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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum of the absolute
values of all eigenvalues of G. In this paper, we present various new upper bounds
for the energy of graphs in terms of several graph variants such as the number of
vertices, number of edges, maximum degree and Zagreb indices of the graph. We
also characterize graphs achieving equality in each new bound. Our bounds improve
several previous bounds given in [B.J. McClelland, Properties of the latent roots of
a matrix: The estimation of π-electron energies, J. Chem. Phys. 54 (1971), 640-
643], [J.H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26.
47-52 (2001)] and [J.H. Koolen and V. Moulton, Maximal energy bipartite graphs,
Graphs Combin. 19 (2003), 131-135].

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) = {v1, v2, . . . . , vn}
and edge set E(G), | E(G) |= m. The order and size of G are n = |V | and m = |E|,
respectively. For a vertex vi ∈ V , the degree of vi, denoted by deg(vi) (or just di), is

the number of edges incident to v. We denote by Δ(G) the maximum degree among the

vertices of G, and by δ(G) the minimum degree among the vertices of G. A walk from
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a vertex u to a vertex v is a finite alternating sequence v0(= u)e1v1e2 . . . vk1ekvk(= v) of

vertices and edges such that ei = vi−1vi for i = 1, 2, . . . , k. The number k is the length

of the walk. In particular, if the vertex vi, i = 0, 1, ..., k in the walk are all distinct then

the walk is called a path. A path of order n is denoted by Pn. A closed path or cycle, is

obtained from a path v1, . . . , vk (where k � 3) by adding the edge v1vk. A cycle of order

n is denoted by Cn. A graph is unicyclic if it contains precisely one cycle. A graph is

connected if each pair of vertices in a graph is joined by a walk. A bipartite graph is a

graph such that its vertex set can be partitioned into two sets X and Y (called the partite

sets) such that every edge meet both X and Y . A complete bipartite graph is a bipartite

such that any vertex of a partite set is adjacent to all vertices of the other partite set. A

complete bipartite graph with partite set of cardinalities p and q is denoted by Kp,q. The

graph K1,n−1 is also called a star of order n, denoted by Sn. A simple undirected graph in

which every pair of distinct vertices is connected by a unique edge, is the complete graph

and is denoted by Kn. For other graph theory notation and terminology we refer to [19].

The first and second Zagreb indices of a graph G are defined as M1(G) =
∑

u∈V d2u

and M2(G) =
∑

uv∈V dudv, respectively. For further study on the Zagreb indices and their

properties, we refer to [10, 21, 22].

The adjacency matrix A(G) of a graph G is defined by its entries as aij = 1 if vivj ∈
E(G) and 0 otherwise. Let λ1 � λ2 � · · · � λn−1 � λn denote the eigenvalues of

A(G). Then λ1 is called the spectral radius of G. When more than one graphs are under

consideration, then we write λi(G) instead of λi. The energy of a graph G is defined as

E(G) =
n∑

i=1

| λi | .

This concept was introduced by I. Gutman and is intensively studied in chemistry, since

it can be used to approximate the total π-electron energy of a molecule (see, e.g. [7], [8]).

In 1971, McClelland [18] discovered the first upper bound for E(G) as follows:

E(G) ≤
√
2mn. (1)

Since then, numerous other bounds for E(G) were found (see, e.g. [1], [6]- [7], [9]- [16]).

Here we just state some upper bounds for E(G) which were obtained recently. Koolen

and Moulton [13] showed that if 2m � n and G is a graph with n vertices, m edges, then

E(G) ≤ 2m

n
+

√
(n− 1)

(
2m− (

2m

n
)2
)
, (2)
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with equality if and only if G is either n
2
K2, Kn or a non-complete connected strongly

regular graph with two non-trivial eigenvalues both with absolute value
√

(2m−( 2m
n

)2)

(n−1)
. The

same authors showed then that if 2m � n and G is a bipartite graph with n > 2 vertices,

m edges, then

E(G) ≤ 2(
2m

n
) +

√
(n− 1)

