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Abstract

Let G be a finite simple undirected graph with n vertices and m edges. The
energy of a graph G, denoted by E(G), is defined as the sum of the absolute values
of the eigenvalues of G. In this paper we present some new upper bounds for E(G)
in terms of number of vertices, number of edges, chromatic number, diameter and
Randić index. Also in section 3, improving upper bounds E(G) in inequalities (2)
and (3).

1 Introduction

Let G = (V,E) be a simple undirected graph with n vertices and m edges. For v ∈ V , the

degree of v, denoted by d(v), is the number of edges incident to v, let di be the degree of the

vertex vi. The distance between two vertices x and y, denoted by d(x, y), is the number of

edges of a shortest path between x and y, and itsmaximum value over all pair of vertices is

called diameter of the graph G, in other words, D = diam(G) = max{d(x, y) : x, y ∈ V }.
The Randić index of G, denoted by R(G), is defined as R = R(G) =

∑
uv∈E

1√
d(v)d(u)

.

The smallest number of colors needed to color a graph G is called its chromatic number

of G, denoted by χ(G), when χ(G) = k, G is called k-chromatic. If each pair of vertices in

a graph is joined by a walk, the graph is said to be connected graph. A simple undirected

graph in which every pair of distinct vertices is connected by a unique edge, is the complete

graph and denoted by Kn. A simple graph G = (X, Y ) is called bipartite if its vertex

set can be partitioned into two disjoint subsets V = X1 ∪ X2 such that every edge has

the form e = (a, b) where a ∈ X1 and b ∈ X1. A complete bipartite graph is a special
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kind of bipartite graph where every vertex of the first set is connected to every vertex

of the second set, denoted by Km,n. The graph K1,n−1 is also called the star of order n,

denoted by Sn. The 2-degree of vi [3] is the sum of the degrees of the vertices adjacent to

vi and denoted by ti. We call ti
di

the average-degree of vi. A graph G is regular if there

exists a constant r such that each vertex of G has degree r, such graphs are also called

r-regular. A graph G is pseudo-regular if there exists a constant p such that each vertex

of G has average-degree p, such graphs are also called p-pseudo-regular. A bipartite

graph G = (X, Y ) is pseudo-semiregular if there exist two constants px and py such

that each vertex in X has average-degree px and each vertex in Y has average-degree

py, such bipartite graphs are also called (px; py)-pseudo-semiregular. The adjacency

matrix A(G) of G is defined by its entries as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let

λ1 � λ2 � · · · � λn−1 � λn denote the eigenvalues of A(G). The spectral radius of G,

denoted by λ1(G) , is the largest eigenvalue of A(G). When more than one graphs are

under consideration, then we write λi(G) instead of λi. The energy of the graph G is

defined as

E(G) =
n∑

i=1

|λi| .

This concept was introduced by I. Gutman and is intensively studied in chemistry, since

it can be used to approximate the total π-electron energy of a molecule (see, e.g. [9,10]).

In 1971, McClelland [17] discovered the first upper bound for E(G) as follows:

E(G) ≤
√
2mn . (1)

Since then, numerous other bounds for E(G) were found (see, e.g. [1, 8, 9, 11–17] ).

Koolen and Moulton [13]: If 2m � n and G is a graph with n vertices, m edges, then

E(G) ≤ 2m

n
+

√√√√(n− 1)

(
2m−

(
2m

n

)2
)

. (2)

Equality holds if and only if G is either n
2
K2, Kn or a non-complete connected strongly

regular graph with two non-trivial eigenvalues both with absolute value
√

(2m−( 2m
n

)2)

(n−1)
.

Koolen and Moulton [14] : If 2m � n and G is a bipartite graph with n > 2 vertices, m

edges, then

E(G) ≤ 2

(
2m

n

)
+

√√√√(n− 1)

(
2m− 2

(
2m

n

)2
)

. (3)

Equality holds if and only if G is either n
2
K2, a complete bipartite graph, or the incidence

graph of a symmetric 2-(ν, k, λ)-design with k = 2m
n

and λ = k(k−1)
ν−1

(n = 2ν).
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The paper is organized as follows. In Section 2, we give a list of some previously known

results. In Section 3, we present two new upper bounds for the energy with Randić index

of graphs and Improving upper bounds for energy in Inequalities (2) and (3). In Section

4, we present two new upper bounds for the energy with chromatic number of graphs. In

Section 5, we present two new upper bounds for the energy with diameter of graphs.

2 Preliminaries

We list here some previously known results that will be needed in the sections.

