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Abstract

Given a graph G with vertex set V (G) = {v1, v2, . . . , vn}, we associate to G a
path matrix P whose (i, j)-entry is the maximum number of vertex disjoint paths
between the vertices vi and vj when i �= j and is zero when i = j. We explore some
properties of the eigenvalues and energy of P.

1 Introduction

For a graph G, the eigenvalues of G are the eigenvalues of its adjacency matrix, forming

the spectrum of G. For details of the spectral theory we refer to the seminal monograph

by Cvetković et al. [7], as well as to [2,6,8,19]. For undefined terminology and notations,

see [4, 20].

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn}. Define the matrix

P = (pij) of size n× n such that pij is equal to the maximum number of vertex disjoint

paths from vi to vj if i �= j, and pij = 0 if i = j .

We say that P = P(G) is the path matrix of the graph G [16]. By definition, P is a

real and symmetric matrix. Therefore, its eigenvalues are real. We call the eigenvalues

of P the path eigenvalues of G, forming its path spectrum SpecP(G).
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For convenience, the eigenvalues of the adjacency matrix of G will be referred to as

the ordinary eigenvalues of G, forming its ordinary spectrum Spec(G) [7, 8].

Consider the graph G shown in Fig. 1. Its path matrix is:

P(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 1 1 1 1
2 0 2 1 1 1 1
2 2 0 2 2 2 1
1 1 2 0 3 2 1
1 1 2 3 0 2 1
1 1 2 2 2 0 1
1 1 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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G

Fig. 1. A graph whose vertices 1 and 6 are connected by eight paths (1346, 13456,
1356, 13546, 12346, 123456, 12356, 123546) of which no two are vertex disjoint; therefore
p16(G) = 1.

The path spectrum of the graph G from Fig. 1 is

SpecP(G) = {9.1136, 0.7143,−0.6604,−2.4781,−2.0000,−1.6894,−3.0000}

whereas its ordinary spectrum is

Spec(G) = {2.9240, 1.5760, 0.3149,−0.5289,−1.0000,−1.3363,−1.9497} .

2 Properties of path eigenvalues of graphs

Denote by Jn the square matrix of order n, whose all non-diagonal elements are equal to

one, and all diagonal elements are zero. Note that this is just the adjacency matrix of

the complete graph Kn. Its spectrum is known to be [7, 8]

Spec(Kn) = {n− 1,−1,−1, . . . ,−1} .
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Example 1. Let T be a tree of order n. Then for any vi, vj ∈ V (T ), i �= j, there is a

single path connecting vi and vj. Therefore, P(T ) = Jn and

SpecP(T ) = {n− 1,−1,−1, . . . ,−1} .

Example 2. Let Cn be the cycle of order n. Then for any vi, vj ∈ V (T ), i �= j, there are

two vertex disjoint paths connecting vi and vj. Therefore, P(Cn) = 2Jn and

SpecP(Cn) = {2(n− 1),−2,−2, . . . ,−2} .

Denote by 1 a matrix of appropriate dimensions, whose all elements are equal to 1.

Example 3. Let Un,k be a unicyclic graph of order n whose cycle is of size k. Then the

vertices of Un,k can be labeled so that

P(Un,k) =

[
P(Ck) 1

1 Jn−k

]
=

[
2Jk 1

1 Jn−k

]
.

Example 4. Let Kn be the complete graph of order n. Then for any vi, vj ∈ V (Kn),

i �= j, there are n − 1 vertex disjoint paths connecting vi and vj. For instance, if i = 1

and j = 2, these paths are: 12, 132, 142, 152, . . . , 1n2. Therefore, P(Kn) = (n − 1)Jn

and

SpecP(Kn) = {(n− 1)2,−(n− 1),−(n− 1), . . . ,−(n− 1)} .

Example 5. Let Kh,� , h ≤ � be the complete bipartite graph on h + � vertices, and let

x1, x2, . . . , xh be the vertices of its one part and y1, y2, . . . , y� of the other part. Then there

are � vertex disjoint paths connecting the vertices xi and xj:

xiy1xj , xiy2, xj , xiy3xj , . . . , xiy�xj

and, analogously, h vertex disjoint paths connecting the vertices yi and yj. On the other

hand, there are h vertex disjoint paths connecting xi and yj. For instance, if i = j = 1,

then these are

x1y1 , x1y2x2y1 , x1y3x3y1 , . . . , x1yhxhy1 .

Therefore,

P(Kh,�) =

[
�Jh h 1

h 1 hJ�

]
.

If h = �, then P(Kh,h) = hJ2h and

SpecP(Kh,h) = {h(2h− 1),−h,−h, . . . ,−h} .
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The above examples show that the path spectrum may possess just a single positive

eigenvalue. In the general case, however, the number of positive path eigenvalues may be

greater than unity, even in the case of connected graphs. One such example is the graph

G depicted in Fig. 1.