(
2m− 2(

2m

n
)2
)
, (3)

with equality if and only if G is either n
2
K2, a complete bipartite graph, or the incidence

graph of a symmetric 2-(ν, k, λ)-design with k = 2m
n

and λ = k(k−1)
ν−1

(n = 2ν). Zhou [20]

proved that if G is a graph with n vertices, m edges and degree sequence d1, d2, . . . , dn,

then

E(G) ≤
√

M1

n
+

√
(n− 1)

(
2m− M1

n

)
, (4)

with equality if and only if G is either n
2
K2, a complete bipartite graph, a non-complete

connected strongly regular graph with two non-trivial eigenvalues both with absolute

value
√

2m−( 2m
n

)2

(n−1)
or nK1. Zhou [20] also showed that if G is a bipartite graph with n > 2

vertices, m edges and degree sequence d1, d2, . . . , dn, then

E(G) ≤ 2

√
M1

n
+

√
(n− 2)

(
2m− 2M1

n

)
, (5)

with equality if and only if G is either n
2
K2, a complete bipartite graph, the incidence

graph of a symmetric 2− (ν, κ, λ)-design with κ = 2m
n

and λ = κ(κ−1)
ν−1

(n = 2ν).

In this paper, we present various new upper bounds for the energy of graphs in terms of

several graph variants such as the number of vertices, number of edges, maximum degree

and Zagreb indices of the graph. We improve the bounds given in (1) by McClelland,

and in (2) and (3) by Koolen and Moulton, and present bounds similar to those given in

(4) and (5) in terms of the second zagreb indices. We also characterize graphs achieving

equality in each new bound. The organization of the paper is as follows. In the Section

2, we give a list of some previously known results. In the Section 3, we present our upper

bounds for the energy of a graph G. We divide the section into five subsections depending

on the kind of graphs under study which are: general graphs, connected graphs, connected

unicyclic graphs, bipartite graphs, and connected bipartite graphs.

2 Preliminaries and known results

In this section, we list some previously known results that will be needed in the next

sections. We first state some results on the spectral radius of a graph.
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Lemma 1 ( [5]) If G is a non-empty graph with maximum degree Δ, then λ1 �
√
Δ,

with equality if and only if G is n
2
K2.

Lemma 2 ( [5]) If G is a graph with n vertices, m edges and degree sequence d1, d2, . . . ,

dn, then

λ1 �
1

m

∑
ij∈E

√
didj =

∑
ij∈E

√
didj

m
�

√∑
ij∈E didj

m
=

√
M2

m
. (6)

Lemma 3 ( [11]) If G is a connected unicyclic graph, then λ1 ≥ 2, with equality if and

only if G is a cycle Cn.

Lemma 4 ( [3]) If G is a connected graph with n vertices, then

λ1 ≥ 2 cos(
π

(n+ 1)
), (7)

with equality if and only if G is a cycle Pn.

We next state some results on the Zagreb index of a graph.

Lemma 5 ( [17]) If G is a graph with n vertices and m edges, then M2

m
� 4m2

n2 .

The next lemma provides a bound for the energy of a graph.

Lemma 6 ( [2]) If G is a graph with m edges, then E(G) � 2
√
m, with equality if and

only if G is a complete bipartite graph plus arbitrarily many isolated vertices.

Lemma 7 ( [4]) A graph G has only one eigenvalue if and only if G is an empty graph.

A graph G has two distinct eigenvalues μ1 > μ2 with multiplicities m1 and m2 if and only

if G is the direct sum of m1 complete graphs of order μ1 + 1. In this case, μ2 = −1 and

m2 = m1μ1.

We end this section by stating the energy and the Zagreb indices of a complete graph.

It is well known that the complete graph Kn has two distinct eigenvalues which are n− 1

with multiplicity 1 and −1 with multiplicity n − 1. Thus, E(Kn) = n − 1 + (n − 1) ×
1 = 2n − 2. Furthermore, a simple calculation shows that M1(Kn) = n(n − 1)2 and

M2(Kn) = m(n− 1)2, where m = n(n− 1)/2.
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3 Upper Bounds for the Energy of Graphs

In this section, we obtain some new upper bounds for the energy of graphs. We deal with

general graphs, connected graphs, connected unicyclic graphs, bipartite graphs, connected

bipartite graphs, and connected bipartite unicyclic graphs. We divide this section into

six subsection depending on the kind of graphs we study.