Lemma 1. [7] Let G be a non-empty graph with m edges and Randić R. Then

λ1 �
m

R
. (4)

Lemma 2. [2] Let G be a non-trivial graph with n vertices. Then

R(G) � n

2
. (5)

Lemma 3. [7] Let G be a connected graphs with chromatic number χ. Then

λ1 � χ− 1 . (6)

Lemma 4. [6] If G is a graph with n vertices and chromatic number χ. Then

χ � n

n− λ1

. (7)

Lemma 5. [4] Let G be a graph with with m edges. Then

E(G) � 2
√
m . (8)

Equality if and only if G is a complete bipartite graph plus arbitrarily many isolated

vertices.

Lemma 6. [5] G has only one distinct eigenvalue if and only if G is an empty graph. G

has two distinct eigenvalues μ1 > μ2 with multiplicities m1 and m2 if and only if G is the

direct sum of m1 complete graphs of order μ1 +1. In this case, μ2 = −1 and m2 = m1μ1.

Lemma 7. [7] Let G be a graph with with n vertices and m edges. Then

λ1 �
2m

n
. (9)

Lemma 8. [18] If G is a connected graph with n vertices and diameter D. Then

λ1 ≥ D
√
n− 1 . (10)
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3 Upper bounds with Randić index of graphs

In this section present two new upper bounds for energy with Randić index of graphs

and Improving upper bounds for energy in Inequalities (2) and (3).

Remark 1. Suppose that λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. By

the Cauchy-Schwarz inequality, (
∑n

i=2 |λi|)2 � (n − 1)
∑n

i=2 |λi|2) which (
∑n

i=2 λi)
2 =

2m− λ2
1. Therefore |λi| =

√
2m−λ2

1

n−1
.

Theorem 1. Let G be a non-empty graph with n vertices, m edges and Randić R. Then

E(G) ≤ m

R
+

√
(n− 1)

(
2m−

(m
R

)2
)

. (11)

Equality holds if and only if G ∼= Kn.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues ofG. By the Cauchy−Schwartz

inequality,
n∑

i=2

|λi| �
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1) .

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1) .

Note that the function F (x) = x+
√

(n− 1)(2m− x2) decreases for 2m
n

� x �
√
2m. By

Lemma 1 and Lemma 2,

λ1 �
m

R
� 2m

n
.

So F (λ1(G)) � F (m
R
), which implies

E(G) ≤ m

R
+

√
(n− 1)

(
2m−

(m
R

)2
)

.

If G ∼= Kn it is easy to check that the equality in (11) holds. Conversely, if the equality

in (11) holds, according to the above argument, we have

λ1 =
m

R
.

Note that G has only one distinct eigenvalue if and only if G is an empty graph.

G has two distinct eigenvalues.

If the two distinct eigenvalues of G have the same absolute value, then λ1 =| λi |=√
2m−λ2

1

n−1
(2 � i � n). By Lemma 6, | λi |=

√
2m−λ2

1

n−1
= 1(2 � i � n), hence 2m = n.
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Therefore, λ1 =| λ2 |= · · · =| λn |= 1. By Lemma 6, m2 = m1λ1, λ1 = 1, so m1 = m2,

eigenvalues λ1 = 1, with multiplicity n
2
, also eigenvalues λi = −1, with multiplicity n

2
.

Hence G is the direct sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Namely, G is

n
2
K2, that is contradiction with equality (11).

If the two eigenvalues of G have diferent absolute values, by Lemma 6, | λi |= −1(2 �
i � n). Since G is a simple graph, we have

∑n
i=1 λi = 0. Also λ2 = λ3 = · · · = λn = −1.

Hence eigenvalues λ1, with multiplicity n− 1, also eigenvalues λi = −1, with multiplicity

1. Therefore, by Lemma 6, G is the direct sum of 1 complete graph of order λ1 + 1 = n.

Namely, G is Kn.

Theorem 2. Let G = (V,E) be a non-empty bipartite graph with n � 2 vertices, m edges

and Randić R.Then

E(G) ≤ 2
m

R
+

√
(n− 2)

(
2m− 2

(m
R

)2
)

. (12)

Equality holds if and only if one of the following statements holds:

(1) G ∼= Kr1,r2; where r1r2 = m

(2) G is a connected (px; py)-pseudo-semiregular bipartite graph with four distinct eigen-

values

(√
pxpy,

√
2m−2pxpy

n−2
,−
√

2m−2pxpy
n−2

,−√
pxpy

)
where

√
pxpy ≥

√
2m
n
.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues of G. Since G is a bipartite

graph, we have λ1 = −λn By the Cauchy − Schwartz inequality,

n−1∑
i=2

| λi |�
√√√√(n− 2)

n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1) .