Proposition 1. If the vertices vi and vj belong to two disconnected components of the

graph G, then, evidently, pij = 0. Therefore, if G consists of components G1 and G2,

then

P(G) =

[
P(G1) 0

0 P(G2)

]
and, consequently,

SpecP(G) = SpecP(G1) ∪ SpecP(G2) .

Analogously, if G consists of p ≥ 2 components G1, G2, . . . , Gp, then

P(G) =

⎡⎢⎢⎢⎢⎣
P(G1) 0 · · · 0

0 P(G2) · · · 0
...

...
...

...
0 0 · · · P(Gp)

⎤⎥⎥⎥⎥⎦
and

SpecP(G) =

p⋃
i=1

SpecP(Gi) .

Proposition 2. Every integer is a path eigenvalue of some graph.

Proof. Let k be an integer. If k = 0, then consider the null graph (the graph without

edges). The path eigenvalues of the null graph are all zero.

Suppose that k > 0. Let T be a tree with k+ 1 vertices. Then k is a path eigenvalue

of T .

Suppose that k < 0 and k = −h where h > 0. Consider the complete bipartite graph

Kh,h. Then k = −h is a path eigenvalue of Kh,h.

For matrices A = (aij) and B = (bij), A ≥ B denotes aij ≥ bij for all i, j. If A ≥ B

and aij > bij for at least one i, j, then we write A > B.

Proposition 3. Let G be a graph in which the vertices vi and vj are not adjacent. Let

G+ eij be the graph obtained from G by connecting its vertices vi and vj. Then

P(G+ eij) > P(G) .
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Proof. The transformationG → G+eij either increases or leaves unchanged themaximum

number of vertex disjoint paths between any two vertices. In addition, pij(G + eij) =

pij(G) + 1.

Proposition 4. Let G be a graph with vertex set V (G). Denote by d(vi) the degree

(number of first neighbors) of the vertex vi ∈ V (G). Then for all vi, vj ∈ V (G),

pij(G) ≤ min
{
d(vi), d(vj)

}
.

Proof. The number of vertex disjoint paths starting at a vertex v cannot be greater than

d(v).

Examples 2, 4, 5 show that there are graphs G for which the equality

pij(G) = min
{
d(vi), d(vj)

}
holds for all vi, vj ∈ V (G). Using the notation defined below in Section 3, more such

graphs are those of the form pr∗(G) for G ∈ B(2) and G ∈ B(3), but not for G ∈ B(1).

In what follows we state results for the path matrix that by the Perron–Frobenius

theorem hold for any real square matrix with positive entries [10, 12, 15].

Theorem 1. Let G be a connected graph with n ≥ 2 vertices, and let P be the corre-

sponding path matrix. Then the following statements hold:

(i) P is irreducible.

(ii) P has a path eigenvalue ρ = ρ(G) > 0 and an associated eigenvector x > 0. This

eigenvalue will be referred to as the path spectral radius of the underlying graph G.

(iii) For any eigenvalue μ �= ρ of P, −ρ ≤ μ ≤ ρ.

(iv) If u is an eigenvector of P for the path eigenvalue ρ, then u = α x for some α.

The next lemma is also a well known result of linear algebra.

Lemma 1. If A ≥ B are non-negative matrices and A is irreducible, then ρ(A) > ρ(B).

Combining Lemma 1 and Proposition 3 we directly arrive at:

Theorem 2. Let G and G + eij be the graphs specified in Proposition 3. If G is a

connected graph, then ρ(G+ eij) > ρ(G).
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Corollary 1. Let G be a connected graph of order n.

(i) ρ(G) ≥ (n− 1), with equality if and only if G is a tree of order n.

(ii) ρ(G) ≤ (n− 1)2, with equality if and only if G ∼= Kn.

Corollary 2. Let G be a connected graph on n vertices, and let H �= G be a spanning,

connected subgraph of G. Then ρ(G) > ρ(H).

Corollary 3. Let G be a connected graph on n vertices and let H be an induced subgraph

of G on n
′ vertices where n

′
< n. Then ρ(G) > ρ(H).

Corollary 4. Let G be a connected graph on n vertices and let H �= G be a subgraph of

G. Then ρ(G) > ρ(H).

Proposition 5. Let G be a k-connected graph on 2k+1 vertices. Then the path spectral

radius of G lies in the interval (4k, 4k2).

Proof. We know that a k-connected graph of order 2k + 1 contains a cycle of length

2k + 1. Thus G contains a cycle of order 2k + 1 and G is a subgraph of K2k+1, the

complete graph on 2k + 1 vertices. Therefore, P(C2k+1) ≤ P(G) and P(G) ≤ P(K2k+1).