3.1 Upper bounds in general graphs

We begin with the following upper bound in terms of order, size, maximum and minimum

degree of a graph.

Theorem 8 Let G be a non-empty graph with n vertices, m edges and maximum vertex

degrees Δ. Then

E(G) ≤
√
Δ+

√
(n− 1)(2m−Δ), (8)

equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By the Cauchy −
Schwartz inequality,

n∑
i=2

| λi |�
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1).

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1).

Note that the function F (x) = x +
√

(n− 1)(2m− x2) decreases for
√

2m
n

� x �
√
2m.

By Lemma 1, we have λ1 �
√
Δ, equality holds if and only if G is n

2
K2. Clearly, Δ � 2m

n
.

By Lemma 1, we have

λ1 �
√
Δ �

√
2m

n
.

So F (λ1(G)) � F (
√
Δ), which implies that

E(G) ≤
√
Δ+

√
(n− 1)(2m−Δ).

If G ∼= n
2
K2, then it is easy to check that the equality in (8) holds. Conversely, if the

equality in (8) holds, then according to the above argument, we have λ1 =
√
Δ. Moreover,

| λi |=
√

2m−λ2
1

n−1
(2 � i � n). Since G is a non-empty graph, by Lemma 7, G has at least

two distinct eigenvalues. We consider the following case.
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Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 =| λi |=
√

2m−λ2
1

n−1
(2 � i � n), since G has at least two distinct

eigenvalues. By Lemma 7, | λi |=
√

2m−λ2
1

n−1
= 1(2 � i � n). Hence 2m = n and

also, λ1 =| λ2 |= · · · =| λn |= 1. By applying Lemma 7 again, we obtain that m2 =

m1λ1, λ1 = 1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2
,

and λi = −1 (2 � i � n) has multiplicity n
2
. Therefore G is the direct sum of m1 = n

2

complete graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 7, | λi |= 1(2 � i � n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n − 1. Hence λ1 has

multiplicity 1 and λi = −1 has multiplicity n− 1. By Lemma 7, G is the direct sum of a

complete graph of order λ1 + 1 = n. Consequently, G is Kn.

We remark that since the function F (x) = x +
√
(n− 1)(2m− x2) decreases for√

2m
n

� x �
√
2m, the bound of Theorem 8 is an improvement of the bound given

in (2).

The next bound involves the second Zagreb index of a graph.

Theorem 9 Let G be a non-empty graph with n vertices and m edges. Then

E(G) ≤
√
M2

m
+

√
(n− 1)(2m− M2

m2
), (9)

equality holds if and only if G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By the Cauchy-

Schwartz inequality,

n∑
i=2

| λi |�
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1).

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1).

Note that the function S(x) = x +
√

(n− 1)(2m− x2) decreases for 2m
n2 � x � 2m. By

Lemma 2, we have

λ1 �
√
M2

m
,
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with equality if and only if G is n
2
K2. By Lemmas 2 and 5, we have

λ1 �
√
M2

m
� 2m

n2
.

So S(λ1(G)) � S(
√
M2

m
), which implies that

E(G) ≤
√
M2

m
+

√
(n− 1)(2m− M2

m
)2.

If G ∼= n
2
K2, then it is easy to check that the equality in (9) holds. Conversely, if the

equality in (9) holds, then according to the above argument, we have

λ1 =

√
M2

m
.

Moreover, | λi |=
√

2m−λ2
1

n−1
(2 � i � n). Since G is a non-empty graph, by Lemma 7, G

has at least two distinct eigenvalues.

Suppose that absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Lemma 7, | λi |= 1(2 � i � n).