Hence

E(G) � 2λ1 +
√

(n− 2)(2m− 2λ2
1) .

It is not diffcult to see that H(x) = 2x +
√

(n− 2)(2m− 2x2) decreases for 2m
n

� x �
√
2m. By Lemma 1 and Lemma 2,

λ1 �
m

R
� 2m

n
�
√

2m

n
.

So H(λ1(G)) � H(m
R
), which implies

E(G) ≤ 2
m

R
+

√
(n− 2)

(
2m− 2

(m
R

)2
)

.
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If G is one of the two graphs shown in the second part of the theorem, it is easy to check

that the equality in (12) holds. Conversely, if the equality in (12) holds, according to the

above argument,

λ1 = −λn =
m

R
.

Moreover, | λi |=
√

2m−λ2
1

n−2
(2 � i � n− 1). Note that G has only one distinct eigenvalue

if and only if G is an empty graph. We are reduced to the following three possibilities:

(1) G has two distinct eigenvalues.

If the two distinct eigenvalues of G have the same absolute value, then λ1 = −λn =| λi |=√
2m−λ2

1

n−1
(2 � i � n). By Lemma 6, λn = −

√
2m−λ2

1

n−1
= −1(2 � i � n), hence 2m = n.

Therefore, λ1 =| λ2 |= · · · =| λn |= 1. By Lemma 6, m2 = m1λ1, λ1 = 1, so m1 = m2,

eigenvalues λ1 = 1, with multiplicity n
2
, also eigenvalues λi = −1, with multiplicity n

2
.

Hence G is the direct sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Namely, G is

n
2
K2, that is contradiction with equality (12).

If the two eigenvalues of G have diferent absolute values, by Lemma 6, | λi |= −1(2 �
i � n). Noting that G is a bipartite graph, we have λ1 = −λn, that is contradiction with

two eigenvalues of G have diferent absolute values.

(2) G has three distinct eigenvalues.

In this case, noting that G is a bipartite graph, we have λ1 = −λn = m
R

and λi =√
2m−λ2

1

n−2
= 0 (2 � i � n− 1), which implies that E(G) = 2λ1 =

m
R
. By Lemma 5, we have

G ∼= Kr1,r2 where r1r2 = m.

(3) G has four distinct eigenvalues.

In this case, noting that the multiplicity of λ1 is one, we have G is a connected (px; py)-

pseudo-semiregular bipartite graph with four distinct eigenvalues(√
pxpy,

√
2m− 2pxpy

n− 2
,−
√

2m− 2pxpy
n− 2

,−√
pxpy

)

where
√
pxpy ≥

√
2m
n
. This completes the proof of theorem.

Theorem 3. For any graph Inequality (11) is better than (2).

Proof. In order to show (11) is better than (2), we need to demonstrate that, 2m
n

+√
(n− 1)

(
2m− (2m

n
)2
)

� m
R
+
√

(n− 1)(2m− (m
R
)2). Is sufficient to show

m

R
� 2m

n
.
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By Lemma 2, R � n
2
and by Lemma1, λ1 � m

R
, therefore

m

R
� m

n
2

=
2m

n
.

This completes the proof of Theorem.

Similarly it can be shown Inequality (12) is better than (3).

4 Upper bounds with chromatic number of graphs

In this section present two new upper bounds for energy with chromatic number of graphs.

Theorem 4. Let G be a non-empty and connected graph with n vertices, m edges and

chromatic number χ. Then

E(G) ≤ (χ− 1) +
√
(n− 1)(2m− (χ− 1)2) . (13)

Equality holds if and only if G ∼= Kn.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues ofG. By the Cauchy−Schwartz

inequality,
n∑

i=2

| λi |�
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1) .

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1) .

Note that the function S(x) = x +
√

(n− 1)(2m− x2) decreases for n2

n2−2m
� x �

√
2m.

By Lemma 5 and Lemma 4,

χ− 1 � n

n− λ1

� n

n− 2m
n

=
n2

n2 − 2m
,

by Lemma 3

λ1 � χ− 1 � n2

n2 − 2m
.

So S(λ1(G)) � S(χ− 1), which implies

E(G) ≤ (χ− 1) +
√
(n− 1)(2m− (χ− 1)2) .

If G ∼= Kn it is easy to check that the equality in (13) holds. Conversely, if the equality

in (13) holds, according to the above argument, we have

λ1 = χ− 1 .
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Note that G has only one distinct eigenvalue if and only if G is an empty graph.

G has two distinct eigenvalues.

