Communications in Mathematical and in Computer Chemistry

Some Inequalities for General Sum–Connectivity Index

I. Ž. Milovanović, E. I. Milovanović, M. Matejić

Faculty of Electronic Engineering, Beogradska 14, P.O.Box 73, 18000 Niš, Serbia

{igor, ema}@elfak.ni.ac.rs

(Received February 17, 2017)

Abstract

Let G be a simple connected graph with n vertices and m edges. Denote by $d_1 \geq d_2 \geq \cdots \geq d_n > 0$ and $d(e_1) \geq d(e_2) \geq \cdots \geq d(e_m) > 0$ sequences of vertex and edge degrees, respectively. Adjacency of the vertices i and j is denoted by $i \sim j$. A vertex-degree topological index, referred to as general sum-connectivity index, is defined as $\chi_{\alpha} = \chi_{\alpha}(G) = \sum_{i \sim j} (d_i + d_j)^{\alpha}$, where α is an arbitrary real number. Lower and upper bounds for χ_{α} are obtained. We also prove one generalization of discrete Kantorovich inequality.

1 Introduction

Let G = (V, E), $V = \{1, 2, ..., n\}$, $E = \{e_1, e_2, ..., e_m\}$ be a simple connected graph with *n* vertices and *m* edges. Denote by $d_1 \ge d_2 \ge \cdots \ge d_n > 0$ and $d(e_1) \ge d(e_2) \ge$ $\cdots \ge d(e_m) > 0$ sequences of vertex and edge degrees, respectively. If vertices *i* and *j* are adjacent, we denote it as $i \sim j$. In addition, we use the following notation: $\Delta = d_1$, $\delta = d_n$, $\Delta_e = d(e_1) + 2$, $\delta_e = d(e_m) + 2$. As usual, L(G) denotes a line graph of *G*.

Gutman and Trinajstić [1] introduced two vertex degree topological indices, named as the first and the second Zagreb index. These are defined as

$$M_1 = M_1(G) = \sum_{i=1}^n d_i^2$$
 and $M_2 = M_2(G) = \sum_{i \sim j} d_i d_j$

The first Zagreb index can be also expressed as (see [23])

$$M_1 = M_1(G) = \sum_{i \sim j} (d_i + d_j).$$
 (1)

Details on the mathematical theory of Zagreb indices can be found in [2–6, 21, 24].

Recently [7], a graph invariant similar to M_1 came into the focus of attention, defined as

$$F = F(G) = \sum_{i=1}^{n} d_i^3$$
,

which for historical reasons [3] was named *forgotten* topological index. It satisfies the identities

$$F = \sum_{i \sim j} (d_i^2 + d_j^2) = \sum_{i=1}^m [d(e_i) + 2]^2 - 2M_2.$$
⁽²⁾

Another degree–based graph invariant was introduced in [8], and named general sumconnectivity index, χ_{α} . It is defined as

$$\chi_{\alpha} = \chi_{\alpha}(G) = \sum_{i \sim j} (d_i + d_j)^{\alpha}, \qquad (3)$$

where α is an arbitrary real number. More on mathematical properties of this index can be found in [9–14].

In this paper we are concerned with upper and lower bounds for χ_{α} . Also, we present one generalization of discrete Kantorovich inequality, and show how it can be used to obtain upper bounds for M_1 . The derived inequality is best possible in its class.

2 Preliminaries

In this section we recall some results for χ_{α} , and state a few analytical inequalities needed for our work.

In [10] (see also [9]) the following was proved:

Lemma 1. [10]. Let G be a nontrivial connected graph with maximum degree Δ and minimum degree δ , and $\alpha \in \mathbb{R}$. Then

$$2^{\alpha - 1} \Delta^{\alpha - 1} M_1 \le \chi_{\alpha} \le 2^{\alpha - 1} \delta^{\alpha - 1} M_1, \qquad if \ \alpha < 1, \tag{4}$$

$$2^{\alpha-1}\delta^{\alpha-1}M_1 \le \chi_\alpha \le 2^{\alpha-1}\Delta^{\alpha-1}M_1, \qquad \text{if } \alpha \ge 1.$$
(5)

The equality holds in each inequality for some $\alpha \neq 1$ if and only if G is regular.