Since,
∑n

i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n − 1. Hence λ1

has multiplicity 1 and λi = −1 has multiplicity n − 1. By Lemma 7, G is the direct

sum of a complete graph of order λ1 + 1 = n. Consequently, G is Kn. But E(Kn) =

n − 1 + (n − 1) × 1 = 2n − 2 and M2(Kn) = n(n − 1)/2(n − 1)2, and so the equality

in (9) does not hold for Kn, a contradiction. We deduce that the absolute value of all

eigenvalues of G are equal. Then clearly λ1 =| λi |=
√

2m−λ2
1

n−1
(2 � i � n), since G has

at least two distinct eigenvalues. By Lemma 7, | λi |=
√

2m−λ2
1

n−1
= 1(2 � i � n). Hence

2m = n and also, λ1 =| λ2 |= · · · =| λn |= 1. By applying Lemma 7 again, we obtain that

m2 = m1λ1, λ1 = 1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity

n
2
, and λi = −1 (2 � i � n) has multiplicity n

2
. Therefore G is the direct sum of m1 =

n
2

complete graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

3.2 An upper bound in connected graphs

In the following we consider connected graphs.

Theorem 10 Let G be a non-empty, connected graph with n vertices and m edges. Then

E(G) ≤ 2 cos(
π

n+ 1
) +

√
(n− 1)(2m− (2 cos(

π

n+ 1
))2), (10)

equality holds if and only if G ∼= P2.
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Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By the Cauchy-

Schwartz inequality,

n∑
i=2

| λi |�
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1).

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1).

Note that the function L(x) = x +
√

(n− 1)(2m− x2) decreases for
√

2m
n

� x �
√
2m.

By Lemma 4, we have λ1 � 2 cos( π
n+1

), with equality if and only if G is P2. Thus,

λ1 � 2 cos( π
n+1

) �
√

2m
n
. So L(λ1(G)) � L(2 cos( π

n+1
)), which implies that

E(G) ≤ 2 cos(
π

n+ 1
) +

√
(n− 1)(2m− (2 cos(

π

n+ 1
))2).

If G ∼= K2, then it is easy to check that the equality in (10) holds. Conversely, if the

equality in (10) holds, then according to the above argument, we have

λ1 = 2 cos(
π

n+ 1
).

Moreover, | λi |=
√

2m−λ2
1

n−1
(2 � i � n). Since G is a non-empty graph, by Lemma 7, G

has at least two distinct eigenvalues. Suppose that the absolute value of all eigenvalues

of G are not equal. Then G has two distinct eigenvalues with different absolute values.

By Lemma 7, | λi |= 1(2 � i � n). Since,
∑n

i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we

have, λ1 = n − 1. Hence λ1 has multiplicity 1 and λi = −1 has multiplicity n − 1. By

Lemma 7, G is the direct sum of a complete graph of order λ1 + 1 = n. Consequently,

G is Kn. But E(Kn) = n − 1 + (n − 1) × 1 = 2n − 2 and −1 � cos x � 1 for x ∈ R,

and so we observe that the equality in (10) does not hold, a contradiction. We deduce

that the absolute value of all eigenvalues of G are equal. Then clearly λ1 =| λi |=√
2m−λ2

1

n−1
(2 � i � n), since G has at least two distinct eigenvalues. By Lemma 7,

| λi |=
√

2m−λ2
1

n−1
= 1(2 � i � n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |= 1.

By applying Lemma 7 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore m1 = m2.

Then we obtain that λ1 = 1 has multiplicity n
2
, and λi = −1 (2 � i � n) has multiplicity

n
2
. Therefore G is the direct sum of m1 = n

2
complete graphs of order λ1 + 1 = 2.

Consequently, G is n
2
K2. Since G is a connected graph, therefore, G ∼= K2.

Note that since the function L(x) = x+
√

(n− 1)(2m− x2) decreases for
√

2m
n

� x �√
2m, the bound of Theorem 10 is another improvement of the bound given in (2) for

connected graphs.
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3.3 An upper bound in connected unicyclic graphs

We next give an upper bound for the energy in connected unicyclic graphs.