If the two distinct eigenvalues of G have the same absolute value, then λ1 =| λi |=√
2m−λ2

1

n−1
(2 � i � n). By Lemma 6, | λi |=

√
2m−λ2

1

n−1
= 1(2 � i � n), hence 2m = n.

Therefore, λ1 =| λ2 |= · · · =| λn |= 1. By Lemma 6, m2 = m1λ1, λ1 = 1, so m1 = m2,

eigenvalues λ1 = 1, with multiplicity n
2
, also eigenvalues λi = −1, with multiplicity n

2
.

Hence G is the direct sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Namely, G is

n
2
K2, that is contradiction with equality (13).

If the two eigenvalues of G have diferent absolute values, by Lemma 6, | λi |= −1(2 �
i � n). Since G is a simple graph, we have

∑n
i=1 λi = 0. Also λ2 = λ3 = · · · = λn = −1.

Hence eigenvalues λ1, with multiplicity n− 1, also eigenvalues λi = −1, with multiplicity

1. Therefore, by Lemma 6, G is the direct sum of 1 complete graph of order λ1 + 1 = n.

Namely, G is Kn.

Theorem 5. Let G be a non-empty bipartite graph with n � 2 vertices, m edges chromatic

number χ. Then

E(G) ≤ 2(χ− 1) +
√
(n− 2)(2m− 2(χ− 1)2) . (14)

Equality holds if and only if G ∼= K2.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues ofG. By the Cauchy−Schwartz

inequality,
n−1∑
i=2

| λi |�
√√√√(n− 2)

n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1) .

Hence

E(G) � 2λ1 +
√

(n− 2)(2m− 2λ2
1) .

Note that the function N(x) = 2x+
√

(n− 1)(2m− x2) decreases for n2

n2−2m
� x �

√
2m.

By Lemma 3 and Lemma 4,

λ1 � (χ− 1) � n2

n2 − 2m
.

So N(λ1(G)) � N(χ− 1), which implies

E(G) ≤ 2(χ− 1) +
√
(n− 2)(2m− 2(χ− 1)2) .

If G ∼= K2 it is easy to check that the equality in (14) holds. Conversely, if the equality

in (14) holds, according to the above argument,

λ1 = −λ2 = χ− 1 .
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Moreover, | λ2 |=
√

2m−λ2
1

n−2
. Note that G has only one distinct eigenvalue if and only if G

is an empty graph. G has two distinct eigenvalues.

If the two distinct eigenvalues of G have the same absolute value, then λ1 = −λ2 =√
2m−λ2

1

n−1
. By Lemma 6, λ2 = −

√
2m−λ2

1

n−1
= −1, hence 2m = n. Therefore, λ1 =| λ2 |= 1,

which implies G ∼= K2.

If the two eigenvalues of G have diferent absolute values, by Lemma 6, | λ2 |= −1. Noting

that G is a bipartite graph, we have λ1 = −λ2, that is contradiction with two eigenvalues

of G have diferent absolute values.

5 Upper bounds with diameter of graphs

In this section present two new upper bounds for energy with diameter of graphs.

Theorem 6. Let G be a non-empty and connected graph with n vertices, m and diameter

D. Then

E(G) ≤ D
√
n− 1 +

√
(n− 1)

(
2m− (

D
√
n− 1

)2)
. (15)

Equality holds if and only if G ∼= Kn.

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues ofG. By the Cauchy−Schwartz

inequality,
n∑

i=2

| λi |�
√√√√(n− 1)

n∑
i=2

λ2
i =

√
(n− 1)(2m− λ2

1) .

Hence

E(G) � λ1 +
√

(n− 1)(2m− λ2
1) .

Note that the function G(x) = x+
√

(n− 1)(2m− x2) decreases for D
√
n− 2 � x � D

√
n.

By Lemma 8, we have

λ1 � D
√
n− 1,

we have

λ1 � D
√
n− 1 � D

√
n− 2 .

So G(λ1(G)) � G( D
√
n− 1), which implies

E(G) ≤ D
√
n− 1 +

√
(n− 1)(2m− ( D

√
n− 1)2) .

If G ∼= Kn it is easy to check that the equality in (15) holds. Conversely, if the equality

in (15) holds, according to the above argument, we have

λ1 =
D
√
n− 1 .
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Note that G has only one distinct eigenvalue if and only if G is an empty graph.

G has two distinct eigenvalues.

If the two distinct eigenvalues of G have the same absolute value, then λ1 =| λi |=√
2m−λ2

1

n−1
(2 � i � n). By Lemma 6, | λi |=

√
2m−λ2

1

n−1
= 1(2 � i � n), hence 2m = n.