This implies that P(C2k+1) ≤ P(G) ≤ P(K2k+1). By Theorem 2 and its corollaries,

ρ(C2k+1) < ρ(G) < ρ(K2k+1), that is 2(2k) < ρ(G) < (2k)2. Hence ρ(G) ∈ (4k, 4k2).

For x ∈ R
n, let x[1] ≥ · · · ≥ x[n] be a rearrangement of the coordinates of x in non-

increasing order. If x,y ∈ R
n then x is said to be majorized by y, denoted x ≺ y, if the

following conditions hold:

k∑
i=1

x[i] ≤

k∑
i=1

y[i] for i = 1, . . . , n− 1

and
n∑

i=1

xi =

n∑
i=1

yi .

An n×n matrix A = (aij) is said to be doubly stochastic if aij ≥ 0 for all i, j, and the

row and the column sums of A are all equal to 1. The following result is proved in [2].

Lemma 2. Let x, y ∈ R
n. Then x ≺ y if and only if there exists an n × n doubly

stochastic matrix A such that x = Ay.

In the following Theorem 3, we prove that the vector of diagonal elements of P is

majorized by the vector of path eigenvalues.
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Theorem 3. Let G be a graph on n vertices and let P = (pij) be its path matrix. Let

λ1, λ2, . . . , λn be the path eigenvalues of G. Then (p11, p22, . . . , pnn) ≺ (λ1, λ2, . . . , λn).

Proof. First recall that (p11, p22, . . . , pnn) = (0, 0, . . . , 0), that λ1 ≥ λ2 ≥ · · · ≥ λn, and∑n

i=1 λi = 0.

There exists an orthogonal matrix A = (aij) such that

P = A

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

⎤⎥⎥⎥⎦At
.

Hence,

pii =
n∑

j=1

a
2
ij λj for i = 1, 2, . . . , n. (1)

Since A is orthogonal, the n× n matrix with (i, j)-element a2ij is doubly stochastic. The

result follows from Eq. (1) and Lemma 2.

3 Path spectral radius of unicyclic and bicyclic graphs

Let G be a graph. Assume that G is connected and that G is not a tree. Denote by

pr(G) the graph obtained by deleting from G all pendent vertices. Thus pr is a “pruning

operation”. If G has no pendent vertices, then pr(G) ∼= G.

If pr(G) still possesses pendent vertices, then repeat the pruning operation as many

times as necessary until the resulting graph pr∗(G) is free of pendent vertices. Assuming

that pr∗(G) has n∗ vertices, the path matrix of G is then of the form:

P(G) =

⎡⎣ P(pr∗(G)) 1

1 Jn−n∗

⎤⎦ .

In what follows, we state a few results on the path spectral radius ρ of unicyclic and

bicyclic graphs. These all are immediate special cases of Lemma 1, Theorem 2, and its

corollaries.
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3.1 Unicyclic graphs

Denote by Cp the cycle on p vertices. Denote by Un the set of connected unicyclic graphs

with n vertices. Let, in addition, Un,k be the subset of Un, consisting of graphs whose

(unique) cycle is of size k.

Proposition 6. If G ∈ Un,k, then ρ(G) depends only on the parameters n and k. For

fixed n, ρ(G) is a monotonically increasing function of k.

Proposition 7. If G ∈ Un, then ρ(G) is maximal if and only if G ∼= Cn.

Proposition 8. If G ∈ Unk, then ρ(G) is minimal if and only if pr∗(G) ∼= C3.

3.2 Bicyclic graphs

There are three types of bicyclic graphs without pendent vertices, depicted in Fig. 2.

B (a,b,c) B (a,b,c)B (a,b)

} }

a

a

a

b b

b

c

c

(1) (2) (3)

Fig. 2. Types of bicyclic graphs.

Note that B(1)(a, b, c) possesses a+b+c vertices, B(2)(a, b) possesses a+b−1 vertices,

and B(3)(a, b, c) possesses a+ b− c− 2 vertices, and that a, b ≥ 3, c ≥ 0.

For i = 1, 2, 3, denote by B(i) the set of all connected bicyclic graph without pendent

vertices, of type B(i).

Denote by Bn the set of connected bicyclic graphs with n vertices.
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Proposition 9. If G ∈ Bn, then ρ(G) is maximal if and only if G ∈ B(3) for n =

a+ b− c− 2, a, b ≥ 3, c ≥ 0.

Proposition 10. If G ∈ Bn, then ρ(G) is minimal if and only if pr∗(G) ∼= B(2)(3, 3).