Theorem 11 Let G be a non-empty, connected unicyclic graph with n vertices and m

edges. Then

E(G) ≤ 2 +
√

(n− 1)(2m− 4), (11)

equality holds if and only if G ∼= C3.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By the Cauchy-

Schwartz inequality,

n∑
i=2

| λi |�
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1).

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1).

Note that the function G(x) = x +
√

(n− 1)(2m− x2) decreases for
√

2m
n

� x �
√
2m.

By Lemma 3, we have λ1 � 2, equality holds if and only if G is Cn. Thus, λ1 � 2 �
√

2m
n
.

So G(λ1(G)) � G(2), which implies that

E(G) ≤ 2 +
√
(n− 1)(2m− 4).

If G ∼= K3, then it is easy to check that the equality in (11) holds. Conversely, if the

equality in (11) holds, then according to the above argument, we have λ1 = 2. Since G is

a non-empty graph, by Lemma 7, G has at least two distinct eigenvalues.

Suppose that the absolute value of all eigenvalues of G are equal. Then clearly λ1 =|
λi |=

√
2m−λ2

1

n−1
(2 � i � n), since G has at least two distinct eigenvalues. By Lemma 7,

| λi |=
√

2m−λ2
1

n−1
= 1(2 � i � n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |= 1.

By applying Lemma 7 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore m1 = m2.

Then we obtain that λ1 = 1 has multiplicity n
2
, and λi = −1 (2 � i � n) has multiplicity

n
2
. Therefore G is the direct sum of m1 = n

2
complete graphs of order λ1 + 1 = 2.

Consequently, G is n
2
K2. This is a contradiction, since G is a unicyclic graph. We deduce

that the absolute value of all eigenvalues of G are not equal. Then G has two distinct

eigenvalues with different absolute values. By Lemma 7, | λi |= 1(2 � i � n). Since,∑n
i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n−1. Hence λ1 has multiplicity
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1 and λi = −1 has multiplicity n − 1. By Lemma 7, G is the direct sum of a complete

graph of order λ1+1 = n. Consequently, G is Kn. Since G is a connected unicyclic graph,

therefore, G ∼= K3.

Note that since the function G(x) = x+
√
(n− 1)(2m− x2) is decreasing for

√
2m
n

�
x �

√
2m, a simple calculation shows that the bound of Theorem 11 is an improvement

of the bound given in (1) for connected unicyclic graphs.

3.4 Upper bounds in bipartite graphs

In this subsection, we present upper bounds for the energy of a bipartite graph. In the

following we give an upper bound is in terms of order, size, maximum and minimum

degree of a graph.

Theorem 12 Let G be a non-empty bipartite graph with n � 2 vertices, m edges and

maximum vertex degrees Δ. Then

E(G) ≤ 2
√
Δ+

√
(n− 2)(2m− 2Δ), (12)

equality holds if and only if one of the following statements holds:

(1) G ∼= n
2
K2, (n = 2m);

(2) K1,r−1

⋃
(n− 1− rn−1)K1.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. Since G is a bipartite

graph, we have λ1 = −λn. By the Cauchy-Schwartz inequality,

n−1∑
i=2

| λi |�
√√√√(n− 2)

n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1).

Hence

E(G) � 2λ1 +
√

(n− 2)(2m− 2λ2
1).

It is not diffcult to see that H(x) = 2x+
√

(n− 2)(2m− 2x2) decreases for
√

2m
n

� x �
√
2m. By Lemma 1, we have λ1 �

√
Δ, with equality if and only if G is n

2
K2. Clearly,

Δ � 2m
n
. By Lemma 1, we have

λ1 �
√
Δ �

√
2m

n
.

