi_{\alpha} \leq m \Delta_{e} \delta_{e}^{\alpha-1}
$$

with equality if and only if $L(G)$ is regular.
In the next Theorem we establish a lower bound for χ_{α} in terms of M_{1}, M_{2} and F.
Theorem 3. Let G be a simple connected graph with n vertices and m edges. Then, for any real $\alpha, \alpha \leq 1$ or $\alpha \geq 2$,

$$
\begin{equation*}
\chi_{\alpha} \geq \frac{\left(F+2 M_{2}\right)^{\alpha-1}}{M_{1}^{\alpha-2}} \tag{20}
\end{equation*}
$$

If $1 \leq \alpha \leq 2$, the opposite inequality is valid. Equality is attained if and only if $\alpha=1$, or $\alpha=2$, or $L(G)$ is regular.

Proof. Let $p=\left(p_{i}\right)$ and $a=\left(a_{i}\right), i=1,2, \ldots, m$, be positive real number sequences, where $p_{1}+p_{2}+\cdots+p_{m}=1$. Then, for any real $t, t \leq 0$ or $t \geq 1$, Jensen's inequality holds (see $[16,18]$)

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i}^{t} \geq\left(\sum_{i=1}^{m} p_{i} a_{i}\right)^{t} \tag{21}
\end{equation*}
$$

If $0 \leq t \leq 1$ the opposite inequality is valid in (21).
For $t=\alpha-1, p_{i}=\frac{d\left(e_{i}\right)+2}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)}, a_{i}=d\left(e_{i}\right)+2, i=1, \ldots, m$, the inequality becomes

$$
\frac{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)} \geq\left(\frac{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{2}}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)}\right)^{\alpha-1} .
$$

According to (18), for $\alpha=1$ and $\alpha=2$, this inequality transforms into

$$
\frac{\chi_{\alpha}}{M_{1}} \geq \frac{\left(F+2 M_{2}\right)^{\alpha-1}}{M_{1}^{\alpha-1}}
$$

wherefrom the inequality (20) is obtained.
Equality in (21) holds if and only if $t=0$, or $t=1$, or $a_{1}=a_{2}=\cdots=a_{m}$. Therefore equality in (20) holds if and only if $\alpha=1$, or $\alpha=2$, or $d\left(e_{1}\right)+2=\cdots=d\left(e_{m}\right)+2$, i.e. if $L(G)$ is regular.

Corollary 5. Let G be a simple connected graph with n vertices and m edges. Then, for any real $\alpha \geq 1$,

$$
\chi_{\alpha} \geq \frac{4^{\alpha-1} M_{2}^{\alpha-1}}{M_{1}^{\alpha-2}}
$$

with equality if $\alpha=1$, or G is regular.
Remark 6. For $q_{i}=a_{i}=d\left(e_{i}\right)+2$ and $b_{i}=\frac{1}{d\left(e_{i}\right)+2}, i=1,2, \ldots, m$, the inequality (10) becomes

$$
m\left(F+2 M_{2}\right) \geq M_{1}^{2} .
$$

Then, for any $\alpha \geq 1$

$$
\frac{\left(F+2 M_{2}\right)^{\alpha-1}}{M_{1}^{\alpha-2}} \geq \frac{M_{1}^{\alpha}}{m^{\alpha-1}} .
$$

Therefore (20) is stronger than (7).
In the next Theorem we establish a connection between $\chi_{\alpha}, \chi_{\alpha-1}$ and $\chi_{\alpha-2}$.
Theorem 4. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
\chi_{\alpha}-\left(\Delta_{e}+\delta_{e}\right) \chi_{\alpha-1}+\Delta_{e} \delta_{e} \chi_{\alpha-2} \leq 0 \tag{22}
\end{equation*}
$$

with equality if and only if for some $k, 1 \leq k \leq m, \Delta_{e}=d\left(e_{1}\right)+2=\cdots=d\left(e_{k}\right)+2 \geq$ $d\left(e_{k+1}\right)+2=\cdots=d\left(e_{m}\right)+2=\delta_{e}$.

Proof. For $p_{i}=\frac{\left(d\left(e_{i}\right)+2\right)^{\alpha-1}}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}}, a_{i}=d\left(e_{i}\right)+2, i=1,2, \ldots, m, r=\delta_{e}=d\left(e_{m}\right)+2$ and $R=\Delta_{e}=d\left(e_{1}\right)+2$, the inequality (8) transforms into

$$
\frac{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha}}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}}+\Delta_{e} \delta_{e} \frac{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha-2}}{\sum_{i=1}^{m}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}} \leq \Delta_{e}+\delta_{e} .
$$