Therefore, λ1 =| λ2 |= · · · =| λn |= 1. By Lemma 6, m2 = m1λ1, λ1 = 1, so m1 = m2,

eigenvalues λ1 = 1, with multiplicity n
2
, also eigenvalues λi = −1, with multiplicity n

2
.

Hence G is the direct sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Namely, G is

n
2
K2, that is contradiction with equality (15).

If the two eigenvalues of G have diferent absolute values, by Lemma 6, | λi |= −1(2 �
i � n). Since G is a simple graph, we have

∑n
i=1 λi = 0. Also λ2 = λ3 = · · · = λn = −1.

Hence eigenvalues λ1, with multiplicity n− 1, also eigenvalues λi = −1, with multiplicity

1. Therefore, by Lemma 6, G is the direct sum of 1 complete graph of order λ1 + 1 = n.

Namely, G is Kn.

Theorem 7. Let G be a nonempty and connected bipartite graph graph with n vertices,

m and diameter D. Then

E(G) � 2 D
√
n− 1 +

√
(n− 2)(2m− 2( D

√
n− 1)2) . (16)

Equality holds if and only G ∼= Sn(K1,n−1).

Proof. Let λ1 � λ2 � · · · � λn−1 � λn be the eigenvalues ofG. By the Cauchy−Schwartz

inequality,
n−1∑
i=2

| λi |�
√√√√(n− 2)

n−1∑
i=2

λ2
i =

√
(n− 2)(2m− 2λ2

1) .

Hence

E(G) � 2λ1 +
√

(n− 2)(2m− 2λ2
1) .

Note that the function Z(x) = 2x+
√

(n− 2)(2m− x2) decreases for D
√
n− 2 � x � D

√
n.

By Lemma 8, we have

λ1 � D
√
n− 1 ,

we have

λ1 � D
√
n− 1 � D

√
n− 2 .

So Z(λ1(G)) � Z( D
√
n− 1), which implies

E(G) ≤ 2 D
√
n− 1 +

√
(n− 2)(2m− 2( D

√
n− 1)2) .
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If G ∼= K1,n−1 , it is easy to check that the equality in (16)holds. Conversely, if the

equality in (16) holds, according to the above argument,

λ1 = −λn = D
√
n− 1 .

Moreover, | λi |=
√

2m−λ2
1

n−2
(2 � i � n− 1). Note that G has only one distinct eigenvalue

if and only if G is an empty graph. We are reduced to the following two possibilities:

(1)G has two distinct eigenvalues.

IfG only two distinct eigenvalues which have the same absolute value, sinceG is a bipartite

graph, we have λ1 = −λ2 �= 0 also by Lemma 6, λ2 = −1. Hence λ1 =| λ2 |=1, which

implies G ∼= K2(S2).

If the two distinct eigenvalues of G have the same absolute value, then λ1 = −λn =| λi |=√
2m−λ2

1

n−1
(2 � i � n). By Lemma 6, λn = −

√
2m−λ2

1

n−1
= −1(2 � i � n), hence 2m = n.

Therefore, λ1 =| λ2 |= · · · =| λn |= 1. By Lemma 6, m2 = m1λ1, λ1 = 1, so m1 = m2,

eigenvalues λ1 = 1, with multiplicity n
2
, also eigenvalues λi = −1, with multiplicity n

2
.

Hence G is the direct sum of m1 =
n
2
complete graphs of order λ1 + 1 = 2. Namely, G is

n
2
K2, that is contradiction with equality (16).

If the two eigenvalues of G have diferent absolute values, by Lemma 6, | λi |= −1(2 �
i � n). Noting that G is a bipartite graph, we have λ1 = −λn, that is contradiction with

two eigenvalues of G have diferent absolute values.

(2) If G has three distinct eigenvalues.

noting that G is a bipartite graph, we have λ1 = −λn = D
√
n− 1 and λi =

√
2m−λ2

1

n−2
= 0

(2 � i � n − 1), which implies that E(G) = 2λ1 = 2
√
m and hence λ1 =

√
m and

E(G) = D
√
n− 1. By Lemma 5, we have G ∼= K1,n−1.
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[2] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Comb. 50 (1998) 225–233.

[3] D. S. Cao, Bounds on eigenvalues and chromatic numbers, Lin. Algebra Appl. 270

(1998) 1–13.
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[5] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs – Theory and Application,

Academic Press, New York, 1980.

[6] C. S. Edwards, C. H. Elphick, Lower bounds for the clique and the chromatic numbers

of a graph, Discr. Appl. Math. 5 (1983) 51–64.
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