So H(λ1(G)) � H(
√
Δ), which implies that

E(G) ≤ 2
√
Δ+

√
(n− 2)(2m− 2Δ).
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If G is one of the two graphs shown in the second part of the theorem, then it is easy

to check that the equality in (12) holds. Conversely, if the equality in (12) holds, then

according to the above argument, we have λ1 = −λn =
√
Δ. Moreover, | λi |=

√
2m−λ2

1

n−2

(2 � i � n− 1). Since G is a non-empty graph, by Lemma 7, G has at least two distinct

eigenvalues. We consider the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Note that λ1 = −λn =| λi |=
√

2m−λ2
1

n−2
(2 � i � n−1). By Lemma 7, λn = −

√
2m−λ2

1

n−2
=

|λi| = −1 (2 � i � n − 1). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |= 1. By

Lemma 7, m2 = m1λ1, λ1 = 1, and therefore m1 = m2. Then we obtain that λ1 = 1 has

multiplicity n
2
, and λi = −1 (2 � i � n) has multiplicity n

2
. Therefore G is the direct

sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Consequently, G is n

2
K2.

Case 2. The absolute value of all eigenvalues of G are not equal. If two eigenvalues

of G have different absolute values, then by Lemma 7, | λi |= −1(2 � i � n). Noting

that G is a bipartite graph, we have λ1 = −λn, that is a contradiction, since the two

eigenvalues of G have different absolute values. Thus assume that G has three distinct

eigenvalues. Since G is a bipartite graph, we have that λ1 = −λn �= 0 and
∑n

i=1 λi = 0,

and therefore, λi = 0(2 � i � n− 1). Thus E(G) = 2λ1, and by Lemma 6, we have that

2λ1 � 2
√
m, and so 2λ2

1 � 2m. Notice that 2m =
∑n

i=1 λ
2
i = 2λ2

1. Therefore λ1 =
√
m

and E(G) = 2
√
m. Hence by Lemma 6, G is a complete bipartite graph plus arbitrarily

many isolated vertices. Thus, there exist integers r1 � 1 and r2 � 2 such that G is

Kr1,r2 ∪ (n− r1 − r2)K1.

We remark that since the function H(x) = 2x+
√

(n− 2)(2m− 2x2) is decreasing for√
2m
n

� x �
√
2m, the bound of Theorem 12 is an improvement of the bound given in (3)

for bipartite graphs.

The next bound involves the first and the second zagreb indices.

Theorem 13 Let G be a non-empty bipartite graph with n � 2 vertices and m edges.

Then

E(G) ≤ 2

√
M2

m
+

√
(n− 2)(2m− 2

M2

m2
), (13)

equality holds if and only G ∼= n
2
K2, (n = 2m).

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By the Cauchy −
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Schwartz inequality,

n−1∑
i=2

| λi |�
√√√√(n− 2)

n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1).

Hence

E(G) � 2λ1 +
√

(n− 2)(2m− 2λ2
1).

Note that the function N(x) = 2x +
√
(n− 1)(2m− x2) decreases for 2m

n2 � x � 2m. By

Lemma 2, we have

λ1 �
√
M2

m
,

equality holds if and only if G is n
2
K2. By Lemmas 2 and 5, we have

λ1 �
√
M2

m
� 2m

n2
.

So N(λ1(G)) � N(
√
M2

m
), which implies

E(G) ≤ 2

√
M2

m
+

√
(n− 2)(2m− 2

M2

m2
).

If G ∼= n
2
K2 it is easy to check that the equality in (13) holds. Conversely, if the equality

in (13) holds, according to the above argument, we have λ1 = −λn =
√
M2

m
. Moreover,

| λi |=
√

2m−λ2
1

n−2
(2 � i � n − 1). Since G is a non-empty graph, by Lemma 7, G has

at least two distinct eigenvalues. Suppose that the absolute value of all eigenvalues of G

are not equal. If two eigenvalues of G have different absolute values, then by Lemma 7,

| λi |= −1(2 � i � n). Noting that G is a bipartite graph, we have λ1 = −λn, this is a

contradiction. We deduce that the absolute value of all eigenvalues of G are equal. Note

that λ1 = −λn =| λi |=
√

2m−λ2
1

n−2
(2 � i � n− 1). By Lemma 7, λn = −

√
2m−λ2

1

n−2
= ‖λi| =

−1 (2 � i � n − 1). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |= 1. By Lemma 7,

m2 = m1λ1, λ1 = 1, and therefore m1 = m2. Then we obtain that λ1 = 1 has multiplicity
n
2
, and λi = −1 (2 � i � n) has multiplicity n

2
. Therefore G is the direct sum of m1 =

n
2

complete graphs of order λ1 + 1 = 2. Consequently, G is n
2
K2.