-479-

In [8] upper and lower bounds for $\chi_{\alpha}(G)$ in terms of invariant M_1 and graph parameter m were obtained.

Lemma 2. [8]. Let G be a graph with $m \ge 1$ edges. If $0 < \alpha < 1$, then

$$\chi_{\alpha}(G) \le M_1^{\alpha} m^{1-\alpha} \,, \tag{6}$$

and if $\alpha < 0$ or $\alpha > 1$, then

$$\chi_{\alpha}(G) \ge M_1^{\alpha} m^{1-\alpha} \,. \tag{7}$$

Equality holds if and only if $d_i + d_j$ is constant, for any edge $\{i, j\} \in E$.

For the real number sequences the following result was proved in [15] (see also [16]):

Lemma 3. [15]. Let $p = (p_i)$, and $a = (a_i)$, i = 1, 2, ..., m, be two positive real number sequences with the properties

$$\sum_{i=1}^{m} p_i = 1 \quad and \quad 0 < r \le a_i \le R < +\infty.$$

Then

$$\sum_{i=1}^{m} p_i a_i + rR \sum_{i=1}^{m} \frac{p_i}{a_i} \le r + R,$$
(8)

with equality if and only if for some k, $1 \le k \le m$, holds $R = a_1 = \cdots = a_k \ge a_{k+1} = \cdots = a_m = r$.

In [19] the following was proved:

Lemma 4. [19]. Let $q = (q_i)$ be a sequence of positive real numbers, and $a = (a_i)$ and $b = (b_i)$ sequences of real numbers with the properties

 $0 < r_1 \le a_i \le R_1 < +\infty$ and $0 < r_2 \le b_i \le R_2 < +\infty$,

i = 1, 2, ..., m. Denote with S a subset of $I_m = \{1, 2, ..., m\}$ which minimizes the expression

$$\left|\sum_{i\in S} q_i - \frac{1}{2}\sum_{i=1}^m q_i\right| \,.$$

Then

$$\left|\sum_{i=1}^{m} q_i \sum_{i=1}^{m} q_i a_i b_i - \sum_{i=1}^{m} q_i a_i \sum_{i=1}^{m} q_i b_i\right| \le (R_1 - r_1)(R_2 - r_2) \sum_{i \in S} q_i \left(\sum_{i=1}^{m} q_i - \sum_{i \in S} q_i\right).$$
(9)

-480-

In the following lemma we recall well-known Chebyshev inequality (see for example [16]) which will be used later.

Lemma 5. Let $q = (q_i)$ be a sequence of positive real numbers, and $a = (a_i)$ and $b = (b_i)$, i = 1, 2, ..., m, sequences of non-negative real numbers of similar monotonicity. Then

$$\sum_{i=1}^{m} q_i \sum_{i=1}^{m} q_i a_i b_i \ge \sum_{i=1}^{m} q_i a_i \sum_{i=1}^{m} q_i b_i.$$
(10)

If sequences $a = (a_i)$ and $b = (b_i)$ has opposite monotonicity, then the sense of (10) reverses.

3 Main result

3.1 A new inequality for real number sequences

In this section we prove a new inequality for real number sequences.

Theorem 1. Let $p = (p_i)$ and $a = (a_i)$, i = 1, 2, ..., m, be real number sequences, with $a = (a_i)$ being monotonic and $0 < r \le a_i \le R < +\infty$. Let S be a subset of $I_m = \{1, 2, ..., m\}$ which minimizes the expression

$$\left|\sum_{i\in S} p_i - \frac{1}{2}\sum_{i=1}^m p_i\right|$$

Then

$$\sum_{i=1}^{m} p_i a_i \sum_{i=1}^{m} \frac{p_i}{a_i} \le \left(1 + \gamma(S) \frac{(R-r)^2}{rR}\right) \left(\sum_{i=1}^{m} p_i\right)^2,\tag{11}$$

where

$$\gamma(S) = \frac{\sum_{i \in S} p_i}{\sum_{i=1}^{m} p_i} \left(1 - \frac{\sum_{i \in S} p_i}{\sum_{i=1}^{m} p_i} \right).$$

Equality is attained if $R = a_1 = \cdots = a_m = r$.