4 Path energy of graphs

The ordinary energy, E(G), of a graph G is defined to be the sum of the absolute values

of the ordinary eigenvalues of G [14]. In analogy, the path energy , PE(G) is defined as

the sum of the absolute values of the path eigenvalues λ1, λ2, . . . , λn of G, i.e.,

PE = PE(G) =

n∑
i=1

|λi| . (2)

Some graphs have a single positive path eigenvalue (cf. Examples 1, 2, 4, and 5). For

such graphs, since the sum of all path eigenvalues is equal to zero, PE(G) = 2 ρ(G).

If P(G) has several positive eigenvalues, then PE(G) > 2 ρ(G). However, if the

greatest positive eigenvalue is much larger that the other positive eigenvalues, then as

a reasonably accurate approximation, we have PE(G) ≈ 2 ρ(G). As an example of this

kind may serve the graph G depicted in Fig. 1, for which λ1 = 9.1, λ2 = 0.7 and λi is

negative–valued for i ≥ 3.

Bearing the above in mind, we may re-state the result of Corollary 1 as:

Conjecture 1. Let G be a connected graph of order n.

(i) PE(G) ≥ 2(n− 1), with equality if and only if G is a tree of order n.

(ii) PE(G) ≤ 2(n− 1)2, with equality if and only if G ∼= Kn.

Results that would parallel Propositions 6–10 are the following:

Conjecture 2. If G ∈ Un,k, then PE(G) depends only on the parameters n and k. For

fixed n, PE(G) is a monotonically increasing function of k.

Conjecture 3. If G ∈ Un, then PE(G) is maximal if and only if G ∼= Cn.

Conjecture 4. If G ∈ Un, then PE(G) is minimal if and only if pr∗(G) ∼= C3.

Conjecture 5. If G ∈ Bn, then PE(G) is maximal if and only if G ∈ B(3) for n =

a+ b− c− 2, a, b ≥ 3, c ≥ 0.
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Conjecture 6. If G ∈ Bn, then PE(G) is minimal if and only if pr∗(G) ∼= B
(2)(3, 3).

Following an idea of Bapat and Pati [3,17], we characterize some properties of integer

path energy.

Proposition 11. Any even positive integer is the path energy of some graph.

Proof. Let m = 2k be a even positive integer. Consider a tree T with k + 1 vertices.

Then according to Example 1 and Eq. (2), PE(T ) = 2k = m.

Proposition 12. If the path energy PE(G) of G is a rational number, then it is an even

integer.

Proof. We show that the claim of Proposition 12 holds for any symmetric square matrix

whose elements are non-negative integers and whose diagonal is zero. Let M be such

a matrix and let μ1, μ2, . . . , μn be its eigenvalues. These eigenvalues are real–valued

numbers.

The energy of M is

E(M) =

n∑
i=1

|μi| .

Let the positive eigenvalues of M be μ1, . . . , μr. Since
n∑

i=1

μi = 0, it is easy to see that

E(M) = 2

r∑
i=1

μi . (3)

Consider the Cartesian productM⊕M of thematrixM with itself [6,13,15], and recall

that its eigenvalues are μi + μj , i, j = 1, 2, . . . , n. Therefore, the sum μ1 + μ2 + · · ·+ μr

is an eigenvalue of the r-fold Cartesian product M⊕M⊕ · · · ⊕M.

The product M⊕M⊕· · ·⊕M is also a symmetric square matrix whose elements are

non-negative integers and whose diagonal is zero. Its characteristic polynomial is a monic

polynomial with integer coefficients, and therefore any rational root of such a polynomial

must be an integer. Thus, if μ1 + μ2 + · · ·+ μr is a rational number, then it must be an

integer. Then by Eq. (3), E(M) must be an even integer.
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5 Concluding remarks

After establishing the basic properties of the path matrix and its eigenvalues, it is neces-

sary to address the question which structural property of the underlying graph is reflected

by this matrix and its eigenvalues.

Bearing in mind Example 1, it is evident that P(G) and its eigenvalues are fully insen-

sitive to any acyclic structural feature of the graph G. On the other hand, the presence,

size, and mutual constellation of the cycles contained in G do affect the properties of

P(G). This is, perhaps, best seen from Proposition 6, by means of which we may deduce

the size of the cycle of a unicyclic graph – and nothing more.

Some time ago, a concept named cyclicity was put forward in mathematical chemistry

[5], see also [18]. Analogous ideas are sporadically encountered also in graph theory [9,11].

Although there exists no precise definition of what cyclicity of a molecular graph might

be, we may guess that the path matrix, its eigenvalues, and the path energy in particular,

provide measures of molecular cyclicity. If this is of any practical value and applicability

remains to be verified or disputed in the future.
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