3.5 An upper bounds in connected bipartite graphs

Theorem 14 Let G be a non-empty connected bipartite graph with n vertices and m

edges. Then

E(G) ≤ 4 cos(
π

n+ 1
) +

√
(n− 2)(2m− 2(2 cos(

π

n+ 1
))2), (14)
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equality holds if and only if one of the following statements holds:

(1) G ∼= P2(K2);

(2) G ∼= P3(K1,2).

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By the Cauchy-

Schwartz inequality,

n−1∑
i=2

| λi |�
√√√√(n− 2)

n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1).

Hence

E(G) � 2λ1 +
√

(n− 2)(2m− 2λ2
1).

Note that the function D(x) = 2x+
√
(n− 1)(2m− x2) decreases for

√
2m
n

� x �
√
2m.

By Lemma 4, we have

λ1 � 2 cos(
π

n+ 1
),

equality holds if and only if G is P2. Then

λ1 � 2 cos(
π

n+ 1
) �

√
2m

n
.

So D(λ1(G)) � D(2 cos( π
n+1

)), which implies that

E(G) ≤ 2 cos(
π

n+ 1
) +

√
(n− 1)(2m− (2 cos(

π

n+ 1
))2).

If G is one of the two graphs shown in the second part of the theorem, then it is easy to

check that the equality in (14) holds. Conversely, if the equality in (14) holds, according

to the above argument, we have that λ1 = −λn = 2 cos( π
n+1

). Moreover, | λi |=
√

2m−λ2
1

n−2

(2 � i � n− 1). Since G is a non-empty graph, by Lemma 7, G has at least two distinct

eigenvalues. We consider the following case.

Case 1. The absolute value of all eigenvalues of G are equal.

Note that λ1 = −λn =| λi |=
√

2m−λ2
1

n−2
(2 � i � n − 1). By Lemma 7, λn = −

√
2m−λ2

1

n−2
=

‖λi| = −1 (2 � i � n − 1). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |= 1. By

Lemma 7, m2 = m1λ1, λ1 = 1, and therefore m1 = m2. Then we obtain that λ1 = 1 has

multiplicity n
2
, and λi = −1 (2 � i � n) has multiplicity n

2
. Therefore G is the direct

sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Consequently, G is n

2
K2. Since G is

a connected bipartite graph, therefore G ∼= K2.
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Case 2. The absolute value of all eigenvalues of G are not equal. If two eigenvalues

of G have different absolute values, then by Lemma 7, | λi |= −1(2 � i � n). Noting

that G is a bipartite graph, we have λ1 = −λn, that is a contradiction, since the two

eigenvalues of G have different absolute values. Thus assume that G has three distinct

eigenvalues. Since G is a bipartite graph, we have that λ1 = −λn �= 0 and
∑n

i=1 λi = 0,

and therefore, λi = 0(2 � i � n− 1). Thus E(G) = 2λ1, and by Lemma 6, we have that

2λ1 � 2
√
m, and so 2λ2

1 � 2m. Notice that 2m =
∑n

i=1 λ
2
i = 2λ2

1. Therefore λ1 =
√
m

and E(G) = 2
√
m. Hence by Lemma 6, G is a complete bipartite graph plus arbitrarily

many isolated vertices. Thus, there exist integers r1 � 1 and r2 � 2 such that G is

Kr1,r2 ∪ (n−r1−r2)K1. Hence, for r1 = 1 and r2 = 2, we have G ∼= K1,2∪ (n−r1−r2)K1.

Note that since the function D(x) = 2x+
√
(n− 1)(2m− x2) is decreasing for

√
2m
n

�
x �

√
2m, the bound of Theorem 14 is another improvement of the bound given in (3)

for conneted bipartite graphs.
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