Proof. For $q_i = \frac{p_i}{\sum_{i=1}^m p_i}$, $a_i = a_i$, $b_i = \frac{1}{a_i}$, $R_1 = R$, $r_1 = r$, $R_2 = \frac{1}{r}$ and $r_2 = \frac{1}{R}$, $i = 1, 2, \ldots, m$, the inequality (9) becomes

$$\left| 1 - \frac{\sum_{i=1}^{m} p_i a_i \sum_{i=1}^{m} \frac{p_i}{a_i}}{\left(\sum_{i=1}^{m} p_i\right)^2} \right| \le (R-r) \left(\frac{1}{r} - \frac{1}{R}\right) \frac{\sum_{i\in S} p_i}{\sum_{i=1}^{m} p_i} \left(1 - \frac{\sum_{i\in S} p_i}{\sum_{i=1}^{m} p_i}\right).$$
(12)

For $q_i = \frac{p_i}{\sum_{i=1}^m p_i}$, $a_i = a_i$, $b_i = \frac{1}{a_i}$, $i = 1, 2, \dots, m$, the inequality (10) transforms into

$$1 \le \frac{\sum_{i=1}^{m} p_i a_i \sum_{i=1}^{m} \frac{p_i}{a_i}}{\left(\sum_{i=1}^{m} p_i\right)^2}.$$
 (13)

Combining (12) and (13), gives

$$\frac{\sum_{i=1}^{m} p_i a_i \sum_{i=1}^{m} \frac{p_i}{a_i}}{\left(\sum_{i=1}^{m} p_i\right)^2} \le 1 + \frac{(R-r)^2}{rR} \cdot \frac{\sum_{i\in S} p_i}{\sum_{i=1}^{m} p_i} \left(1 - \frac{\sum_{i\in S} p_i}{\sum_{i=1}^{m} p_i}\right),$$

wherefrom we arrive at (11).

Remark 1. The inequality (11) is a revision of the inequality

$$\sum_{i=1}^{m} p_i a_i \sum_{i=1}^{m} \frac{p_i}{a_i} \le \frac{\left(\left\lfloor \frac{m}{2} \rfloor R + \left\lfloor \frac{m+1}{2} \rfloor r\right) \left(\left\lfloor \frac{m+1}{2} \rfloor R + \left\lfloor \frac{m}{2} \rfloor r\right) r\right)}{rRm^2}$$

given in [17]. The above inequality is not always correct. It is correct when $p_i = \frac{1}{m}$, i = 1, 2, ..., m. However, if $p_i \neq \frac{1}{m}$ and $p_1 + p_2 + \cdots + p_m = 1$, the above inequality might be incorrect. Thus, for example for m = 5, $p_1 = p_2 = \frac{1}{4}$, $p_3 = p_4 = p_5 = \frac{1}{6}$, $a_1 = a_2 = 3$, $a_3 = a_4 = a_5 = 2$, r = 2 and R = 3, one obtains that $625 \leq 624$, which is obviously wrong.

Since $\gamma(S) \leq \frac{1}{4}$ for each $S \subset I_m$, the following corollary of Theorem 1 is valid.

Corollary 1. Let $p = (p_i)$, be a sequence of positive real numbers and $a = (a_i)$, i = 1, 2, ..., m, a monotone sequence of positive real numbers, with the properties

$$p_1 + \dots + p_m = 1, \qquad 0 < r \le a_i \le R < +\infty.$$

Then

$$\sum_{i=1}^{m} p_i a_i \sum_{i=1}^{m} \frac{p_i}{a_i} \le \frac{(R+r)^2}{4rR} \,. \tag{14}$$

Remark 2. The inequality (14) (proved in [20]) is a generalization of Kantorovich inequality (see for example [16]).

For $p_i = 1, i = 1, 2, ..., m$, the following corollary of Theorem 1 holds:

-482-

Corollary 2. Let $a = (a_i)$, i = 1, 2, ..., m, be a real number sequence with the property $0 < r \le a_i \le R < +\infty$. Then

$$\sum_{i=1}^{m} a_i \sum_{i=1}^{m} \frac{1}{a_i} \le m^2 \left(1 + \alpha(m) \frac{(R-r)^2}{rR} \right) , \tag{15}$$

where

$$\alpha(m) = \frac{1}{4} \left(1 - \frac{(-1)^{m+1} + 1}{2m^2} \right) \,.$$

Remark 3. The inequality (15) was proved in [17]. Since $\alpha(m) \leq \frac{1}{4}$, it is a generalization of the inequality

$$\sum_{i=1}^{m} a_i \sum_{i=1}^{m} \frac{1}{a_i} \le \frac{m^2}{4} \cdot \frac{(R+r)^2}{rR},$$

proved in [22].