From the above and (18) we get

$$
\frac{\chi_{\alpha}}{\chi_{\alpha-1}}+\Delta_{e} \delta_{e} \frac{\chi_{\alpha-2}}{\chi_{\alpha-1}} \leq \Delta_{e}+\delta_{e}
$$

wherefrom (22) is obtained.
Corollary 6. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
\chi_{\alpha} \leq \frac{\chi_{\alpha-1}^{2}}{4 \chi_{\alpha-2}}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2} \tag{23}
\end{equation*}
$$

with equality if $L(G)$ is regular.
Proof. According to the arithmetic-geometric mean inequality [16], we have that

$$
2 \sqrt{\Delta_{e} \delta_{e} \chi_{\alpha-2} \chi_{\alpha}} \leq \chi_{\alpha}+\Delta_{e} \delta_{e} \chi_{\alpha-2} \leq\left(\Delta_{e}+\delta_{e}\right) \chi_{\alpha-1}
$$

wherefrom (23) is obtained.
Remark 7. For $\alpha=2$ and $\alpha=1$ from (23) we obtain

$$
\begin{equation*}
F \leq \frac{M_{1}^{2}}{4 m}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2}-2 M_{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1} \leq \frac{m^{2}}{2 H}\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}+\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2} \tag{25}
\end{equation*}
$$

where $H=2 \chi_{-1}$ is a harmonic index.
According to Theorem 1, i.e. inequality (11), the following is valid:

Theorem 5. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Denote by S a subset of $I_{m}=\{1,2, \ldots, m\}$ which minimizes the expression

$$
\left|\sum_{i \in S}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}-\frac{1}{2} \chi_{\alpha-1}\right| .
$$

Then

$$
\begin{equation*}
\chi_{\alpha} \leq \frac{\chi_{\alpha-1}^{2}}{\chi_{\alpha-2}}\left(1+\beta(S)\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}-\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2}\right) \tag{26}
\end{equation*}
$$

where

$$
\beta(S)=\frac{\sum_{i \in S}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}}{\chi_{\alpha-1}}\left(1-\frac{\sum_{i \in S}\left(d\left(e_{i}\right)+2\right)^{\alpha-1}}{\chi_{\alpha-1}}\right) .
$$

Equality is attained if $L(G)$ is regular.

Proof. The inequality (26) is obtained from (11) for $p_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha-1}, a_{i}=d\left(e_{i}\right)+2$, $i=1,2, \ldots, m, R=\Delta_{e}=d\left(e_{1}\right)+2$, and $r=\delta_{e}=d\left(e_{m}\right)+2$.

Remark 8. Since $\beta(S) \leq \frac{1}{4}$, the inequality (26) is stronger than (23). Thus, for example, for $\alpha=1$, from (26) we obtain

$$
\begin{equation*}
M_{1} \leq \frac{2 m^{2}}{H}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e}}{\delta_{e}}}-\sqrt{\frac{\delta_{e}}{\Delta_{e}}}\right)^{2}\right) \tag{27}
\end{equation*}
$$

where

$$
\alpha(m)=\frac{1}{4}\left(1-\frac{(-1)^{m+1}+1}{2 m^{2}}\right)
$$

The above inequality is stronger than (25) when m is odd.

Theorem 6. Let G be a simple connected graph with n vertices and $m \geq 2$ edges. Then

$$
\begin{equation*}
\chi_{\alpha} \chi_{-\alpha} \leq m^{2}\left(1+\alpha(m)\left(\sqrt{\frac{\Delta_{e}^{\alpha}}{\delta_{e}^{\alpha}}}-\sqrt{\frac{\delta_{e}^{\alpha}}{\Delta_{e}^{\alpha}}}\right)^{2}\right) \tag{28}
\end{equation*}
$$

with equality if $L(G)$ is regular.
Proof. For $p_{i}=1, a_{i}=\left(d\left(e_{i}\right)+2\right)^{\alpha}, i=1, \ldots, m, R=\Delta_{e}^{\alpha}=\left(d\left(e_{1}\right)+2\right)^{\alpha}$, and $r=\delta_{e}^{\alpha}=$ $\left(d\left(e_{m}\right)+2\right)^{\alpha}$, according to Theorem 1 we obtain (28).

Remark 9. For $\alpha=1$ the inequality (28) reduces to (27).

Acknowledgement: This work was supported by the Serbian Ministry for Education, Science and Technological development.

References

[1] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[2] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
[3] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serb. Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014) 39-52.
[4] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[5] I. Gutman, B. Furtula, Ž. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
[6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
[7] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[8] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[9] J. M. Rodriguez, J. M. Sigarreta, The harmonic index, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory - Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 229-281.
[10] J. M. Rodriguez, J. M. Sigarreta, New results on the harmonic index and its generalizations, MATCH Commun. Math. Comput. Chem. 78(2) (2017) 387-404.
[11] C. Elphick, P. Wocjan, Bounds and power means for the general Randić and sumconnectivity indices, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory - Mainstreams, Univ. Kragujevac, Kragujevac, 2017, pp. 121-133.
[12] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (2011) 402-405.
[13] L. Zhong, K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627-642.
[14] Z. Zhu, H. Lu, On the general sum-connectivity index of tricyclic graphs, J. Appl. Math. Comput. 51 (2016) 177-188.
[15] B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963) 442-448.
[16] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.
[17] A. Lupas, A remark on the Schweitzer and Kantorovich inequalities, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 383 (1972) 13-15.
[18] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Springer, Netherlands, 1993.
[19] D. Andrica, C. Badea, Grüss inequality for positive linear functions, Period. Math. Hung. 19 (1988) 155-167.
[20] P. Henrici, Two remarks on the Kantorovich inequality, Am. Math. Month. 68 (1961) 904-906.
[21] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and extremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory - Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 67-153.
[22] P. Schweitzer, An inequality concerning the arithmetic mean, Math. Phys. Lapok 23 (1914) 257-261.
[23] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput. Chem. 66 (2011) 613-626.
[24] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17-100.