3.2 Some inequalities for general sum-connectivity index

In what follows we derive lower and upper bounds for the degree-based topological index χ_{α} in terms of topological indices M_1 , M_2 and F and graph parameters m, Δ_e and δ_e .

Theorem 2. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Then, for any $\alpha \ge 2$,

$$(F+2M_2)\delta_e^{\alpha-2} \le \chi_\alpha \le (F+2M_2)\Delta_e^{\alpha-2}.$$
(16)

If $\alpha \geq 1$, then

$$M_1 \delta_e^{\alpha - 1} \le \chi_\alpha \le M_1 \Delta_e^{\alpha - 1} \,. \tag{17}$$

If $\alpha \geq 0$, then

$$m\delta_e^{\alpha} \le \chi_{\alpha} \le m\Delta_e^{\alpha}$$
.

Equalities in the above inequalities are attained, respectively, for $\alpha = 2$, $\alpha = 1$, $\alpha = 0$, or if L(G) is regular.

When $\alpha \leq 2$, $\alpha \leq 1$ and $\alpha \leq 0$, respectively, the opposite inequalities are valid. Proof. Let $e = \{i, j\}$ be an arbitrary edge of graph G. Then $d(e) = d_i + d_j - 2$. According to (3), topological index χ_{α} can be computed from the following expression

$$\chi_{\alpha} = \sum_{i \sim j} (d_i + d_j)^{\alpha} = \sum_{i=1}^{m} (d(e_i) + 2)^{\alpha}, \qquad \chi_0 = m.$$
(18)

From (3) follows

$$F + 2M_2 = \chi_2 = \sum_{i \sim j} (d_i + d_j)^2 = \sum_{i=1}^m (d(e_i) + 2)^2$$

Since

$$\chi_{\alpha} = \sum_{i=1}^{m} (d(e_i) + 2)^{\alpha} = \sum_{i=1}^{m} (d(e_i) + 2)^2 (d(e_i) + 2)^{\alpha - 2},$$

for $\alpha \geq 2$ holds

$$\delta_e^{\alpha-2} \sum_{i=1}^m (d(e_i)+2)^2 \le \chi_\alpha \le \Delta_e^{\alpha-2} \sum_{i=1}^m (d(e_i)+2)^2,$$

i.e.

$$(F+2M_2)\delta_e^{\alpha-2} \le \chi_\alpha \le (F+2M_2)\Delta_e^{\alpha-2}$$

By a similar procedure, the remaining inequalities in Theorem 2 can be proved.

Remark 4. Let α and β be arbitrary real numbers such that $\alpha - \beta \ge 0$. Then, according to

$$\chi_{\alpha} = \sum_{i=1}^{m} (d(e_i) + 2)^{\alpha} = \sum_{i=1}^{m} (d(e_i) + 2)^{\beta} (d(e_i) + 2)^{\alpha - \beta}$$

follows that

$$\delta_e^{\alpha-\beta}\chi_\beta \le \chi_\alpha \le \Delta_e^{\alpha-\beta}\chi_\beta\,,\tag{19}$$

with equality if and only if $\alpha = \beta$, or L(G) is regular.

If $\alpha - \beta \leq 0$, the opposite inequality is valid.

m

The question is for which values of parameter β the inequality (19) has practical importance. For $\beta = 0$, $\beta = 1$ and $\beta = 2$ it was considered in Theorem 2. Since

$$\sum_{i=1} (d(e_i) + 2)^3 = EF + 6F + 12M_2 - 12M_1 + 8m_2$$

for $\alpha \geq 3$ holds

$$\delta_e^{\alpha-3}(EF + 6F + 12M_2 - 12M_1 + 8m) \le \chi_\alpha \le \Delta_e^{\alpha-3}(EF + 6F + 12M_2 - 12M_1 + 8m),$$

where EF is the reformulated forgotten topological index. When $\alpha \leq 3$, the opposite inequality is valid. Obviously, these inequalities depend on a large number of graph invariants.

Another question is how would (19) look like if $\beta \ge 4$ and its practical usability. For $\alpha = -\frac{1}{2}$ and $\beta = -1$, the inequality (19) gives a connection between harmonic and sum-connectivity indices.

Remark 5. Since

$$2\delta \le \delta_e \le \Delta_e \le 2\Delta \,,$$

then for $\alpha \geq 1$ and $\alpha \leq 1$, from (17) the inequalities (4) and (5) are obtained. Hence, the inequality (17) is stronger than these inequalities.

Corollary 3. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Then, for any $\alpha \ge 2$

$$4M_2\delta_e^{\alpha-2} \le \chi_\alpha \le 2F\Delta_e^{\alpha-2}$$

Equality is attained if G is regular.

Proof. The required inequality is obtained based on (16) and

$$4M_2 \le F + 2M_2 \le 2F.$$

Corollary 4. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Then, for any $\alpha \le 1$,

$$m\delta_e\Delta_e^{\alpha-1} \le \chi_\alpha \le m\Delta_e\delta_e^{\alpha-1}$$
,

with equality if and only if L(G) is regular.

In the next Theorem we establish a lower bound for χ_{α} in terms of M_1 , M_2 and F.

Theorem 3. Let G be a simple connected graph with n vertices and m edges. Then, for any real α , $\alpha \leq 1$ or $\alpha \geq 2$,

$$\chi_{\alpha} \ge \frac{(F+2M_2)^{\alpha-1}}{M_1^{\alpha-2}} \,. \tag{20}$$

If $1 \leq \alpha \leq 2$, the opposite inequality is valid. Equality is attained if and only if $\alpha = 1$, or $\alpha = 2$, or L(G) is regular.

Proof. Let $p = (p_i)$ and $a = (a_i)$, i = 1, 2, ..., m, be positive real number sequences, where $p_1 + p_2 + \cdots + p_m = 1$. Then, for any real $t, t \leq 0$ or $t \geq 1$, Jensen's inequality holds (see [16, 18])

$$\sum_{i=1}^{m} p_i a_i^t \ge \left(\sum_{i=1}^{m} p_i a_i\right)^t.$$
(21)

If $0 \le t \le 1$ the opposite inequality is valid in (21).

For $t = \alpha - 1$, $p_i = \frac{d(e_i) + 2}{\sum_{i=1}^{m} (d(e_i) + 2)}$, $a_i = d(e_i) + 2$, $i = 1, \dots, m$, the inequality (21) becomes

$$\sum_{i=1}^{m} (d(e_i) + 2)^{\alpha} \\ \sum_{i=1}^{m} (d(e_i) + 2) \ge \left(\frac{\sum_{i=1}^{m} (d(e_i) + 2)^2}{\sum_{i=1}^{m} (d(e_i) + 2)} \right)^{\alpha - 1}$$

According to (18), for $\alpha = 1$ and $\alpha = 2$, this inequality transforms into

$$\frac{\chi_{\alpha}}{M_1} \ge \frac{(F+2M_2)^{\alpha-1}}{M_1^{\alpha-1}},$$

wherefrom the inequality (20) is obtained.

Equality in (21) holds if and only if t = 0, or t = 1, or $a_1 = a_2 = \cdots = a_m$. Therefore equality in (20) holds if and only if $\alpha = 1$, or $\alpha = 2$, or $d(e_1) + 2 = \cdots = d(e_m) + 2$, i.e. if L(G) is regular.

Corollary 5. Let G be a simple connected graph with n vertices and m edges. Then, for any real $\alpha \geq 1$,

$$\chi_{\alpha} \ge \frac{4^{\alpha - 1} M_2^{\alpha - 1}}{M_1^{\alpha - 2}} \,,$$

with equality if $\alpha = 1$, or G is regular.

Remark 6. For $q_i = a_i = d(e_i) + 2$ and $b_i = \frac{1}{d(e_i)+2}$, i = 1, 2, ..., m, the inequality (10) becomes

$$m(F + 2M_2) \ge M_1^2$$
.

Then, for any $\alpha \geq 1$

$$\frac{(F+2M_2)^{\alpha-1}}{M_1^{\alpha-2}} \ge \frac{M_1^{\alpha}}{m^{\alpha-1}}$$

Therefore (20) is stronger than (7).

In the next Theorem we establish a connection between χ_{α} , $\chi_{\alpha-1}$ and $\chi_{\alpha-2}$.

Theorem 4. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Then

$$\chi_{\alpha} - (\Delta_e + \delta_e)\chi_{\alpha-1} + \Delta_e \delta_e \chi_{\alpha-2} \le 0, \qquad (22)$$

with equality if and only if for some k, $1 \le k \le m$, $\Delta_e = d(e_1) + 2 = \cdots = d(e_k) + 2 \ge d(e_{k+1}) + 2 = \cdots = d(e_m) + 2 = \delta_e$.

Proof. For $p_i = \frac{(d(e_i) + 2)^{\alpha - 1}}{\sum_{i=1}^m (d(e_i) + 2)^{\alpha - 1}}$, $a_i = d(e_i) + 2$, i = 1, 2, ..., m, $r = \delta_e = d(e_m) + 2$ and $R = \Delta_e = d(e_1) + 2$, the inequality (8) transforms into

$$\frac{\sum_{i=1}^{m} (d(e_i)+2)^{\alpha}}{\sum_{i=1}^{m} (d(e_i)+2)^{\alpha-1}} + \Delta_e \delta_e \frac{\sum_{i=1}^{m} (d(e_i)+2)^{\alpha-2}}{\sum_{i=1}^{m} (d(e_i)+2)^{\alpha-1}} \le \Delta_e + \delta_e$$

From the above and (18) we get

$$\frac{\chi_{\alpha}}{\chi_{\alpha-1}} + \Delta_e \delta_e \frac{\chi_{\alpha-2}}{\chi_{\alpha-1}} \le \Delta_e + \delta_e \,,$$

wherefrom (22) is obtained.

Corollary 6. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Then

$$\chi_{\alpha} \le \frac{\chi_{\alpha-1}^2}{4\chi_{\alpha-2}} \left(\sqrt{\frac{\Delta_e}{\delta_e}} + \sqrt{\frac{\delta_e}{\Delta_e}} \right)^2 \,, \tag{23}$$

with equality if L(G) is regular.

Proof. According to the arithmetic-geometric mean inequality [16], we have that

$$2\sqrt{\Delta_e \delta_e \chi_{\alpha-2} \chi_{\alpha}} \le \chi_{\alpha} + \Delta_e \delta_e \chi_{\alpha-2} \le (\Delta_e + \delta_e) \chi_{\alpha-1} ,$$

wherefrom (23) is obtained.

Remark 7. For $\alpha = 2$ and $\alpha = 1$ from (23) we obtain

$$F \le \frac{M_1^2}{4m} \left(\sqrt{\frac{\Delta_e}{\delta_e}} + \sqrt{\frac{\delta_e}{\Delta_e}} \right)^2 - 2M_2 \,, \tag{24}$$

and

$$M_1 \le \frac{m^2}{2H} \left(\sqrt{\frac{\Delta_e}{\delta_e}} + \sqrt{\frac{\delta_e}{\Delta_e}} \right)^2 \,, \tag{25}$$

where $H = 2\chi_{-1}$ is a harmonic index.

According to Theorem 1, i.e. inequality (11), the following is valid:

Theorem 5. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Denote by S a subset of $I_m = \{1, 2, ..., m\}$ which minimizes the expression

$$\left| \sum_{i \in S} (d(e_i) + 2)^{\alpha - 1} - \frac{1}{2} \chi_{\alpha - 1} \right| \, .$$

Then

$$\chi_{\alpha} \leq \frac{\chi_{\alpha-1}^2}{\chi_{\alpha-2}} \left(1 + \beta(S) \left(\sqrt{\frac{\Delta_e}{\delta_e}} - \sqrt{\frac{\delta_e}{\Delta_e}} \right)^2 \right) \,, \tag{26}$$

where

$$\beta(S) = \frac{\sum_{i \in S} (d(e_i) + 2)^{\alpha - 1}}{\chi_{\alpha - 1}} \left(1 - \frac{\sum_{i \in S} (d(e_i) + 2)^{\alpha - 1}}{\chi_{\alpha - 1}} \right) \,.$$

Equality is attained if L(G) is regular.

Proof. The inequality (26) is obtained from (11) for $p_i = (d(e_i) + 2)^{\alpha - 1}$, $a_i = d(e_i) + 2$, $i = 1, 2, ..., m, R = \Delta_e = d(e_1) + 2$, and $r = \delta_e = d(e_m) + 2$.

Remark 8. Since $\beta(S) \leq \frac{1}{4}$, the inequality (26) is stronger than (23). Thus, for example, for $\alpha = 1$, from (26) we obtain

$$M_1 \le \frac{2m^2}{H} \left(1 + \alpha(m) \left(\sqrt{\frac{\Delta_e}{\delta_e}} - \sqrt{\frac{\delta_e}{\Delta_e}} \right)^2 \right) \,, \tag{27}$$

where

$$\alpha(m) = \frac{1}{4} \left(1 - \frac{(-1)^{m+1} + 1}{2m^2} \right) \,.$$

The above inequality is stronger than (25) when m is odd.

Theorem 6. Let G be a simple connected graph with n vertices and $m \ge 2$ edges. Then

$$\chi_{\alpha}\chi_{-\alpha} \le m^2 \left(1 + \alpha(m) \left(\sqrt{\frac{\Delta_e^{\alpha}}{\delta_e^{\alpha}}} - \sqrt{\frac{\delta_e^{\alpha}}{\Delta_e^{\alpha}}} \right)^2 \right)$$
(28)

with equality if L(G) is regular.

Proof. For $p_i = 1$, $a_i = (d(e_i) + 2)^{\alpha}$, i = 1, ..., m, $R = \Delta_e^{\alpha} = (d(e_1) + 2)^{\alpha}$, and $r = \delta_e^{\alpha} = (d(e_m) + 2)^{\alpha}$, according to Theorem 1 we obtain (28).

Remark 9. For $\alpha = 1$ the inequality (28) reduces to (27).

Acknowledgement: This work was supported by the Serbian Ministry for Education, Science and Technological development.

References

- I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* 17 (1972) 535–538.
- [2] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
- [3] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serb. Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014) 39–52.

- [4] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
- [5] I. Gutman, B. Furtula, Z. Kovijanić Vukićević, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5–16.
- [6] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
- [7] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184–1190.
- [8] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210–218.
- [9] J. M. Rodriguez, J. M. Sigarreta, The harmonic index, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), *Bounds in Chemical Graph Theory* - Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 229–281.
- [10] J. M. Rodriguez, J. M. Sigarreta, New results on the harmonic index and its generalizations, MATCH Commun. Math. Comput. Chem. 78(2) (2017) 387–404.
- [11] C. Elphick, P. Wocjan, Bounds and power means for the general Randić and sumconnectivity indices, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), *Bounds in Chemical Graph Theory – Mainstreams*, Univ. Kragujevac, Kragujevac, 2017, pp. 121–133.
- [12] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (2011) 402–405.
- [13] L. Zhong, K. Xu, Inequalities between vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627–642.
- [14] Z. Zhu, H. Lu, On the general sum-connectivity index of tricyclic graphs, J. Appl. Math. Comput. 51 (2016) 177–188.
- [15] B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963) 442-448.
- [16] D. S. Mitrinović, P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.

- [17] A. Lupas, A remark on the Schweitzer and Kantorovich inequalities, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 383 (1972) 13–15.
- [18] D. S. Mitrinović, J. E. Pečarić, A. M. Fink, *Classical and New Inequalities in Anal*ysis, Springer, Netherlands, 1993.
- [19] D. Andrica, C. Badea, Grüss inequality for positive linear functions, *Period. Math. Hung.* 19 (1988) 155–167.
- [20] P. Henrici, Two remarks on the Kantorovich inequality, Am. Math. Month. 68 (1961) 904–906.
- [21] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: Bounds and extremal graphs, in: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical Graph Theory – Basics, Univ. Kragujevac, Kragujevac, 2017, pp. 67–153.
- [22] P. Schweitzer, An inequality concerning the arithmetic mean, Math. Phys. Lapok 23 (1914) 257–261.
- [23] T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertexdegree-based molecular structure descriptors, *MATCH Commun. Math. Comput. Chem.* 66 (2011) 613–626.
- [24] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017) 17–100.